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2 

Abstract 18 

In cancer, genetic and transcriptomic variations generate clonal heterogeneity, possibly 19 

leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has 20 

the potential to detect genetic and transcriptomic variations simultaneously. Here, we present 21 

LongSom, a computational workflow leveraging LR scRNA-seq data to call de novo somatic 22 

single-nucleotide variants (SNVs), copy-number alterations (CNAs), and gene fusions to 23 

reconstruct the tumor clonal heterogeneity. For SNV calling, LongSom distinguishes somatic 24 

SNVs from germline polymorphisms by reannotating marker gene expression-based cell types 25 

using called variants and applying strict filters. Applying LongSom to ovarian cancer samples, 26 

we detected clinically relevant somatic SNVs that were validated against single-cell and bulk 27 

panel DNA-seq data and could not be detected with short-read (SR) scRNA-seq. Leveraging 28 

somatic SNVs and fusions, LongSom found subclones with different predicted treatment 29 

outcomes. In summary, LongSom enables de novo SNVs, CNAs, and fusions detection, thus 30 

enabling the study of cancer evolution, clonal heterogeneity, and treatment resistance.  31 
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Introduction 32 

Cancer cells accumulate genomic variations, such as single-nucleotide variants (SNVs), copy 33 

number alterations (CNAs), and gene fusions during their lifetime, leading to subpopulations 34 

with distinct genotypes. Together with changes in the tumor microenvironment, genomic 35 

variations result in distinct phenotypes, such as expression patterns (Lappalainen et al. 2013). 36 

Intratumor heterogeneity, i.e., the existence of cancer subpopulations with distinct genotypes 37 

and phenotypes, is presumed to be a leading cause of therapy resistance and one of the main 38 

reasons for poor overall survival in cancer patients with metastatic disease (Jamal-Hanjani et 39 

al. 2015; Ramón Y Cajal et al. 2020). The adaptive mechanisms underlying therapy resistance 40 

are of both genetic (SNVs, CNAs, gene fusions, etc.) and non-genetic (epigenetic, 41 

transcriptomic, microenvironment, etc.) origin. The first step to identifying therapy-resistant 42 

subclones is to capture those genetic and transcriptomic variants through sequencing 43 

(Mansoori et al. 2017; Marine et al. 2020). Unraveling different subpopulations is particularly 44 

challenging with bulk techniques; however, the advent of single-cell sequencing technologies 45 

has significantly improved our ability to decipher intratumor heterogeneity within complex 46 

tissue samples (Dagogo-Jack and Shaw 2018). 47 

In scDNA-seq data, cancer cell subpopulations are inferred from SNVs and CNAs, which are 48 

conventionally obtained from exome or whole-genome sequencing approaches (Roth et al. 49 

2016; Duan et al. 2018). In scRNA-seq,  gene expression patterns are commonly used to 50 

differentiate between cell types or cancer cell subpopulations. However, relying solely on 51 

gene-level expression may be insufficient, as cells can express different isoforms, resulting in 52 

different phenotypes (Ding et al. 2020). Isoform-specific cancer resistance can be induced, for 53 

example, through alternative splicing (Mitra et al. 2009; Chen et al. 2022), polyadenylation 54 

(Guo et al. 2022), or large genomic rearrangements leading to gene fusions (Amatu et al. 55 

2016; Lei et al. 2018; (Cesi et al. 2018). These interlinked features need to be examined 56 

together, thus requiring complete isoform coverage (Foord et al. 2023). High-throughput 57 
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droplet-based scRNA-seq protocols (10X Genomics Chromium) capture reads via their 3' 58 

polyA tails. In short-read (SR) scRNA-seq, this results in a heavy coverage bias towards the 59 

3' ends as only a few hundred base pairs of each molecule are sequenced. Long-read (LR) 60 

scRNA-seq, in contrast, sequences full-length RNA molecules, and thus can access gene 61 

expression at the isoform level (Joglekar et al. 2021; Al’Khafaji et al. 2023; Dondi et al. 2023). 62 

Linking genetic to transcriptomic variations is crucial to understanding treatment resistance in 63 

cancer (Vasan et al. 2019). However, this is challenging with SR sequencing, as genetic 64 

variations are difficult to recover from SR scRNA-seq data due to capture bias, while scDNA-65 

seq cannot assess gene expression. Recently, DNA-free de novo scRNA SNV (Muyas et al. 66 

2023; Zhang et al. 2023) and CNA (Serin Harmanci et al. 2020); (Gao et al. 2021, 2023) calling 67 

methods were developed for SR sequencing, compensating the 3’ capture bias by pooling 68 

large amounts of cells or sequencing at very high read depths per cell. However, SR 69 

sequencing is unsuited to detect isoforms or gene fusions. Because it is less sensitive to 70 

capture bias, we have shown in recent work that LR scRNA-seq is more suited to detect 71 

genetic variations than SR scRNA-seq (Dondi et al. 2023). Furthermore, LR scRNA-seq can 72 

simultaneously detect SNVs, CNAs, fusions, and gene isoform expression in the same cells 73 

(Dondi et al. 2023; Shiau et al. 2023).  74 

In this study, we present LongSom, a computational workflow for calling de novo somatic 75 

SNVs, fusions, and CNAs in LR scRNA-seq, and integrating them to reconstruct the samples’ 76 

clonal heterogeneity. Applied to omentum metastasis samples obtained from three chemo-77 

naive high-grade serous ovarian cancer (HGSOC) patients, we show that LongSom can detect 78 

clinically relevant somatic SNVs validated against scDNA and panel data, whereas SR 79 

scRNA-seq fails to do so. We demonstrate that by leveraging somatic SNVs and fusions, 80 

LongSom can detect subclones with different predicted treatment outcomes, and those 81 

subclones were highly concordant with gene expression clusters and CNAs subclones. 82 

Additionally, we find that tumor microenvironment cells are contaminated by cancer cell-83 

derived mitochondria. 84 
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Results 85 

Overview of LongSom 86 

We developed LongSom, a workflow for detecting genetic variants in LR scRNA-seq data 87 

without requiring matched DNA sequencing and finding cancer subclones based on these. 88 

Briefly, LongSom takes BAM files as input, calls SNVs in pseudo-bulk and fusions and CNAs 89 

in single cells with the Trinity Cancer Transcriptome Analysis Toolkit (CTAT, 90 

https://github.com/NCIP/Trinity_CTAT), and then reconstructs the clonal heterogeneity using 91 

the Bayesian non-parametric clustering method BnpC (Borgsmüller et al. 2020).  92 

 93 

LongSom first calls candidate SNV loci in a pseudo-bulk generated by aggregating LR scRNA-94 

seq data from all cells, using CTAT-Mutations (https://github.com/NCIP/ctat-mutations), which 95 

we enhanced here for scRNA-seq and long isoform reads (see Methods). Next, to distinguish 96 

between somatic and germline variants, the variant allele frequency (VAF) is calculated for 97 

each candidate locus and each cell, and cells are grouped into cancer or non-cancer cells 98 

based on marker-gene expression. SNVs detected across multiple cell types are considered 99 

germline polymorphisms. Accordingly, if cancer cells are misannotated as non-cancer cells, 100 

