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Abstract 13 
 14 
The Long Life Family Study (LLFS) enrolled 4,953 participants in 539 pedigrees displaying 15 
exceptional longevity. To identify genetic mechanisms that affect cardiovascular risks in the LLFS 16 
population, we developed a multi-omics integration pipeline and applied it to 11 traits associated 17 
with cardiovascular risks. Using our pipeline, we aggregated gene-level statistics from rare-variant 18 
analysis, GWAS, and gene expression-trait association by Correlated Meta-Analysis (CMA). 19 
Across all traits, CMA identified 64 significant genes after Bonferroni correction (p ≤ 2.8×10-7), 29 20 
of which replicated in the Framingham Heart Study (FHS) cohort. Notably, 20 of the 29 replicated 21 
genes do not have a previously known trait-associated variant in the GWAS Catalog within 50 kb. 22 
Thirteen modules in Protein-Protein Interaction (PPI) networks are significantly enriched in genes 23 
with low meta-analysis p-values for at least one trait, three of which are replicated in the FHS 24 
cohort. The functional annotation of genes in these modules showed a significant over-25 
representation of trait-related biological processes including sterol transport, protein-lipid complex 26 
remodeling, and immune response regulation. Among major findings, our results suggest a role 27 
of triglyceride-associated and mast-cell functional genes FCER1A, MS4A2, GATA2, HDC, and 28 
HRH4 in atherosclerosis risks. Our findings also suggest that lower expression of ATG2A, a gene 29 
we found to be associated with BMI, may be both a cause and consequence of obesity. Finally, 30 
our results suggest that ENPP3 may play an intermediary role in triglyceride-induced 31 
inflammation. Our pipeline is freely available and implemented in the Nextflow workflow language, 32 
making it easily runnable on any compute platform (https://nf-co.re/omicsgenetraitassociation). 33 
 34 
Introduction 35 
 36 
The Long Life Family Study (LLFS) is a multi-center, longitudinal family study that enrolled families 37 
enriched for exceptional longevity to discover genetic, behavioral, and environmental factors 38 
contributing to healthy aging and long life. LLFS enrolled 4,953 participants in 539 families, 39 
including probands, offspring, grandchildren, and spouses. Participants are primarily of European 40 
ancestry (99%). The data it has generated include microarray genotypes, whole genome 41 
sequences, gene expression from whole blood, and biomarkers of health and aging. Healthy 42 
aging and long life are heritable traits [1, 2]  and the LLFS cohort is exceptional in both [3]. The 43 
LLFS probands and offspring were less likely to have diabetes, chronic pulmonary disease, and 44 
peripheral artery disease than participants in the Cardiovascular Health Study (CHS) and 45 
Framingham Heart Study (FHS) in the same age group [4]. High-density cholesterol levels were 46 
higher, and pulse pressure and triglycerides were lower in the LLFS cohort than in CHS and FHS 47 
[4]. In this work, we look for genes that affect cardiovascular health in the LLFS population and 48 
the biological processes through which they work. We focus on 11 traits associated with 49 
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cardiovascular risks spanning four categories: pulmonary (forced expiratory volume, forced vital 50 
capacity, and the ratio of the two), lipids (high-density lipoprotein, low-density lipoprotein, 51 
triglycerides, total cholesterol), anthropometric (BMI, BMI-adjusted waist), and cardiovascular 52 
(pulse, ankle-brachial index) [5-9].  53 
  54 
Genome-wide association studies (GWAS) have identified many loci for cardiovascular-related 55 
domains, including pulmonary function [10, 11], lipids [12], obesity and body fat distribution [13, 56 
14], and blood pressure and ankle-brachial index [15, 16]. However, GWAS has some well-known 57 
limitations. Testing millions of individual variants requires extremely small p-values and hence 58 
very large cohorts. When GWAS does identify statistically significant variants, it is difficult to 59 
determine which are causal and which are merely tagging a causal variant in linkage 60 
disequilibrium [17]. If a causal non-coding variant is found, it is often unclear which gene it acts 61 
through. We set out to address these challenges. To reduce the multiple testing burden,  we 62 
aggregated variant-level GWAS p-values for common variants (minor allele frequency (MAF) > 63 
5%) to obtain gene-level p-values, used a SKAT-based [18] analysis method [19] to calculate 64 
gene-level p-values for rare variants (MAF < 5%), [18-21] and calculated gene-level p-values for 65 
association between measured gene expression levels and traits (Transcriptome-wide 66 
association studies (TWAS); throughout this paper, TWAS refers to association with measured 67 
gene expression levels, not predicted levels). We combined the gene-level p-values from TWAS, 68 
GWAS, and rare variant analysis (RVA) using a meta-analysis approach that accounts for 69 
expected correlations among these [22]. Aggregating variants to the gene level creates strong 70 
evidence about which gene is implicated, which can be difficult when focusing on individual 71 
variants. By incorporating evidence from TWAS, we reduce the chance that a significant gene is 72 
simply tagging a nearby gene in LD (since LD does not induce correlation in the expression levels 73 
of nearby genes). TWAS alone has a different problem – gene expression may be associated 74 
with a trait because it is affected by the trait, rather than affecting the trait, or by a confounding 75 
factor affecting both trait and gene expression. However, when there is supporting evidence from 76 
genetic variants, that is less likely. 77 
 78 
To further investigate a gene’s potential for causally affecting a trait, we started with the 79 
hypothesis that, among genes statistically associated with a trait, the most likely to be causal are 80 
those that interact with other statistically associated genes (1) through a common molecular 81 
system, and (2) serve a common biological function. To identify genes that interact with other 82 
statistically associated genes through a common molecular system, we searched for network 83 
modules in protein-protein interaction networks whose genes, as a group, are significantly 84 
enriched for genes with suggestive/significant p-values from correlated meta-analysis. To identify 85 
common biological functions served by module genes, we looked for GO biological process terms 86 
significantly overrepresented among genes in the enriched modules [23].  87 
 88 
This paper makes three contributions. First, it presents 64 genes from meta-analysis that are 89 
genome-wide significant for at least one of 11 traits associated with cardiovascular risks, of which 90 
29 are replicated in the FHS population. Second, it presents 13 protein-protein interaction network 91 
modules significantly enriched in genes with comparatively low meta-analysis p-values for at least 92 
one of the traits. Three such modules are replicated in the FHS population. Third, it presents 93 
software that researchers can use to conduct similar analyses. The software is packaged as a 94 
Nextflow pipeline, which containerizes each analysis step, simplifies the maintenance of software 95 
dependencies, and enables deployment across multiple computing environments, including cloud 96 
computing provided by data repositories [24]. The software pipeline and complete documentation 97 
can be found at https://nf-co.re/omicsgenetraitassociation/. Figure 1 depicts the pipeline.  98 
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 99 
Material and methods:  100 

