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Brain dynamics re�ecting an intra-network brain
state is associated with increased posttraumatic
stress symptoms in the early aftermath of trauma
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Abstract
This study examines the association between brain dynamic functional network connectivity (dFNC) and
current/future posttraumatic stress (PTS) symptom severity, and the impact of sex on this relationship.
By analyzing 275 participants’ dFNC data obtained ~2 weeks after trauma exposure, we noted that brain
dynamics of an inter-network brain state link negatively with current (r=-0.179, pcorrected= 0.021) and
future (r=-0.166, pcorrected= 0.029) PTS symptom severity. Also, dynamics of an intra-network brain state
correlated with future symptom intensity (r = 0.192, pcorrected = 0.021). We additionally observed that the
association between the network dynamics of the inter-network brain state with symptom severity is more
pronounced in females (r=-0.244, pcorrected = 0.014).  Our �ndings highlight a potential link between brain
network dynamics in the aftermath of trauma with current and future PTSD outcomes, with a stronger
protective effect of inter-network brain states against symptom severity in females, underscoring the
importance of sex differences.

Introduction
Post-traumatic stress disorder (PTSD) may develop in individuals who have experienced or witnessed a
traumatic event, such as military warfare, sexual or physical assault, accidents, or natural disasters 1.
Symptoms of PTSD include distressing thoughts, �ashbacks, avoidance of reminders, changes in mood
and cognition, and increased arousal, which can signi�cantly impact an individuals’ life 2. Biological
markers or biomarkers may be able to identify those who are more likely to develop PTSD following a
traumatic incident 3,4. Early identi�cation of such individuals might allow for prompt treatment and
preventive measures, potentially minimizing the severity and duration of PTSD symptoms. Furthermore,
these markers may help in the development of tailored treatment methods, the optimization of
therapeutic treatments, and the long-term monitoring of therapy response 5.

In recent years, there has been a signi�cant increase in the exploration and advancement of
neuroimaging-based markers for identifying vulnerability to PTSD 6,7. This emerging �eld shows great
potential in the rapid development of tools for early identi�cation and intervention 8. Studies utilizing
neuroimaging techniques have uncovered notable alterations in brain function among individuals with
PTSD. These alterations are marked by atypical functional network connectivity (FNC) patterns, as
observed in resting-state functional magnetic resonance imaging (fMRI) studies 9–11. Speci�cally, these
patterns are seen in various brain regions, including the hippocampus 12, amygdala 13, visual network 14,
and prefrontal cortex 13 in individuals with PTSD. This underscores the extensive in�uence of trauma on
brain networks. Furthermore, several studies have successfully utilized resting-state fMRI functional
connectivity to predict the severity of PTSD symptoms 15–18. Additionally, two recent studies revealed the
ability to predict future symptom severity in participants with PTSD by analyzing resting-state fMRI data
obtained after the trauma had occurred 19,20.



Page 7/30

It has been assumed that brain FNC remains quasi-static or invariant over long periods of time, leading
many previous studies to focus solely on static FNC (sFNC) while ignoring the brain dynamics during
rest. However, challenging this assumption, a relatively new concept called dynamic FNC (dFNC) has
emerged 21–25. A dynamic approach recognizes that FNC during the relatively short length of resting-state
fMRI scans can exhibit temporal variations, thereby highlighting the importance of studying the dynamic
aspects of FNC 26. Unlike sFNC, dFNC offers greater sensitivity in capturing the spontaneous adaptations
that occur in response to various cognitive and mental conditions 27. By considering the spontaneously
�uctuating nature of neural signals across different temporal scales, dFNC allows for a more
sophisticated evaluation of brain activity 28.

Considering the dynamic nature of FNC in resting-state fMRI, several studies have explored dFNC in the
context of PTSD in recent years 29–32. However, none of these studies have examined the capability of
dFNC to predict future PTSD symptom severity. In addition, previous research indicates that women are
two to three times more likely than men to develop PTSD 33. Despite this, there has been a notable
absence of studies that examine the potential effects of sex on the relationship between dFNC features
and the severity of current or future PTSD symptoms.

In the present study, we aim to build upon previous research on dFNC in the context of PTSD. Speci�cally,
we investigated the predictive capability of dFNC features for future PTSD symptom severity. Additionally,
we explored the potential effects of sex on the association between dFNC features and both current and
future symptom severity. As past studies have demonstrated, biological sex is not the primary
determinant of the various neurophenotypes associated with adverse post-traumatic outcomes. Instead,
a range of other factors such as low socioeconomic status or SES, including income 34,35, housing
quality36, and broader socioeconomic conditions, area deprivation index or ADI37 also signi�cantly
in�uence the risk and severity of PTSD. To address the contribution of these factors, we also included
them as covariates in our analysis.

To accomplish these goals, we utilized the dataset from the Advancing Understanding of Recovery after
Trauma (AURORA) project 38. In the AURORA study, understanding whether dFNC features derived from
resting-state fMRI early after a trauma can predict future PTSD symptom severity is crucial. This is
especially true since neuroimaging was conducted approximately two weeks after the traumatic event, at
a time when acute stress disorder may be assessed, but before the diagnosis of PTSD can be made. This
timing allows us to investigate the potential of dFNC features as early biomarkers for PTSD and evaluate
their predictive capability for the severity of PTSD symptoms at a later stage.