SNVs will wrongly be filtered out as germline variants (false negatives). To account for this, 101 

LongSom first defines a set of cancer-specific variants (SNVs and fusions). SNVs are defined 102 

as cancer-specific if their VAF is high in cancer, low in non-cancer, and, when available, zero 103 

in normal sample cells (Methods). Fusions are detected using CTAT-LR-fusion 104 

(https://github.com/TrinityCTAT/CTAT-LR-fusion) (Qin et al. 2024) and cancer-specific fusions 105 

are those expressed in more than 5% of cancer cells and less than 1% of non-cancer cells. 106 

LongSom reannotates cells as cancer cells if they harbor at least two cancer-specific variants 107 

(Figure 1, Methods).  108 
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 109 

Figure 1: Overview of LongSom.  110 

LongSom’s methodology for detecting somatic SNVs, fusions, and CNAs and subsequently inferring 111 

cancer subclones in LR scRNA-seq individual patients data. (1) SNV candidates are detected from 112 

pseudo-bulk samples. (2) Population germline SNVs and SNVs present in normal samples (optional) 113 

are filtered out. (3) A cell-SNV matrix based on the remaining SNV candidates is computed. (4) A cell-114 

fusion matrix is computed. (5) Using high-confidence cancer fusions and SNVs, cells are reannotated. 115 

(6) Following reannotation, SNVs present in non-cancer cells (germlines) are filtered out. (7) cells are 116 

clustered based on somatic fusions and SNVs. In parallel, (8) gene expression per cell is computed, (9) 117 

CNAs are detected, (10) cells are clustered based on CNAs, and (11) CNA clones are incorporated to 118 

the fusions and SNVs clustered matrix. 119 

 120 

After cell reannotation, LongSom performs germline SNV filtering in five steps: (A) It filters 121 

SNV loci detected in the matched normal, when available. (B) It filters SNV loci from the 122 

gnomAD database (Chen et al. 2024) with a frequency of at least 0.01% in the total population. 123 

(C) After cell-type reannotation, it filters SNV loci that were called in more than 1% of the non-124 

cancer cells. (D) SNV loci where less than 1% of the non-cancer cells are covered by at least 125 

one read are filtered. This step helps to filter germline SNVs not detected due to low 126 
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expression in non-cancer cells. (E) Finally, adjacent SNV loci within a 10,000 bp distance are 127 

filtered, as these are likely to be misalignment artifacts in low-complexity regions. Of note, 128 

steps (C) and (E) are not applied to mitochondrial SNVs. Finally, LongSom keeps somatic loci 129 

that are mutated in a minimum of five cancer cells or 5% of cancer cells (user-defined 130 

parameters) and filters loci matching known RNA-editing sites.  131 

 132 

Finally, LongSom infers the clonal structure of the samples using two different approaches. 133 

One approach leverages the detected SNVs and fusions as input for the Bayesian non-134 

parametric clustering method BnpC (Borgsmüller et al. 2020). The other approach predicts 135 

CNAs based on gene expression in cancer cells and defines subclusters using inferCNV 136 

(https://github.com/broadinstitute/infercnv) (Methods). 137 

Cell-type reannotation improves somatic SNV detection sensitivity 138 

We applied LongSom to previously published (Dondi et al. 2023) SR and LR scRNA-seq data 139 

of five omentum metastasis samples obtained from three chemo-naive HGSOC patients: P1, 140 

P2, and P3. Three samples were derived from HGSOC omental metastases and two from 141 

matching distal tumor-free omental tissues (normal). After cell-type reannotation (Methods), 142 

the reannotated cells were always more similar to the expression-based clustering (Jaccard 143 

similarity score in patient P1: 0.97, P2: 0.99, P3: 0.97) than the previous annotation derived 144 

from marker-gene expression (Jaccard similarity score in patient P1: 0.94, P2: 0.98, P3: 0.76), 145 

supporting the reannotation (Figure 2a). We found that 6, 2, and 21% of the cells that we 146 

annotated as cancer were previously annotated as non-cancer cells in the tumor biopsy 147 

samples of patients P1, P2, and P3, respectively (Figure 2b). The tumor biopsy of patient P3 148 

had only 10% cancer cells (Dondi et al. 2023), which could explain the high level of cell 149 

misannotation. In the following, cancer or non-cancer cells refer to the reannotated cell types.  150 

 151 

After cell-type reannotation and germline polymorphism filtering, we found 32, 50, and 62 152 

somatic SNVs and 4, 16, and 2 somatic fusions in patients P1, P2, and P3, respectively 153 
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(Supplementary Tables 1, 2). In patient P1, a variant at locus chr21:8455886 was manually 154 

detected as a technical false positive due to mismapping in a highly repetitive region, and it 155 

was excluded from further analyses. Without cell type reannotation, we only found 23/32 156 

(72%), 48/50 (96%), and 19/62 (31%) of those SNVs, in P1, P2, and P3, respectively, and no 157 

additional SNV was discovered (Figure 2c). In patient P3, numerous cancer cells were 158 

misannotated as non-cancer cells before reannotation (Figure 2a,b), leading to 69% of false 159 

negative somatic SNVs during germline SNV filtering (Figure 2c). Cells reannotated from non-160 

cancer to cancer cells showed a mean VAF across somatic SNVs significantly different from 161 

cells annotated as non-cancer cells in both methods (P<0.001 in all patients, two-tailed two-162 

sample t-test), but not from cells annotated as cancer in both methods (P>0.05 in all patients), 163 

thus further supporting the cell-type reannotation (Figure 2d). Out of the 144 somatic SNVs 164 

identified, we found 32.6% of variants in or affecting coding regions (2.1% start or stop codon 165 

gain (n=3), 1.4% splice region (n=2), 22.2% missense (n=32), and 6.9% synonymous variants 166 

(n=10)) and 67.4% in non-coding regions (17.4% 3’ or 5’ UTR (n=25), 40.3% intron (n=48) and 167 

9.7% intergenic variants (n=14)) (Figure 2e).  168 

 169 
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 170 

Figure 2: Cell-type reannotation improves somatic SNVs detection sensitivity 171 

a. UMAP embeddings of LR scRNA-seq expression per patient. Cells are colored by annotation status; 172 

light-red cells show cells predicted as non-cancer using marker gene expression based annotation, and 173 

cancer using high-confidence somatic variants reannotation  b. Confusion matrices of cells predicted 174 

as cancer or non-cancer using marker genes, and cells reannotated as cancer or non-cancer by 175 