 101 
Fig 1: Pipeline diagram. A) Inputs to GWAS, TWAS, and RVA. B) GWAS output is fed into 102 
PASCAL, which calculates gene-level p-values. TWAS outputs gene-level p-values. STAAR splits 103 
variants into ten functional categories and outputs 10 p-values per gene. C) Correlated meta-104 
analysis (CMA) is run 10 times. Each run uses outputs from PASCAL and TWAS together with 105 
one variant category of STAAR, outputting 10 p-values. D) For each gene, the minimum p-value 106 
from 10 CMA runs is fed into module enrichment analysis, which is also performed by PASCAL. 107 
PASCAL outputs enriched modules and their p-values. E) Gene ontology over-representation 108 
analysis identifies biological processes with significant over-representation among genes in each 109 
module.  110 
 111 
Participants:   112 
The recruitment procedure, eligibility criteria, and enrollment of the LLFS participants have been 113 
previously described [4]. We used data from the first clinical exam, which started in 2006 and 114 
recruited 4953 individuals from 539 families. Across 11 studied traits, the participants ranged from 115 
n = 2528 to 4166 for GWAS, n = 595 to 1200 for gene expression level–trait association, and n = 116 
2528 to 4166 for rare-variant analysis. Descriptive statistics for all the traits and covariates can 117 
be found in File S3. The number of participants in each analysis depended on the number of 118 
participants with data for the trait, microarray genotypes for GWAS, whole genome sequencing 119 
for rare-variant analysis, and RNA-Seq for TWAS.  120 
 121 
Cardiovascular-related traits:  122 
We used trait values from the first clinical exam. BMI was calculated as weight (kg)/height (m)2, 123 
and waist as the average of three abdominal circumference measurements in cm. Pulse was 124 
calculated as the average of three measurements of the sitting pulse. FEV1 and FVC were 125 
measured in a portable spirometer (EasyOne, NDD Medical Technologies, Andover, MA), as 126 
previously reported [4]. High-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride 127 
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(TG), and total cholesterol (TC) were assessed and analyzed by the LLFS central laboratory 128 
based at the University of Minnesota, as previously reported [4]. Participants were excluded if 129 
fasting < 8 hours for LDL, TG, and TC. Ankle-brachial index (ABI) was derived as the average of 130 
the right and left ankle-arm blood pressure ratio. We excluded participants with non-compressible 131 
arteries (ABI >= 1.4). For all analyses, each of the traits was adjusted for age, sex, field center, 132 
and square of the age. Waist and pulse were additionally adjusted for BMI. FEV1, FVC, and 133 
FEV1/FVC were adjusted for height and smoking. LDL and TC were adjusted for statin use, and 134 
TG was log-transformed. All traits were also adjusted for the top 10 genetic principal components 135 
stepwise. After covariate adjustments, all traits were inverse normal transformed.  136 
 137 
GWAS and gene level aggregation of GWAS results: 138 
GWAS SNP-chip data for the LLFS participants were produced using Illumina 2.5 million 139 
HumanOmni array. Genotypes were called using Bead Studio. SNPs were removed if their call 140 
rate was less than 98%, if their allele frequency in the LLFS population was < 1% or > 99%, if 141 
they had an allelic mismatch with 1000 Genomes Project (1000Gp3v5), or if they displayed 142 
excess heterozygosity relative to Hardy Weinburg Equilibrium (p < 1E-6). A single-SNP 143 
association test was done for all SNPs passing the quality filter by using a linear mixed model. 144 
Family relatedness was accounted for using a pedigree-based kinship matrix, and an additive 145 
genetic model was assumed. The SNP-level summary statistics from GWAS for SNPs with minor 146 
allele frequency >= 5 % were input to PASCAL[25]. The SNPs were assigned to a gene if they lied 147 
within 50kb of the gene body. PASCAL uses the sum of the chi-squared approach to calculate a 148 
gene-level p-value. Document S1 describes the GWAS and gene level aggregation process for 149 
the FHS population. 150 
 151 
Gene-expression to trait association (TWAS): 152 
The RNA extraction and sequencing were carried out by the McDonnell Genome Institute at 153 
Washington University (MGI). Total RNA was extracted from PAXgene™ Blood RNA tubes using 154 
the Qiagen PreAnalytiX PAXgene Blood miRNA Kit (Qiagen, Valencia, CA). The Qiagen QIAcube 155 
extraction robot performed the extraction according to the company's protocol. The RNASeq data 156 
were processed with the nf-core/RNASeq pipeline version 3.3 using STAR/RSEM and otherwise 157 
default settings (https://zenodo.org/records/5146005). RNASeq on whole blood samples from the 158 
LLFS participants in the first clinical visit was used for the analysis. Genes with less than three 159 
counts per million in greater than 98.5% of samples were filtered out from the analysis. Samples 160 
with greater than 8% of reads in intergenic regions were also filtered out. The resulting set were 161 
transformed using DESeq’s [26] variance stabilizing transform (VST) function. The VST 162 
transformed gene expression levels were adjusted for base covariates: age, age squared, sex, 163 
field center, percent of reads mapping to intergenic sequence, and the counts of red blood cells, 164 
white blood cells, platelets, monocytes, and neutrophils. The gene expression level was also 165 
adjusted stepwise for the RNA-seq batch and the top 10 principal components of gene 166 
expression. For each trait, the adjusted gene expression residuals were used as a predictor, and 167 
the adjusted trait was used as a response variable in a linear mixed model implemented in MMAP 168 
[27]. A kinship matrix generated by MMAP from the LLFS pedigree was used to account for family 169 
relatedness. For traits with genomic inflation factor (GIF) > 1.1, the p-values were adjusted using 170 
BACON [28]. The same RNA-Seq processing steps were implemented for replication in the FHS 171 
dataset.  172 
 173 
Rare-variant analysis (RVA) using STAAR:  174 