LongSom, colored and annotated by the percentage of the total number of cells in each category. E.g. 176 

the bottom left square represents cells previously annotated as non-cancer that were reannotated as 177 

cancer (false negative cancer cells). c. Number of SNVs found per patient, with or without cell type 178 

reannotation before filtering germline SNPs. d. Boxplots of the mean VAF per covered SNV loci of each 179 

cell, per patient, colored by their annotation status. Boxes display the first to third quartile with median 180 

as horizontal line, whiskers encompass 1.5 times the interquartile range, and data beyond that threshold 181 
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is indicated as outliers. P values were calculated using a two-sided Student’s t-test between !"#$%&'182 

()*'("+'*+&,"-.+*'/-01'01+'2#33#/-)!'&45.#3&6')7&'6'8'9':7:;<'=6'8'>':7:;<'==6'8'>':7:?<'===6'8'>':7::?7'e. 183 

Waffle plot representing each somatic SNV detected, colored by their genomic region and effect on the 184 

coding sequence. 185 

Validation of LR scRNA-seq-derived SNVs using scDNA-seq data 186 

For validation of the SNVs detected using LongSom, we employed scDNA-seq data from 187 

matched omental metastases for each patient. First, we inferred the cellular copy number 188 

profiles based on the scDNA-seq data and identified fully diploid subclones (likely non-cancer) 189 

and aneuploid subclones (likely cancer) from these (Kuipers et al. 2020) (Methods). We found 190 

two aneuploid clones in patient P1, one in P2, and two in P3 (Figure 3a-c). In each somatic 191 

locus detected by LongSom, we estimated the mean VAF of diploid and aneuploid scDNA 192 

subclones by generating pseudo-bulks. We assumed that a scDNA subclone supported an 193 

SNV if the mean VAF was greater than 10% at the respective locus. 194 

 195 

Overall, 55% (n=79) of the somatic SNVs detected in LR scRNA were found exclusively in 196 

scDNA aneuploid subclones and were therefore likely somatic (Figure 3d-f). In all cases 197 

where SNVs were not detected in scDNA aneuploid subclones, the scDNA-seq coverage was 198 

<10x (Figure 3g). The 10% (n=15) of SNVs detected in diploid scDNA subclones (suggesting 199 

germline polymorphism) were all in patient P2 except one in patient P1 which was only 200 

supported by one read (Figure 3h). No normal LR scRNA-seq sample was available for 201 

Patient P2, and non-cancer cells were mainly T-cells with an overall low gene 202 

expression(Joglekar et al. 2021), possibly explaining why germline SNVs were insufficiently 203 

filtered. This finding highlights the utility of matched normal samples to filter germlines 204 

sufficiently. 205 

 206 
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 207 

Figure 3: Somatic SNVs detected in scRNA are validated as somatic in scDNA.  208 

a,b,c. scDNA-seq copy number values per subclone in a. patient 1, b. patient 2, and c. patient 3 data. 209 

Subclones with multiple copy number alterations are aneuploid (likely cancer), while copy number 210 

neutral subclones are diploid (likely non-cancer). d,e,f Venn diagrams of somatic SNVs supported 211 

(VAF>10%) in scDNA cancer subclones (purple), scDNA non-cancer subclones (green), and both 212 

(brown). g. scDNA cancer subclones coverage per somatic locus identified in scRNA, categorized by 213 

whether they are found mutated in cancer subclones (Yes) or not (No). h. Number of mutated reads in 214 
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scDNA subclones per somatic loci identified in LR scRNA, categorized by cancer and non-cancer 215 

scDNA subclones. 216 

Somatic mitochondrial reads contaminate tumor microenvironment cells 217 

in scRNA-seq and scDNA-seq data 218 

As somatic mitochondrial SNVs can also be used for genotype and clonal reconstruction 219 

(Miller et al. 2022), LongSom also detects them. Due to the high mitochondrial RNA 220 

expression in cells(Osorio and Cai 2021), somatic mitochondrial SNVs (mtSNVs) were 221 

amongst the most covered across all cell types and patients in the HGSOC dataset. We found 222 

three somatic mitochondrial SNVs in patient P1 (chrM:3092:T>C, chrM:5179:T>C, 223 

chrM:16192:C>T), three in patient P2 (chrM:2573:G>A, chrM:4308:G>A, chrM:16065:G>A), 224 

and none in patient P3 (Supplementary Table 1). 225 

 226 

In patient P1, at locus chrM:3092, all covered cancer cells exhibited a >99% VAF in scRNA 227 

data, while non-cancer cells showed heteroplasmy (VAF ranging between 0-40%, with 28% 228 

of cells mutated, median VAF when mutated 4%) (Figure 4a). However, all cells from distal 229 

samples exhibited a VAF <1% (>99% cells covered), ruling out a germline SNV. We detected 230 

the same mutational profile in matching scDNA-seq data: amongst the diploid subclones, the 231 

average VAF was 5%, while the average VAF in aneuploid subclones was >99% (Figure 3a). 232 

At locus chrM:5179, cancer cells were either mutated (n = 44, median VAF = 49.7%) or not (n 233 

= 30, median VAF <0.1%) in scRNA-seq data, suggesting the presence of two subclones. In 234 

non-cancer cells, the VAF ranged from 0 to 33% (11% cells mutated, median VAF when 235 

mutated 3%), and all cells from distal samples exhibited again a VAF <1% (>99% cells 236 

covered, Figure 4b). In the matched scDNA-seq data, at locus chrM:5179, the VAF of 237 

aneuploid subclone C3 (Figure 3a) was 42%, while it was <1% in the second aneuploid 238 

subclone C1 and 2% in the diploid subclones, confirming the subclone specificity of this 239 

somatic SNV (Figure 4c).  240 
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In Patient P2, locus chrM:2573 showed the same pattern with a mean VAF of 75% in cancer 241 

cells compared to a mean VAF of 2% in non-cancer cells. This SNV was observed in 20% of 242 

the non-cancer cells, with a mean VAF of 5% (SD=3.6)) when mutated (Figure 4d). No 243 

matching normal sample was available for this patient. In scDNA, the aneuploid subclone had 244 

a VAF of 19% while the diploid subclone had a VAF of 81%. At locus chrM:4308, cancer cells 245 

had a mean VAF of 97%, and non-cancer cells had a VAF ranging between 0 and 100% (19% 246 

cells mutated, mean VAF when mutated 88% (SD=25)). All cells mutated at this locus had 247 

only one variant allele read (Figure 4e).  248 

 249 

In summary, we observed mitochondrial SNVs with high VAF in cancer cells and lower (but 250 

non-zero) VAF in non-cancer cells from the same scRNA-seq and scDNA-seq samples. 251 

Remarkably, cells from distal (normal) scRNA samples had a VAF of zero in those loci, 252 

suggesting that the mutated mitochondrial reads found in non-cancer cells originate from 253 

cancer cells. This phenomenon could be explained via biological mechanisms such as 254 

intercellular mitochondrial transfer (Liu et al. 2021), or via technical contaminations such as 255 

mitochondria from dead cancer cells being captured together with non-cancer cells during 256 

single-cell encapsulation. The correlation between the amount of mutated mitochondrial SNV 257 

reads found in cancer and in non-cancer supports the contamination hypothesis (Figure 4f). 258 