LLFS Whole Genome Sequence (WGS) was produced by MGI using 150bp Illumina reads. 175 
Variant calls with read depth less than 20 or greater than 300 were set to missing. Variants with 176 
call rate < 90% and those with excess heterozygosity (p < 1E-6) were excluded from the analysis. 177 
Missing genotype calls in the LLFS cohort were filled in using the call with the highest phred-scale 178 
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likelihood from GATK. Bi-allelic SNVs with MAF < 5% and passing the above quality filters were 179 
input to STAAR [19] for variant set association tests using SKAT [18]. We also employed burden 180 
testing [29-32] and Aggregate Cauchy Association Test (ACAT) [33, 34] as implemented in the 181 
STAAR framework. However, the resulting p-value distributions from these tests displayed a U-182 
shaped pattern, deviating from the expected uniform distribution under the null hypothesis so we 183 
did not use them. 184 
 185 
For each gene, variants are split into 10 functional categories, and an omnibus association test is 186 
performed for each category for each gene weighted by functional annotations from the FAVOR 187 
database [35], which is curated by the TOPMed Consortium. The 10 functional categories include 188 
synonymous, missense, putative loss of function (plof), promoter CAGE, promoter DHS, enhancer 189 
CAGE, enhancer DHS, upstream, downstream, and untranslated region (UTR) [19, 21, 35]. A 190 
minimum of 2 variants is required in a category to perform a SKAT test. Document S1 describes 191 
the WGS data processing steps for the FHS population.  192 
 193 
Correlated Meta-analysis (CMA):  194 
CMA [22] combined gene p-values from GWAS (after aggregation by PASCAL), TWAS, and RVA 195 
while preventing Type I errors by accounting for dependencies between individual analyses under 196 
the null as described [22, 36]. GWAS, TWAS, and RVA were performed on overlapping individuals 197 
from LLFS’s first clinical visit. Furthermore, genetic variants affect gene expression. Therefore, 198 
each pair of inputs to CMA may be correlated. Since STAAR outputs 10 p-values per gene, one 199 
for each category, we ran CMA 10 times resulting in 10 p-values per gene.  200 
 201 
Module enrichment analysis and Gene Ontology (GO) Over-representation Analysis:  202 
We started with modules (highly connected subnetworks) from two protein-protein interaction 203 
(PPI) networks, the STRING functional PPI network [37] and the InWeb physical PPI network [38] 204 
which were identified by the best-performing methods in a DREAM challenge [39]: random walk 205 
algorithm R1 for STRING and modularity optimization algorithm M2 for InWeb. These modules 206 
and the gene-level p-values were input to PASCAL’s module enrichment algorithm [25]. Genes 207 
with p-values from fewer than two CMA input sources were removed from the modules. The 208 
module enrichment p-values from PASCAL were corrected for the total number of modules tested 209 
using Bonferroni correction. GO over-representation analysis was done on the set of genes in 210 
each enriched module by using WebGestaltR package (version: 0.4.6,) with the following 211 
configuration: (organism: hsapiens, method: ORA, enrichDatabase: GO Biological Process, 212 
FDRMethod: BH, FDRThreshold = 0.05) [23]. The affinity propagation feature in WebGestaltR 213 
was used to eliminate GO biological processes with highly overlapping member genes. 214 
 215 
Framingham Heart Study (FHS) replication:  216 
FHS is a multi-generational study to identify genetic and environmental factors affecting 217 
cardiovascular and other diseases [40, 41]. We used the data on the FHS participants from 218 
grandchildren and offspring spouse generation who attended examination 2 for replication 219 
purposes [40, 41]. Across 11 studied traits, the participants ranged from n = 2512 to 3341 for 220 
GWAS, n = 1080 to 1380 for TWAS, and n = 921 to 1233 for rare-variant analysis. Descriptive 221 
statistics for all the traits and covariates can be found in File S3. We use the same pipeline 222 
described in Fig 1 to replicate the LLFS results in the FHS population. Replication analysis was 223 
done on genes that were significant in LLFS by CMA or by any of the CMA inputs: TWAS, GWAS, 224 
or RVA. For each trait, a gene is replicated if it meets the Bonferroni significance threshold, which 225 
is adjusted for the number of genes that were significant in the LLFS population in GWAS and 226 
TWAS, or for the number of gene-category pairs of significant genes in CMA and STAAR. The 227 
significance threshold used for GWAS, TWAS, RVA, and CMA for both LLFS and FHS can be 228 
found in Table S3. A module is replicated if it is significantly enriched after applying Bonferroni 229 
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correction based on the number of significantly enriched modules across all traits in the LLFS 230 
population.  231 
 232 
GWAS Catalog Search:  233 
We used NHGRI-EBI GWAS Catalog database (version: v1.0.2-associations_e109) [42] to check 234 
if the gene-trait associations with suggestive/significant signals from GWAS, TWAS, RVA, and 235 
CMA have a previously known trait-associated genome-wide significant variant within the 50 kb 236 
region of the gene body. Genes matching this criterion are designated as “previously associated 237 
in GWAS Catalog” throughout the paper. It is important to note that the presence of previously 238 
known trait-associated variants in a 50kb region around the trait-associated gene’s body does not 239 
necessarily establish a causal role for the gene on the trait. However, we use this broad criterion 240 
to ensure that we classify genes with any hint of previous implication as “previously associated,” 241 
minimizing the risk of incorrectly classifying them as novel findings.  242 
 243 
Results 244 
 245 
Figure 1 shows the flowchart of the multi-omics integration pipeline we used to identify genes and 246 
biological processes affecting 11 cardiovascular-related traits. We implemented it as a Nextflow 247 
workflow, which containerizes each process [24]. This greatly simplifies the maintenance of 248 