To account for those contaminations, LongSom does not apply step (E) of germline filtering 259 

(filtering of loci that were called in more than 1% of the non-cancer cells). 260 

 261 
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 262 

Figure 4: Non-cancer cells are contaminated by cancer cells mitochondria.  263 

a,b, VAF of cells in patient P1 at loci a. chrM:3092:C and b. chrM:5179:C, categorized by reannotated 264 

cell types. Color gradient represents the number of variant allele reads per cell. Cells with more than 265 

100 mutated reads are represented with 100 mutated reads. N refers to the number of cells with at least 266 

one read covering the locus. c. Number of reads supporting the reference or alternative allele in patient 267 

P1’s scDNA aneuploid (cancer) subclones C1 and C3 at locus chrM:5179, normalized by the number 268 

of cells per subclone. d,e, VAF of cells in patient P2 at loci d. chrM:2573:C and e. chrM:4308:C. f. Log 269 

aggregated mutated reads in non-cancer cells, as a function of log aggregated mutated reads in cancer 270 

cells for loci chrM:3092:C, chrM:5179:C and chrM:16192:T in patient P1, and chrM:2573:C, 271 

chrM:4308:C and chrM:16065:A in patient 2. 272 
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LR scRNA-seq enables somatic SNV detection with higher sensitivity than 273 

SR scRNA-seq 274 

Next, we aimed to compare LR to SR scRNA-seq to detect SNVs. The HGSOC study had LR 275 

and SR scRNA-seq data from the same cells available, and while the SR dataset had 4.3 276 

times more sequenced reads compared to LR (mean 117.4k vs. 26.9k reads per cell), it had 277 

3.5 times fewer mapped bases (mean 16Gb mapped vs. 33Gb mapped) due to shorter read 278 

length (Supplementary Figure 1a,b). When we applied LongSom to SR scRNA-seq, we 279 

found only 4/32 (13%), 9/50 (18%), and 9/62 (15%) somatic SNVs in patients P1, P2, and P3 280 

respectively, and no new SNV was detected (Supplementary Figure 1c). Additionally, only 281 

1/4 (25%), 9/17 (53%), and 1/2 (50%) fusions were detected in SR scRNA-seq data from 282 

patients P1, P2, and P3, respectively (Qin et al. 2024).  283 

 284 

We computed cell-variants sparse matrices from each patient's LR and SR data, using cells 285 

as columns and somatic SNVs and fusions as rows (Methods, Figure 5a-c). For comparison, 286 

we computed the same matrix in each patient using SR scRNA-seq data (Figure 5d-f).  On 287 

average, 13.7% (standard deviation (SD) = 1.2) of the matrix positions had at least one LR 288 

coverage, whereas only 4.7% (SD = 1.2) had at least one SR coverage (Supplementary 289 

Figure 1d-f). However, the coverage depends on the cell type expression, and certain cell 290 

types, for example, T cells, rarely express mutated genes (Figure 5a-f). In cancer cells, on 291 

average 27.9% (SD = 7.5) of the matrix positions were covered by at least one LR, whereas 292 

only 8.1% (SD = 0.8) had at least one SR coverage (Figure 5g-i). On average, LR covered 293 

94.8% (SD=3) of the positions covered by SR and covered an additional 3.4 times more 294 

positions (SD = 0.6), in line with the 3.5 times more bases mapped in LR. 295 

 296 
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 297 

Figure 5: Patient-specific cell-variant matrices created from LR and SR scRNA-seq.  298 

a-f. Matrices of somatic SNVs and fusions (rows) by single cells (columns) computed using LR sc-RNA-299 

seq from the tumor biopsy of (a) patient P1, (b) P2 and (c) P3, and using SR sc-RNA-seq of (d) patient 300 

P1, (e) P2, and (f) P3, ordered by gene expression-derived cell types. VAF is depicted as a gradient 301 
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from white (no mutated reads, VAF=0) to red (only mutated reads, VAF=1). Grey indicates no coverage 302 

in the cell at a given locus. Rows are colored by the scDNA VAF of aggregated diploid and aneuploid 303 

cells at the loci: SNVs with high aneuploid VAF and low diploid VAF are somatic in scDNA data. RNA 304 

fusions do not give a direct indication of the DNA breakpoint, thus we could not assess their presence 305 

in scDNA data, and they appear in pink. Columns are colored by marker-expression-derived cell-types 306 

(top row) and cell-types reannotated by LongSom (bottom row) d,e,f. Venn diagram of matrices’ 307 

positions covered in the cancer cells in (h) patient P1, (i) patient P2, and (i) patient P3, colored by 308 

sequencing data modality. Total positions equal n variants x m cancer cells. Blue indicates positions 309 

with coverage >0 in LR and 0 in SR. Red indicates positions with coverage 0 in LR and coverage >0 in 310 

SR. Purple indicates positions with coverage >0 in both LR and SR. Grey indicates positions with 311 

coverage 0 in both LR and SR. 312 

LongSom detects panel-validated resistance-associated variants 313 

The three patients also underwent bulk panel DNA sequencing (Methods), where 29 SNVs 314 

were found (Supplementary Table 3). All three patients had at least one somatic SNV called 315 

in TP53 (including a variant introducing a stop codon in patient P3) with a VAF >30%, and 316 

patient P1 had a second TP53 SNV detected with VAF 1%. LongSom detected all TP53 317 

somatic SNVs with VAF >30% in LR scRNA-seq. The remaining SNVs detected in the panel 318 

were not retained with our method for the following reasons: they were either germline variants 319 

found in normal and non-cancer cells (n=5), detected in cancer but with insufficient coverage 320 

in non-cancer cells (n=3), detected but not in enough cancer cells (n=7), not detected despite 321 

sufficient coverage (n=3), or not covered (n=8) (Supplementary Table 3). Overall, 62% of the 322 

SNVs detected in the panel also found support in scRNA data. Of note, two deletions were 323 

found in panel sequencing, and they were detected manually in the LR scRNA-seq data. 324 

LongSom detected none of the panel SNVs in SR scRNA-seq data. 325 

 326 

In addition to TP53, LongSom was able to detect SNVs predicted as clinically relevant in genes 327 

not included in the bulk panel (Methods). In patient P1, we found missense variants predicted 328 

as pathogenic in the apoptosis regulator genes CCAR2 (Arg722Trp) and FAM129B 329 
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(Leu508Pro), and another missense variant in the ferroptosis regulator ALDH3A2 (Val321Leu) 330 

(Supplementary Table 4). ALDH3A2 is a tumor suppressor in multiple cancers (Xia et al. 331 