software dependencies and enables easy deployment across various computing environments. 249 
The complete pipeline documentation can be found at https://nf-co.re/omicsgenetraitassociation/.  250 
 251 
Gene-level aggregation of GWAS:  252 
File S3 shows the characteristics of study participants for covariates and 11 cardiovascular-253 
related traits for GWAS, TWAS, and RVA. We employed GWAS on all traits. Genomic inflation 254 
factors (GIFs) for all traits (Table S1) indicate no systematic inflation, technical bias, or population 255 
stratification. We then aggregated GWAS summary statistics to the gene level using PASCAL 256 
[25]. After aggregation, GIFs range from = 1.07 to 1.21 (GIFs: Table S2correction, 30 gene-trait 257 
associations were genome-wide significant across five traits – low-density lipoprotein (LDL, 9 258 
genes), total cholesterol (TC, 7 genes), High-density lipoprotein (HDL, 4 genes), waist (1 gene), 259 
and triglycerides (TG, 9 genes). 26 of these gene-trait pairs are previously associated in GWAS 260 
Catalog [42]. We replicated 9/30 genome-wide significant gene-trait associations in the FHS 261 
population using aggregated GWAS (Table S3). One of those genes for TG, BUD13-DT (p = 2.25 262 
× 10−8), is not previously associated in GWAS Catalog. However, BUD13-DT is a divergent 263 
transcript and shares 82 of the 83 genetic variants that are aggregated to the gene level with 264 
BUD13. BUD13 is previously associated in GWAS Catalog.  265 
 266 
Transcriptome-wide Association Study (TWAS) 267 
We conducted TWAS on the 11 traits. After using BACON [28] to correct for inflation when GIF > 268 
1.10, the GIFs range from 1.01 to 1.16 (GIFs: Table S2). After Bonferroni correction, 77 gene-trait 269 
associations were genome-wide significant across five traits – TC (5), BMI (21), HDL (21), FVC 270 
(1), and TG (29) (Table S5). 9 of the 77 genes are previously associated in GWAS Catalog, and 271 
57 of the 77 associations were replicated in the FHS population (Table S5, Table S10). The 272 
direction of the effect matches between the LLFS and the FHS population for all 57 FHS-replicated 273 
associations. Of 21 genes significant for HDL, 18 were also significant for TG. Consistent with the 274 
inverse relationship between HDL and TG traits, the HDL and TG β-values had opposite signs for 275 
all 18 genes. 50 of the 57 replicated gene-trait associations are not previously associated with the 276 
corresponding traits in the GWAS Catalog [42]. Among 9 genes previously associated in GWAS 277 
Catalog, 7 were replicated in FHS – HCAR3 (BMI p = 1.12 × 10−8), HCK (BMI p = 3.91 × 10−7), 278 
SLC45A3 (HDL p = 1.42 × 10−15), LINC02458 (HDL p = 7.17 × 10−15), ABCG1 (HDL p = 1.98 × 279 
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10−9), ENPP3 (HDL p = 9.68 × 10−9), and ABCA1 (TG p = 5.22 × 10−9). These previously 280 
associated genes in GWAS Catalog have GWAS Catalog reported trait-associated variant(s) 281 
within the 50 kb region of the gene body. The genome-wide significance of these previously 282 
associated genes after TWAS and their replication in the FHS population suggests a potential 283 
role as mediators linking trait-associated variants to traits. For 3 of the 7 replicated TWAS genes 284 
with trait-associated variants within 50 Kb, the variants are assigned to other, closer genes in the 285 
GWAS Catalog. Our analysis suggests the following reassignments: rs3747973 from NUCKS1 286 
and Metazoa_SRP to SLC45A3, rs2245133 from MED23 to ENPP3, rs2245611 from HCAR1 and 287 
DENR to HCAR3, and rs6489191 from KNTC1 and HCAR2 to HCAR3 [42].   288 
 289 
Rare variant analysis (RVA) 290 
We applied RVA on the same 11 traits using the STAAR package [19]. STAAR splits variants 291 
into 10 functional categories and performs 10 variant set tests for each gene. The GIFs of all 292 
110 STAAR-category-trait combinations (10 categories by 11 traits) range from 0.77 to 1.20 293 
(GIFs: Table S2) After Bonferroni correction, we identified 194 unique gene-trait associations at 294 
the genome-wide significant levels for ABI (13), LDL (2), TC (1), BMI (16), FEV1 (24), 295 
FEV1/FVC (8), HDL (7), FVC (49), TG (2), pulse (3), and waist (69) (Table S6). 22/194 are 296 
previously associated genes, and 5/194 associations were replicated in the FHS population 297 
(Table S6, Table S10). OR52A1 (p = 2.56 × 10−8) is genome-wide significant for ABI, was 298 
replicated in FHS, and not previously associated in GWAS Catalog [42]. The low replication rate 299 
in FHS may stem from LLFS’s unique cohort enriched for exceptional longevity. Rare variants 300 
unique to LLFS could drive the phenotype under study. One example is NABP1 (p = 2.12 × 301 
10−8), which is genome-wide significant for HDL in the upstream category. Two rare variants 302 
upstream of this gene (rs10931513, rs10177406) have minor allele counts of 5 and are present 303 
in the same group of individuals.  GWAS on these variants for HDL shows that each one 304 
individually has a suggestive p-value (betas = 2.02, p <  8 × 10−6). Other genes that are 305 
significant in LLFS but not replicated in FHS warrant further investigation.  306 
 307 
 308 
 309 
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 310 
Table 1: Genes that are genome-wide significant after CMA and FHS-replicated. 20/29 311 
genes have not been previously associated with the trait in the GWAS Catalog. TOMM40 for TC, 312 
ATG2A for BMI, and APOC3 for TG are more significant after CMA than after PASCAL, TWAS, 313 
and RVA alone. TOMM40 for LDL, CETP for HDL, and APOC3, LPL, and SLC45A3 for TG have 314 
suggestive or genome-wide significant p-values from more than one analysis. The remaining 315 
genes are CMA-significant due to a highly significant p-value in one analysis.  316 
 317 
Correlated meta-analysis (CMA) 318 
After aggregating gene-level p-values from PASCAL, TWAS, and each category of RVA [22], we 319 
obtained 10 category-specific p-values for each gene. The GIFs across all 110 category-trait 320 
combinations ranged from 0.98 to 1.29 (GIFs: Table S2). After Bonferroni correction, we identified 321 

Genes Trait CMA p-
value 

GWAS 
catalog?  

PASCAL 
p-value 

TWAS p-
value 

RVA p-
value RVA category 

TOMM40 LDL 4.9E-17 Yes 1.9E-12 7.9E-01 1.8E-17 synonymous 
TOMM40 TC 2.7E-11 Yes 1.2E-06 2.8E-01 2.3E-10 synonymous 
ATG2A BMI 6.1E-08 No 1.8E-01 1.8E-07 7.5E-04 downstream 
AKAP12 

HDL 

1.3E-11 No 1.0E-01 3.1E-16 NA NA 
CETP 1.6E-18 Yes 9.5E-22 8.8E-01 1.3E-11 missense 
CPA3 3.4E-10 No 2.6E-01 6.2E-16 NA NA 
FCER1A 2.2E-08 No 6.6E-01 2.8E-16 NA NA 
GATA2 2.3E-11 No 5.5E-01 3.9E-21 NA NA 
HERPUD1 1.0E-11 Yes 8.7E-17 1.2E-01 NA NA 
LINC02458 1.0E-08 Yes 4.3E-01 7.2E-15 NA NA 
MS4A2 5.5E-11 No 1.5E-01 6.7E-16 NA NA 
SLC45A3 1.8E-12 Yes 7.9E-02 1.4E-15 1.4E-03 enhancer_DHS 
AKAP12 