2023) and ALDH3A2, CCAR2, and FAM129B are all associated with treatment resistance in 332 

ovarian cancer (Cheng et al. 2019; Iyer et al. 2022; Dong et al. 2023).  In patient P2, the 333 

chrM:4308 G>A variant was predicted as likely pathogenic. In patient P3, we detected a 334 

missense variant in AHCY, as well as a pathogenic NIF3L1 variant and a missense variant in 335 

the resistance-associated gene KDM6B (He et al. 2019). In SR scRNA-seq data, LongSom 336 

found no clinically relevant variants in patients P1 and P3, and only found chrM:4308 G>A in 337 

patient P2. 338 

LongSom identifies subclones in LR scRNA-seq data 339 

Next, LongSom inferred the clonal structure of the tumors based on the SNVs and fusions it 340 

detected using BnpC. LongSom also inferred the clonal structure from CNA profiles in the 341 

same cells, using inferCNV (Supplementary Figure 2a-c, Methods). We also clustered the 342 

cells based on their gene expression, manually annotated the cancer clusters, and used those 343 

clusters as transcriptomic validation. Finally, we used the subclones inferred from scDNA as 344 

external validation (Figure 3). 345 

 346 

In patient P2, LongSom found one cancer clone using mutations and fusions, and this clone 347 

coincided very well with the aneuploid CNA clone found in scRNA (Jaccard similarity = 98%) 348 

and the gene-expression-based cancer cluster (Jaccard similarity = 97%, Supplementary 349 

Figures 2b, 3a). Similarly, in scDNA-seq data we only found one aneuploid CNA clone 350 

(Figure 3b). Therefore, all available data modalities point toward a monoclonal cancer 351 

population in this patient. Using SR scRNA-seq, LongSom reconstructed the clonal structure 352 

with lower accuracy than LR due to low coverage (Jaccard similarity BnpC clone - cancer 353 

cluster = 85%, Supplementary Figure 3b). 354 

 355 
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In patient P3, LongSom found one clone, coinciding with the scRNA gene expression-based 356 

cancer cluster (Jaccard similarity = 93%, Supplementary Figure 4a), however, two aneuploid 357 

subclones were detected in both scDNA-seq and scRNA-seq data using CNA analysis (Figure 358 

2c, Supplementary Figures 2c,4a). This difference could be due to the difficulty of calling 359 

subclones in a low number of cancer cells (n=42 after reannotation) or due to inter-sample 360 

heterogeneity. Using SR data, the clustering resulted in a subclone only partially covering the 361 

expression-based cancer cluster, and many individual cells formed singleton subclones 362 

(Jaccard similarity BnpC subclone - cancer cluster = 36%, Supplementary Figure 4b). 363 

 364 

In patient P1, LongSom found two cancer subclones, referred to as A and B, as well as a 365 

subclone composed of one cell that we assigned to subclone B (Figure 6a). The larger 366 

subclone A (n = 40 cells) was predominantly defined by an SNV at locus chrM:5179 and the 367 

smaller subclone B  (n = 34 cells) was mainly defined by the fusion SMG7--CH507-513H4.1. 368 

In expression-based UMAP embedding, cancer cells formed two distinct expression clusters 369 

that highly overlapped the genotypic cancer subclones found based on SNVs and fusions 370 

(Jaccard similarity BnpC subclone A - Expression cluster 1 = 79%, BnpC subclone B - 371 

expression cluster 2 = 72%, Figure 6 a-d). CNAs subclones and expression clusters were 372 

also very similar (Jaccard similarity inferCNV subclone A - expression cluster 2 = 89%, 373 

inferCNV subclone B - expression cluster 2 = 85%), likely because they are both derived from 374 

gene expression (Figure 6a,e, Supplementary Figure 3a). Clonal assignments based on 375 

SNVs and fusions and on CNA data were also similar (Jaccard similarity subclone A = 72%, 376 

subclone B = 68%. In patient P1’s matched scDNA data, we also found two aneuploid (cancer) 377 

subclones based on CNA profiles (Figure 3a), and only one of the subclones harbored the 378 

SNV chrM:5179:T>C (Figure 4c), concordantly with LR scRNA-seq data. Unfortunately, the 379 

three other subclone-defining SNVs had insufficient scDNA-seq coverage, and we could not 380 

detect any reads supporting the variant allele at those loci, therefore we could not confirm their 381 

subclonality. Using SR scRNA-seq, LongSom also identified cancer subclones in patient P1, 382 

mainly based on chrM:5179 status. However, as the fusion SMG7--CH507-513H4.1 was not 383 
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detected in SR, multiple cancer cells clustered with non-cancer cells (Jaccard similarity BnpC 384 

SR subclone A - Expression cluster 1 = 70%, BnpC SR subclone B - expression cluster 2 = 385 

57%, Supplementary Figure 5). 386 

Subclones identified in patient P1 have differing predicted treatment 387 

outcomes 388 

To explore the potential therapeutic resistance of the subclones identified in Patient P1 by 389 

LongSom, we investigated the genomic and transcriptomic variations between them. The 390 

ALDH3A2 pathogenic variant identified earlier was exclusively expressed in subclone A, while 391 

the CCAR2 pathogenic variant was exclusive to subclone B (Supplementary Table 4). 392 

Remarkably, ALDH3A2 is a ferroptosis inhibitor and its loss of function would lower cisplatin 393 

resistance (Dong et al. 2023), while CCAR2 is a suppressor of homologous recombination, 394 

and its loss would lead to resistance against PARP inhibitors (Iyer et al. 2022). Therefore, 395 

based on SNVs, subclone A is more likely to be treatment-sensitive, while subclone B is more 396 

likely to be treatment-resistant. Fusions SMG7--CH507-513H4.1 and  GS1-279B7.2--GNG4 397 

were exclusively expressed in subclone B (Figure 6a), however, their pathogenicity is difficult 398 

to predict. On the transcriptomic level, Subclone B had notably downregulated expression of 399 

keratin genes KRT8 and KRT18, two epithelial markers used to differentiate HGSOC cells 400 

from non-cancer cells (Figure 6f). When compared to cancer subclones in patients P2 and 401 

P3, KRT8 and KRT18 were downregulated in subclone B, but not upregulated in subclone A, 402 

thus confirming a downregulation in subclone B  (Supplementary Figure 6a,b). It has been 403 

shown in vitro that KRT8 and KRT18 have a protective effect against cell death (Bozza et al. 404 

2018), and loss of KRT8 and KRT18 leads to increased invasiveness but also cisplatin 405 

sensitivity (Fortier et al. 2013). Subclone B is therefore more likely to be chemosensitive than 406 

subclone A. We additionally investigated differential isoform usage, and while both subclones 407 

were mostly similar, we found a significant difference in CHPF (Figure 6g), MYL6, the tumor 408 

suppressor BTG2, and NUTM2B-AS1 (Supplementary Figure 6c-e), however, we could not 409 
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predict their pathogenicity. None of the subclone-exclusive variants or isoforms were detected 410 

in Patient P1 SR scRNA-seq data. 411 

  412 
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 413 

Figure 6: Analysis of intra-tumor heterogeneity using somatic variants detected in LR 414 

scRNA-seq in Patient P1.  415 

a. BnpC clustering of single cells from the tumor biopsy of patient P1 (columns) by somatic SNVs and 416 

fusions (rows). VAF is depicted as a gradient from white (no mutated reads, VAF=0) to red (only mutated 417 
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reads, VAF=1). Grey indicates no coverage in the cell at a given locus. Rows are colored by the scDNA 418 