TG 

2.9E-27 No 4.7E-01 4.7E-53 NA NA 
APOA5 7.3E-08 Yes 2.2E-09 NA 4.5E-02 promoter_CAGE 
APOC3 2.1E-11 Yes 8.0E-09 NA 1.0E-04 plof_ds 
CA8 8.4E-11 No 3.8E-01 1.0E-20 4.8E-02 enhancer_CAGE 
CPA3 3.6E-28 No 2.5E-01 8.2E-51 NA NA 
ENPP3 4.5E-13 No 1.5E-01 1.8E-26 1.7E-01 promoter_DHS 
FCER1A 1.7E-18 No 8.6E-01 1.1E-41 NA NA 
GATA2 6.2E-35 No 3.4E-01 4.9E-66 NA NA 
GCSAML 9.8E-15 No 4.8E-01 7.9E-28 NA NA 
HDC 2.4E-28 No 3.7E-01 4.2E-67 4.4E-02 synonymous 
HRH4 6.6E-10 No 3.7E-01 1.6E-16 2.0E-02 missense 
LINC02458 3.6E-18 No 6.3E-01 6.5E-37 NA NA 
LPL 5.0E-08 Yes 4.0E-08 2.7E-01 5.4E-04 missense 
MS4A2 3.1E-34 No 7.0E-03 2.2E-50 NA NA 
MS4A3 4.9E-18 No 6.8E-03 7.1E-23 NA NA 
NTRK1 2.3E-07 No 2.0E-01 1.0E-10 NA NA 
SLC45A3 3.1E-30 No 1.9E-01 7.5E-56 6.5E-05 enhancer_DHS 
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64 significant genes across 9 traits – LDL (6), TC (1), BMI (4), FEV1 (3), FEV1FVC (1), HDL (15), 322 
FVC (8), TG (23), and waist (3), of which 21 are previously associated genes (Table S7). Twenty-323 
nine of 64 gene-trait associations were replicated in the FHS population, of which 9 genes are 324 
previously associated in the GWAS Catalog [42] (Table S7, Table S10). We identified 20 genes 325 
that were not previously associated and were replicated in the FHS population (Table 1), including 326 
14 for TG, 5 for HDL, and 1 for BMI. 327 
 328 
CMA accounts for the correlation between p-values from PASCAL, TWAS, and RVA outputs, but 329 
we observed minimal correlation between the TWAS output and PASCAL or RVA output. The 330 
absolute median tetrachoric correlation across all trait-category pairs ranges from 0.001 to 0.009 331 
for [TWAS, RVA] and from 0.004 to 0.017 for [TWAS, PASCAL]. The absolute median correlation 332 
across trait-category pairs is slightly higher between RVA and PASCAL, ranging from 0.02 to 0.05 333 
(Table S8). 334 
 335 

Enriched 
Module Trait 

Bonf. 
corrected 
p-value 

FHS-
Replicated 

Most Significant 
Biological Process 
(BP) 

FDR (GO 
BP) 

cma-STRING-2 BMI 4.9E-02 No T Cell Activation 0 

cma-InWeb-5 BMI 1.3E-02 No 

innate immune 
response activating 
signal transduction 1.1E-05 

cma-InWeb-7 BMI 9.6E-03 No 

immune response 
regulating signaling 
pathway 0 

cma-InWeb-58 
FEV1FV
C 4.4E-03 No 

regulation of canonical 
Wnt signaling pathway 0 

cma-STRING-
11 FVC 4.6E-02 No 

Retinol metabolic 
process 2.4E-12 

cma-STRING-
188 FVC 3.3E-02 No JAK STAT cascade 1.8E-11 

cma-InWeb-7 HDL 1.5E-02 No 
positive regulation of 
immune response 0 

cma-STRING-
104 HDL 3.5E-07 Yes sterol transport 0 

cma-InWeb-46 LDL 6.3E-04 No 
protein lipid complex 
remodeling 4.9E-10 

cma-InWeb-46 TC 4.8E-03 No 
plasma lipoprotein 
particle remodeling 4.9E-10 

cma-STRING-
104 TG 6.7E-04 Yes sterol transport 0 

cma-STRING-
193 TG 2.0E-05 Yes 

positive regulation of 
immune response 0 

cma-STRING-
48 TG 4.0E-02 No 

establishment of 
protein localization to 
organelle 0 
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 336 
Table 2: 13 modules that are significantly enriched for genes with low CMA p-values. cma-337 
InWeb-46 is enriched for both LDL and TC. cma-STRING-104 is enriched for HDL and TG and is 338 
FHS-replicated. The most significant Gene Ontology (GO) biological processes across lipid traits 339 
are primarily lipid-related or immune-response-related.  340 
 341 