VAF of aggregated diploid and aneuploid cells at the loci: SNVs with high aneuploid VAF and low diploid 419 

VAF are somatic in scDNA data. Fusions appear in pink. Columns are colored from top to bottom by 420 

cell types reannotated by LongSom, CNAs subclones, expression clusters, and BnpC clusters b,c. 421 

UMAP embedding of patient P1 gene expression data, colored by (b) cell types reannotated by 422 

LongSom and (c) subclones inferred from somatic SNVs and fusions. The dashed line indicates the 423 

manual separation between cancer clusters 1 and 2. d,e. Confusion matrix of cells in each expression-424 

derived cancer cluster (rows) and (d) cells in the subclones inferred from BnpC, and (e) cells in the 425 

subclones inferred from inferCNV (columns), colored by the percentage of the total number of cells in 426 

each subclone and annotated by the absolute numbers. f. Volcano plot of differentially expressed genes 427 

identified between subclones B and A. Keratin genes downregulated in subclone B are annotated. g. 428 

ScisorWiz representation of CHPF isoforms in subclones A and B. Colored areas are exons, whitespace 429 

areas are intronic space, not drawn to scale, and each horizontal line represents a single read colored 430 

according to subclones.  431 

Discussion 432 

SNVs, CNAs, fusions, gene expression, isoforms expression, and the micro-environment 433 

composition can all affect cancer treatment outcomes (Marine et al. 2020). Assessing all of 434 

these variations simultaneously from a single patient sample is particularly relevant in a clinical 435 

setting, where biological material is limited. Here, we show for the first time that this is possible 436 

using LR scRNA-seq data and we introduce LongSom, a workflow for detecting de novo 437 

somatic SNVs, fusions, and CNAs in LR scRNA-seq. When applied to data from three HGSOC 438 

patients, it detected panel- and scDNA-seq-validated SNVs, including clinically relevant TP53, 439 

ALDH3A2, and CCAR2 SNVs. By integrating SNVs and fusions, LongSom successfully 440 

reconstructed the clonal heterogeneity and linked variants-defined subclones to CNA-defined 441 

subclones and gene expression clusters. Finally, in each subclone, we identified differentially 442 

expressed genes as well as subclone-specific SNVs with different implications for treatment 443 
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resistance. Thus, we demonstrated that LR scRNA-seq is suitable for predicting treatment 444 

outcomes. 445 

 446 

The cell-type reannotation step implemented in LongSom, based on the somatic variation 447 

profile of cells, led to the detection of up to 2.4 times more somatic SNVs (patient P3) and 448 

significantly reduced the false-negative rate without sacrificing sensitivity for precision. In 449 

general, cell-type annotation is an open challenge due to overlapping, poorly expressed, or 450 

incomplete marker genes, e.g., in ovarian cancer omentum metastases (Lähnemann et al. 451 

2020; Van Egeren et al. 2021, 2022). Our proposed reannotation can improve existing 452 

methods and shows the potential of combining genomic variants with transcriptomic cell 453 

typing. 454 

 455 

To our knowledge, LongSom is the first method combining de novo detection of SNVs and 456 

fusions from the same cell to reconstruct clonal heterogeneity. Besides nuclear SNVs, which 457 

are commonly obtained from RNA (Muyas et al. 2023; Zhang et al. 2023) and DNA seq (Zafar 458 

et al. 2016), LongSom also calls mitochondrial SNVs. In the analyzed HGSOC dataset, the 459 

mitochondrial SNVs were called in most cancer and non-cancer cells, and some high-460 

confidence fusion calls were expressed in most clones or subclones (P2: IGF2BP2::TESPA1, 461 

P1: SMG7::CH507-513H4.1, etc.), making them ideal variations for cell-type reannotation and 462 

clustering. Furthermore, both can be clinically relevant (Amatu et al. 2016; Lei et al. 2018; Cesi 463 

et al. 2018; Dentro et al. 2021), as we demonstrated in Patient P2. Mitochondrial RNA is 464 

particularly abundant in cancer cells, especially HGSOC (Yuan et al. 2023), and an increasing 465 

number of methods are leveraging them for clonal reconstruction or validation (Kwok et al. 466 

2022; Miller et al. 2022; Gao et al. 2023). However, we demonstrated that mitochondrial SNVs 467 

require special filtering thresholds, as non-cancer cells were frequently contaminated by 468 

cancer mitochondrial reads. We assume that entire cancer mitochondria might contaminate 469 

non-cancer cells, as we observed mitochondrial SNVs in both scRNA and scDNA-seq data. 470 

Whether these mitochondria originate from a biological mechanism, e.g. intercellular transfer 471 
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from cancer cells into non-cancer cells for microenvironment revitalization (Liu et al. 2021; 472 

Zampieri et al. 2021), or technical contaminations, e.g. cancer mitochondria encapsulated 473 

jointly with non-cancer cells during single-cell preparation, requires further investigation. 474 

 475 

One limitation of this study is the lack of isoform and fusion annotation in the literature, 476 

resulting from the difficulty of detecting them in SR scRNA-seq (Dentro et al. 2021), making it 477 

challenging to explore the biological implications of subclone-specific isoforms or fusions. To 478 

fully exhaust the possibilities of LR scRNA-seq, characterizing more isoforms and fusions will 479 

be necessary in the future. Furthermore, a population-level database dedicated to fusions, 480 

similar to gnomAD (Chen et al. 2024) for SNVs, would be beneficial to filter germline fusions. 481 

We believe that the reliable detection of isoforms and fusions with LR scRNA-seq is the first 482 

step toward this goal. 483 

 484 

Despite rapid progress in the LR scRNA-seq field (Al’Khafaji et al. 2023; Dondi et al. 2023; 485 

Joglekar et al. 2023; Marx 2023), multiple technical limitations remain unsolved, limiting the 486 

potential of downstream analysis. First, variant detection remains challenging due to the 487 

sparsity and low coverage of scRNA-seq assays. LongSom excludes SNVs called in non-488 

cancer cells to filter germline SNVs, possibly leading to false negative somatic SNVs, as 489 

shown by the matched panel-seq. Second, read coverage is also uneven within a transcript, 490 

as transcripts produced by 10X Genomics Chromium remain incomplete on the 5’ end (Hsu 491 

et al. 2022). Third, RNA-seq is inherently limited to detecting only expressed SNVs and 492 

fusions. Nevertheless, LongSom detected a large fraction of variants in intronic or even 493 

intergenic regions. Last, indels are the most common source of errors in LR scRNA-seq data, 494 

whereby they are frequently excluded from the analyses, ours included (Shiau et al. 2023). To 495 

further improve the genomic analyses of scRNA-seq data, algorithms for filtering technical 496 

indels while detecting somatic indels are required, especially as technical indels can lead to 497 

false positive somatic SNVs (Ahsan et al. 2021). 498 

 499 
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In summary, we proposed a workflow for detecting multiple genetic variants (SNVs, CNAs, 500 

fusions) in LR scRNA-seq, enabling clonal heterogeneity reconstruction and clonal genotypes 501 

to treatment-resistance phenotype linkage. LR scRNA-seq provides a unique snapshot of the 502 

cellular mechanisms by capturing multiple genomic and transcriptomic readouts from the 503 

same cell, including expressed isoforms, fusion transcripts, SNVs, and CNAs, more effectively 504 

than with any other sequencing technique. With decreasing costs and increasing data size in 505 

LR scRNA-seq, we envision that LR scRNA-seq will become more common, potentially 506 

facilitating a better understanding of the processes underlying cancer treatment resistance. 507 

LongSom can be a valuable first step in guiding these analyses. 508 

Methods 509 

scRNA expression analysis 510 

Gene expression counts 511 

LR gene expression counts were generated as described in (Dondi et al. 2023). Briefly, we 512 

preprocessed the BAM files using scIsoPrep (https://github.com/cbg-513 

ethz/scIsoPrep/tree/master) and generated a gene expression-cell matrix. UMI counts were 514 

quality-controlled and cells and genes were filtered to remove mitochondrial and ribosomal 515 

contaminants. Cells for which over 50% of the reads mapped to mitochondrial genes and cells 516 

with fewer than 400 genes expressed were removed. By default, all non-protein-coding genes, 517 

genes coding for ribosomal and mitochondrial proteins, and genes that were expressed in less 518 

than 20 cells were removed. Subsequently, counts were normalized with sctransform 519 

(Hafemeister and Satija 2019), regressing out cell cycle effects and library size as non-520 

regularized dependent variables.  521 

 522 
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Marker gene expression-based annotation 523 

Cells were annotated with scROSHI (Prummer et al. 2023) using ovarian cancer marker gene 524 

lists. Marker genes are available at https://github.com/ETH-525 

NEXUS/scAmpi_single_cell_RNA/blob/master/required_files/ovarian/celltype_list_ovarian.g526 

m). We used “HGSOC” labels as cancer cells, and “Mesothelial.cells”, “Fibroblast”, 527 

“T.NK.cells”, “B.cells”, “Myeloid.cells”, “Endothelial.cells” labels as non-cancer cells.  528 

Clustering and visualization 529 

Similar cells were grouped using Seurat FindClusters (Hao et al. 2024), and clusters with a 530 

majority (>90%) of non-cancer cells were grouped together as “non-cancer”. The results of the 531 

clustering and cell typing are visualized in a low-dimensional representation using Uniform 532 

Manifold Approximation and Projection (UMAP). 533 

Differential gene expression analysis 534 

Differential expression was computed using Seurat FindMarkers (Hao et al. 2024), 535 

which uses a Wilcoxon test, corrected for multiple testing using the Bonferroni 536 

correction. A threshold of corrected P-value <0.01 and abs(log2(fold change)) >1 was 537 

used for significance.  538 

Differential isoform usage analysis 539 

Isoform classification and quantification were performed using scIsoPrep. Differential isoform 540 

testing was performed using a χ2 test as previously described in Scisorseqr (Joglekar et al. 541 

2021). Differentially used isoforms were visualized using ScisorWiz (Stein et al. 2022). 542 
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Somatic variants calling in LR scRNA-seq data with LongSom 543 

To call somatic variants in LR scRNA-seq, we developed LongSom, a workflow implemented 544 

in python3 using Snakemake (Köster and Rahmann 2012) and available at 545 

https://github.com/cbg-ethz/LongSom.  546 

Preprocessing 547 

Long reads with minimal quality Q20 were de-concatenated, adapters were trimmed, 548 

demultiplexed, polyA tails were trimmed and finally, UMIs were deduplicated using scIsoPrep 549 

(https://github.com/cbg-ethz/scIsoPrep/tree/master) as described in (Dondi et al. 2023). All 550 

deduplicated reads belonging to a cell passing filter (cells for which under 50% of the reads 551 

mapped to mitochondrial genes and cells with more than 400 genes expressed, see (Dondi et 552 

al. 2023), were then pooled together in a pseudo bulk fashion. Gene expression-based cell 553 

types were derived from the same work (Dondi et al. 2023). 554 

 SNV calling in LR scRNA-seq data using CTAT-Mutations 555 

First, LongSom calls somatic SNVs in the tumor and (when available) normal biopsy pseudo 556 

bulks, using the CTAT mutations pipeline v4.0.0 (https://github.com/NCIP/ctat-557 

mutations/releases/tag/CTAT-Mutations-v4.0.0), which we enhanced to enable compatibility 558 

with long reads and report variants according to single cell barcodes. When executed with 559 

option --is_long_reads, minimap2 (Li 2018) is used to align long isoform reads to the reference 560 

genome hg38 (instead of the STAR aligner used with shorter Illumina RAN-seq), followed by 561 

our implementation of the GATK best practices for variant calling using RNA-seq 562 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-563 

discovery-SNPs-Indels). Loci flagged as RNA-editing sites or with less than 5 reads mutated 564 

are filtered out. For generating variant reports at single-cell resolution, allele-supporting reads 565 

annotated with cell barcodes and UMIs were captured from the aligned reads, tallied, and 566 

reported for downstream integration with cell typing and related metadata.   567 
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Fusion calling in LR scRNA-seq data using CTAT-LR-Fusion 568 

LongSom detects fusions on the single cell level using CTAT-LR-fusion v0.13.0 (569 

https://github.com/TrinityCTAT/CTAT-LR-fusion/releases/tag/ctat-LR-fusion-v0.13.0) with 570 

standard options (Qin et al. 2024). 571 

Cell-variant matrices construction  572 

LongSom defines three groups based on the marker-expression-based cell types: cancer cells 573 

in the tumor biopsy (in this study, HGSOC cells), non-cancer cells in the tumor biopsy (in this 574 

study: mesothelial cells, fibroblasts, T cells, myeloid cells, B cells, and endothelial cells) and, 575 

if available, normal cells from the normal biopsy. For each of those groups, LongSom builds a 576 

cell-variant matrix with n cells (columns) and m SNVs + p fusions (rows). For SNV rows, the 577 

matrices are filled as follows: if at least one read is covering the locus in a cell, a VAF is 578 

computed for this cell (with a value ranging from 0 to 1), otherwise, the position is a missing 579 

value. A cell is defined as “mutated” at an SNV locus if it has a VAF >= 0.3. For fusion rows, 580 

the matrices are filled as follows: a cell with at least one fusion read is considered “mutated” 581 

for this fusion (value = 1), otherwise, it is a missing value. 582 

Cell type reannotation 583 

To improve the cell type annotation, LongSom defines a set of “high-confidence cancer 584 

variants”. To be a “high-confidence cancer variant”, an SNV needs to (1) be mutated in more 585 

than 5% of cancer cells, (2) be mutated in >20% of the cancer cells covering the locus, (3) 586 

have >1% of non-cancer cells covering the locus, (4) be mutated in less than 5% of the non-587 

cancer cells covering the locus, and (5) be mutated in 0 normal cells (optional). For 588 

mitochondrial SNVs, due to the contaminations observed, LongSom does not follow those 589 

rules.  Instead, a mitochondrial SNV is a “high-confidence cancer variant” if:  590 