 342 
 343 

Fig 2: Sub-modules within enriched modules. Genes with P < 10−4 are annotated as 344 
suggestive. Module enrichment analysis identifies trait-related genes missed by association 345 
analysis. (A) Module cma-STRING-104 is enriched for both TG and HDL. APOB is not significant 346 
for TG but directly interacts with genes with suggestive or significant p-values for TG. APOB and 347 
MSR1 participate in macrophage-derived foam cell differentiation with two genome-wide 348 
significant genes (CETP and ABCG1). (B) SYK is not genome-wide significant after CMA. SYK 349 
interacts with significant genes for TG, FCER1A and MS4A2, and participates in mast-cell 350 
degranulation.    351 
 352 
The p-values from CMA were inputted to PASCAL’s module enrichment analysis method, which 353 
identifies modules whose genes, as a group, have significantly lower p-values than would be 354 
expected by chance after Benjamin-Hochberg correction for the number of tested modules [25]. 355 
We used modules from the InWeb (physical) [38] and STRING (functional) [37] protein-protein 356 
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interaction (PPI) networks. We identified 13 enriched modules across 7 traits – LDL (1), TC (1), 357 
BMI (3), FEV1FVC (1), HDL (2), FVC (2), and TG (3) (Table 2). Of the 13, 6 modules are in the 358 
physical network and 7 are in the functional one. Three of 13 modules were replicated in FHS 359 
(see Methods). One replicated STRING module (cma-STRING-104) is enriched for genes with 360 
suggestive/significant p-values for both HDL and for TG. It contains three genome-wide significant 361 
TG genes – APOA5 (p = 1.56 × 10−15), APOC3 (p = 2.08 × 10−11), and APOA4 (p = 1.56 × 10−15), 362 
of which APOA5 and APOC3 were replicated in FHS. The module also contains two genome-363 
wide significant HDL genes - APOC3 (p = 1.64 × 10−8) and CETP (p = 1.61 × 10−18), of which 364 
CETP was replicated (Fig 2a). Functional annotation of genes in this module showed a significant 365 
over-representation of multiple biological processes. Notably, the top 5 most significant biological 366 
processes are lipid-related – sterol transport, glycerolipid catabolism, protein-lipid complex 367 
remodeling, phospholipid transport, and plasma lipoprotein particle assembly (Table S9). Another 368 
FHS-replicated STRING module for TG contains two replicated genes for TG that are not 369 
previously associated in GWAS Catalog – MS4A2 (p = 3.14 × 10−34) and FCER1A (p = 1.71 × 370 
10−18) along with SYK (not suggestive or significant) and CBL (suggestive). However, the 371 
expression level of MS4A2 and FCER1A has been associated with TG in two previous studies 372 
[43, 44]. The over-represented biological processes for this module include immune-related 373 
processes such as positive regulation of immune response, mast-cell degranulation, and T-cell-374 
activation (Fig 2b). The most significant biological processes for 7 other significantly enriched 375 
lipid-related modules – LDL (1), TC (1), HDL (1), BMI (3), and TG (1), are primarily lipid-related 376 
or immune-related processes (Table 2). The genes in enriched modules and over-represented 377 
biological processes for enriched modules can be found in File S1. 378 
 379 
 380 
Discussion 381 
 382 
The value of correlated meta-analysis 383 
Using correlated meta-analysis (CMA), we developed a strategy to integrate evidence from 384 
GWAS, TWAS, and rare-variant analysis (RVA). The summary statistics from all four analyses 385 
can be found in File S2. After CMA, we identified 64 genome-wide significant genes across 9 386 
cardiovascular-related traits. Of 29 CMA-significant and FHS-replicated genes, TOMM40 for TC, 387 
ATG2A for BMI, and APOC3 for TG (triglycerides) are more significant after CMA than in 388 
PASCAL, TWAS, and RVA alone (Table 1). TOMM40 for LDL, CETP for HDL, and APOC3, LPL, 389 
and SLC45A3 for TG have suggestive or genome-wide significant p-values from more than one 390 
input analysis (Table 1). The rest of the genes have strong evidence from TWAS. Modestly 391 
significant genes with support from only one of GWAS, TWAS, or RVA were filtered out by CMA.  392 
 393 
Prior work using meta-analysis has primarily focused on integrating evidence from multiple GWAS 394 
on different cohorts [45-47] or identifying shared/pleiotropic genetic effects across multiple traits 395 
[36, 48]. Our approach integrates evidence from GWAS, TWAS, and RVA. Wang et al. 2020 [49] 396 
performed a meta-analysis similar to ours by integrating methylation data (EWAS), TWAS, and 397 
GWAS gene-level statistics. However, the TWAS and EWAS statistics came from a single cohort 398 
without replication and the meta-analysis also did not account for the correlation between EWAS, 399 
TWAS, and GWAS statistics from the same cohort. These are expected to be correlated because 400 
genetic variants and methylation both affect gene expression [49].  401 
 402 
Within the individual analyses, the replication rate in the FHS population for RVA (5/194) is lower 403 
than for GWAS (9/30) or TWAS (57/77). The low replication rate for RVA is expected because 404 
the FHS sub-population with whole genome sequencing and measured traits and covariates is 405 
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much smaller than the LLFS cohort (File S3). For the most significant functional categories of the 406 
194 RVA-significant genes in LLFS, only ~4% (59 / 1530) of the variants are present and analyzed 407 
in FHS.  408 
 409 
ATG2A and its link to obesity  410 
Autophagy-Related Protein 2 Homolog A (ATG2A) is a genome-wide significant gene (p = 6.11 × 411 
10−8) for BMI after CMA and is replicated in FHS (p= 1.5 × 10−4). ATG2A is not previously 412 
associated in the GWAS Catalog. The ATG2A protein plays a role in autophagosome formation, 413 
regulation of lipid droplet morphology, and lipid-droplet dispersion during autophagy [50, 51]. In 414 
vitro experiments have shown that low expression of ATG2A can disrupt normal autophagy. 415 
Velikkakath et al. reported that silencing ATG2A/ATG2B via siRNA in HeLa cells leads to the 416 
aggregation of large lipid droplets [50]. ATG2A/ATG2B double knockout in HEK293 cells led to 417 
an incomplete autophagy process [51]. The association between the expression level of ATG2A 418 
and BMI is genome-wide significant with a negative beta coefficient, which means higher 419 