%	𝑜𝑓	𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙𝑠		𝑚𝑢𝑡𝑎𝑡𝑒𝑑	 − 		%	𝑜𝑓	𝑛𝑜𝑛𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙𝑠	𝑚𝑢𝑡𝑎𝑡𝑒𝑑 > 20%	.  591 

To be a “high-confidence cancer variant”, a fusion needs to be found in more than 5 cancer 592 

cells and less than 5% of the non-cancer cells. We then reannotated the cell types by defining 593 
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as “cancer” any cell mutated in more than two of the ''high-confidence cancer variants'', and 594 

as “non-cancer” all the other cells in the tumor biopsy.  595 

Final somatic variants call set and matrix 596 

After cell reannotation, LongSom rebuilds two cell-variants matrices using the annotated 597 

cancer and non-cancer labels. Longsom then filters germline polymorphisms (rows) from the 598 

variant matrices in five steps: (A) It filters SNV loci detected in the matched normal, when 599 

available. (B) It filters SNV loci from the gnomAD database (Chen et al. 2024) with a frequency 600 

of at least 0.01% in the total population. (C) After cell-type reannotation, it filters SNV loci that 601 

were called in more than 1% of the non-cancer cells. (D) SNV loci where less than 1% of the 602 

non-cancer cells are covered by at least one read are filtered. This step helps to filter germline 603 

SNVs not detected due to low expression in non-cancer cells. (E) Finally, adjacent SNV loci 604 

within a 10,000 bp distance are filtered, as these are likely to be misalignment artifacts in low-605 

complexity regions. Of note, steps (C) and (E) are not applied to mitochondrial SNVs. Finally, 606 

LongSom keeps somatic loci that are mutated in a minimum of five cancer cells or 5% of 607 

cancer cells (user-defined parameters).  608 

 609 

Cancer and non-cancer cell-variant matrices containing only somatic SNVs and fusions are 610 

then concatenated to create the final cell-variant matrix. SNVs are sorted in decreasing order 611 

by: 612 

𝐷𝑖𝑓𝑓	 = 	𝑚𝑒𝑎𝑛(%	𝑜𝑓	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙𝑠	𝑚𝑢𝑡𝑎𝑡𝑒𝑑) 	613 

− 		𝑚𝑒𝑎𝑛(%	𝑜𝑓	𝑐𝑜𝑣𝑒𝑟𝑒𝑑	𝑛𝑜𝑛𝑐𝑎𝑛𝑐𝑒𝑟	𝑐𝑒𝑙𝑙𝑠	𝑚𝑢𝑡𝑎𝑡𝑒𝑑) 614 

Clonal detection based on SNVs and fusions 615 

LongSom uses the cell-variant matrices as input for Bayesian non-parametric clustering 616 

(BnpC) (Borgsmüller et al. 2020) to detect subclones in cancer samples, with arguments -n 16 617 

--steps 1000 --DPa_prior [1,1] --conc_update_prob 0 --param_prior [1,1]. 618 
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Clonal detection based on CNAs 619 

LongSom first computes cell-gene matrices using featureCounts from Subread v2.0.6 620 

(https://subread.sourceforge.net/) with parameters -L, using hg38 and gencode v36 as 621 

reference. It then uses those matrices as input for inferCNV to detect CNA subclones 622 

(https://github.com/broadinstitute/infercnv). For running CreateInfercnvObject, reannotated 623 

non-cancer cells are used as a reference, and the parameter 624 

min_max_counts_per_cell=c(1e3,1e7) is used.  For running inferCNV, the parameters 625 

cutoff=0.1 and leiden_resolution=0.01 are used. The CNA profiles displayed in this study are 626 

the ones obtained from the Hidden Markov Model learned by inferCNV. 627 

scDNA analysis 628 

Preprocessing and clonal reconstruction 629 

Using annotated cell types, we re-computed the cell-variant matrices as well as the percentage 630 

of cells mutated, the percentage of cells covered, and the percentage of covered cells 631 

mutated, for each locus. We then called the final somatic SNVs set at all loci mutated in more 632 

than 5% of cancer cells, mutated in less than 1% of the non-cancer cells (min. 1% non-cancer 633 

cells covered), and mutated in no normal cells. We obtained copy number profiles and 634 

detected the main clonal structure of samples using SCICoNE (Kuipers et al. 2020). Subclones 635 

were considered as cancer subclones if they had an aneuploid CNA profile, and as non-cancer 636 

subclones if they had a fully diploid CNA profile. 637 
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Variant allele calling in scDNA subclones 638 

We investigated all loci from the final somatic SNV set in scDNA subclones in a pseudobulk 639 

manner. Cancer subclones were pooled together as well as non-cancer subclones because 640 

the coverage was low (<10x per subclone). scDNA subclones with a mean VAF>10% in an 641 

SNV locus were considered as supporting the SNV. 642 

Clinically relevant SNVs 643 

Clinically relevant SNVs were detected using the CTAT-Mutations pipeline 644 

(https://github.com/NCIP/ctat-mutations/releases/tag/CTAT-Mutations-v4.0.0). Briefly, an 645 

SNV was considered clinically relevant if it completed one of these conditions: it was flagged 646 

as pathogenic by ClinVar (Landrum et al. 2014), the CHASMplus (Tokheim and Karchin 2019) 647 

P-value was <0.05, the VEST (Carter et al. 2013) P-value was <0.05, or FATHMM (Rogers et 648 

al. 2018) flagged it as "CANCER", or "PATHOGENIC”. 649 

Panel validation 650 

To investigate LongSom somatic SNV calls, we used the FoundationOne®CDx targeted 651 

NGS panel (Milbury et al. 2022) in matched bulk DNA samples. SNVs detected in the bulk 652 

DNA panel but not by LongSom were independently investigated in scRNA-seq data to 653 

detect variant allele read support. 654 

Data availability 655 

The raw sequencing files, as well as the associated analysis files reported in this study are 656 

available in the European Genome-phenome Archive (EGA) under the accession number 657 

EGAS00001006807. Gencode v36 gene annotation used in this study is available at 658 

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_36/gencode.v36.anno659 

tation.gtf.gz. All additional information will be made available upon reasonable request to the 660 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.583775doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583775
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

authors. Marker genes for cancer and non-cancer cells are available at 661 

https://github.com/ETH-662 

NEXUS/scAmpi_single_cell_RNA/blob/master/required_files/ovarian/celltype_list_ovarian.g663 

mx. 664 

Code availability  665 

LongSom is available at https://github.com/cbg-ethz/LongSom. 666 

 667 
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