expression of ATG2A is associated with lower BMI (beta = -0.7, P = 1.8 × 10−7). Obesity increases 420 
the inhibition of autophagy [52], so the lower expression of ATG2A, a pro-autophagy gene, may 421 
be a consequence of high BMI. On the other hand, increasing autophagy by genetic or 422 
pharmacological mechanisms protects mice from obesity and sequelae such as insulin resistance 423 
and fatty liver [52], so higher expression of ATG2A may protect against obesity and consequent 424 
cardiovascular risk [53]. Indeed, autophagy regulation has been proposed as a therapy to reduce 425 
the risk of obesity-associated cardiovascular diseases [54]. Thus, ATG2A may participate in a 426 
positive feedback loop in which lower expression of ATG2A is both a cause and a consequence 427 
of obesity. 428 
 429 
 430 
 431 
ENPP3: a potential mediator of TG-induced inflammation  432 
ENPP3 is genome-wide significant (p = 4.52 × 10−13) for TG after CMA and replicated in FHS (p 433 
= 1.41 × 10−11). It encodes ecto-nucleotide pyrophosphatase-phosphodiesterase 3, one of several 434 
enzymes that hydrolyze extracellular ATP and thereby tamp down chronic inflammation [55]. 435 
Extracellular ATP is a powerful “alarmin” that signals cellular damage, activates immune cells, 436 
and causes inflammation [55], a key element of atherosclerosis [56]. ENPP3-/- mouse cells exhibit 437 
lower ATP hydrolysis compared to WT cells [57]. The expression leathervel of ENPP3 is genome-438 
wide significant for TG with a negative coefficient (beta = -1.04, P = 1.75 × 10−26) and the direction 439 
of effect is the same in FHS. The expression level of ENPP3 has been previously associated with 440 
TG in two prior studies with the same direction of effect [43, 44]. A 2023 bidirectional Mendelian 441 
randomization study found a significant effect of TG on ENPP3 expression but no evidence for 442 
reverse causation [43].  Thus, reduced expression of ENPP3 and subsequent increase in 443 
extracellular ATP concentration may be one of the mechanisms by which high TG induces 444 
inflammation and promotes atherosclerosis [56].  445 
 446 
Role of mast cell functional genes in atherosclerosis risks 447 
FCER1A, MS4A2, GATA2, HDC, and HRH4 are genome-wide significant for TG in LLFS CMA 448 
and replicated in FHS. None of them has a TG-associated variant within 50k in the GWAS 449 
Catalog. All 5 genes play a role in either mast-cell activation, mast-cell proliferation, or secretion 450 
of pro-inflammatory markers [58-65]. Active mast cells affect atherosclerosis risks. In mice, local 451 
activation of adventitial mast cells during atherogenesis increases plaque size, macrophage 452 
apoptosis, vascular leakage, and intraplaque hemorrhage [66]. FCER1A and HDC have also been 453 
experimentally linked to atherosclerosis. Homozygous deletion of FCER1A reduced 454 
atherosclerosis in Apoe -/- mice [61]. Similarly, HDC-/- mice exhibited reduced atherosclerotic 455 
lesions in an Apoe-/- background [63]. Using Mendelian randomization, Dekkers et al. found a 456 
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significant effect of TG on all 5 genes but no evidence for reverse causation [43]. This is consistent 457 
with the fact that elevated TG causes inflammation [67] and that these genes are pro-458 
inflammatory. Surprisingly, the association between TG and the expression of these pro-459 
inflammatory genes is not positive, as would be expected based on the inflammatory effect of 460 
high TG levels. In fact, we see a significant negative association for all 5 genes (Table 1). The 461 
expression level of these genes has been previously associated with TG in two different studies 462 
with the same direction of effect [43, 44]. One explanation for the lack of a positive correlation 463 
between TG and these pro-inflammatory genes is that we have measured gene expression in 464 
whole blood, whereas inflammation associated with atherosclerosis occurs in plaques. However, 465 
the existence of such a strong and consistent negative correlation between TG and the expression 466 
of these genes is an intriguing mystery that demands further experimental investigation.  467 
 468 
Module and GO enrichment analysis identified an additional gene, SYK, which may affect 469 
atherosclerosis risk via a similar mechanism. SYK lies in an enriched TG-module (cma-STRING-470 
193) in which genes involved in mast-cell degranulation are significantly overrepresented (Fig 2b). 471 
SYK directly interacts with FCER1A and MS4A2, two genes with known mast cell functions [58-472 
60]. An experimental study has shown that treating mice with SYK inhibitors significantly reduced 473 
atherosclerosis lesions in atherosclerosis-prone mice [68]. This suggests that combined module 474 
and GO analysis can identify important trait-related genes that are not genome-wide significant. 475 
 476 
A flexible and easy-to-ease pipeline 477 
We introduced a multi-omics integration pipeline (Fig. 1) and provided a NextFlow implementation 478 
that is easily run on a wide variety of platforms, from laptops to large compute clusters (https://nf-479 
co.re/omicsgenetraitassociation/). While we used our multi-omics integration approach to aggregate 480 
signals from GWAS, TWAS, or RVA, our pipeline can also take in gene-level summary statistics from 481 
epigenome-wide association studies (EWAS) [69].  While we used modules from the STRING and 482 
InWeb PPI networks, our pipeline can also take in modules from other networks, such as those 483 
linking transcription factors to their target genes. This flexibility makes the pipeline useful for a 484 
wide range of research problems.  485 
 486 
In the future, we plan to enhance the pipeline to address some limitations. Currently, we aggregate 487 
variant-level statistics from GWAS to the gene level based on proximity to the gene. This could 488 
be improved by aggregating variants in the genes’ regulatory regions using publicly available 489 
resources on regulatory regions and their target genes [70, 71]. The current meta-analysis 490 
approach does not offer weighted aggregation of different input sources. This could be improved 491 
by providing options to use various meta-analysis tools. The current implementation offers only 492 
STAAR for rare variant analysis. This could be improved by offering other, less complex options. 493 
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