Results
Participants

Data for the current analyses were collected as part of the multisite emergency department (ED) AURORA
study. The AURORA study represents a signi�cant research effort aimed at enhancing our understanding,
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prevention, and recovery strategies for individuals who have undergone a traumatic event. In AURORA
study, trauma-exposed civilians brought to one of 29 participating EDs across the United States were
recruited for this large, longitudinal study (details in38). This study involved more than 4000 participants
from the AURORA project, who provided clinical data at various intervals: 2 weeks (WK2), 4 weeks (WK4),
3 months (M3), 6 months (M6), and 12 months (M12) as illustrated in Fig. 1A. Additionally, neuroimaging
data from ~ 400 participants were collected at WK2 from �ve different scanning locations, which include
Atlanta (Georgia), Belmont (Massachusetts), Philadelphia (Pennsylvania), St. Louis (Missouri), and
Detroit (Michigan). The recruitment for this study took place between September 2017 and December
2020 (Final freeze 4 Psychometric release). We excluded those with low-quality resting-state fMRI and
missing clinical information at the imaging acquisition date. This process resulted in 275 participants
(181 females) being included in this analysis. Table 1 summarizes the demographic characteristics of the
participants included in this study.
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Table 1
Participant demographics and clinical information

Characteristics Mean (SD) or N (%)

Demographic characteristics

Age 34.55(12.78)

Sex assigned at birth, male/female 94 (34.18%)/181(65.82%)

*Race/ethnicity  

Hispanic 42 (15.27%)

White 85 (30.91%)

Black 131 (47.64%)

Others 15 (5.45%)

Missing 2 (0.73%)

Years of education 15.16(2.31)

Income level  

<$19,000 74 (25.96%)

$19,001-$35,000 85 (30.91%)

$35,001-$50,000 40 (14.55%)

$50,001-$75,000 30 (10.91%)

$75,001-$100,000 17 (6.18%)

>-$100,000 20 (7.27%)

Missing 9 (3.27)

Clinical characteristics

PCL-5 score  

WK2 (N = 275) 30.12 (17.58)

WK8 (N = 243) 26.60 (17.30)

M3 (N = 226) 23.53 (17.40)

M6 (N = 208) 21.00 (17.33)

M12 (N = 176) 20.33 (17.93)

*Self-reported .  SD: standard deviation, BMI: body mass index, WK2: 2 weeks after trauma, WK8: 8 weeks
after trauma, M3:  3 months after trauma, M6: 6 months after trauma, M12: 12 months after trauma.  
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Three distinct dFNC states were identi�ed

After calculating the dFNC of each participant, we grouped their dFNC into three different dynamic
network connectivity states (Fig. 1B). Figure 2 presents an overview of the identi�ed states. Each state
represents 1378 connectivity measures among seven networks across the entire brain. These networks
included subcortical network (SCN), auditory network (ADN), sensorimotor network (SMN), visual network
(VSN), cognitive control network (CCN), default-mode network (DMN), and cerebellar network (CBN). The
top panel highlights three distinct dFNC states, while the bottom panel shows the data with connectivities
between − 0.3 and 0.3 removed for clarity. State 2 and state 3 exhibit a stronger positive connectivity
among sensory networks, including visual, auditory, and sensorimotor networks. Conversely, in state 1, we
observed more disconnections among these networks. We observed an increase in within-CCN
connectivity and enhanced connectivity between the DMN and sensory networks in state 3. Additionally,
we noted a greater connectivity between the CBN and SCN in state 3 compared to the other two states.
Overall, our analysis suggests that state 2 and state 3 exhibit characteristics of inter-network states,
evidenced by the increased connectivity across the seven networks. In contrast, state 1 is indicative of an
intra-network state, as it demonstrates predominantly within-network connectivity patterns.

Dynamic FNC occupancy rates link with PCL-5 scores.

By utilizing the three identi�ed brain states for the entire group and the state vector, estimated for each
individual, which represents the state of the brain network at any given time point, we calculated three
occupancy rates (OCRs) for each participant. The OCR of each state represents the proportion of time
each participant spends in that state (see Method Section and Supplementary Fig. 1). Figure 3A shows
the correlation between OCRs and PCL-5 scores at various time points. The associations were computed
using General Linear Model (GLM) accounting for age, sex, years of education, scanning site, income,
marital status, employment status, and percentile ADI, and the resulting t-statistics were transformed to
correlation (r). A positive signi�cant association was found between the OCR of state 1 and the PCL-5
scores at M3 (r = 0.192, β = 0.0039, SE = 0.0012, 95% CI: 0.0015 ~ 0.0062, pcorrected = 0.021, N = 226 after
excluding sample with missing scores, see Table 1). These results indicate that the participants with
higher PTSD symptom severity spend more time in state 1, which is indicative of an intera-network brain
state.

We observed signi�cant negative association between the OCR of state 3 and the PCL-5 scores at WK2
(r=-0.179, β= -0.0029, SE = 0.0009, 95% CI: -0.0048~-0.0010, pcorrected= 0.021, N = 275). We also found a
negative correlation between state 3 OCR and PCL-5 of M3 (r=-0.166, β=-0.0030, SE = 0.0011,95% CI:
-0.0052~-0.0008, pcorrected = 0.029, N = 226). This indicates that individuals with higher PCL-5 scores
spent less time in state 3, which is indicative of an inter-network brain state. Overall, our �ndings highlight
the relationships between the OCR and PCL-5 scores, suggesting potential connections between dynamic
functional network connectivity and symptoms of PTSD at different time points.

Sex modulates the relationship between OCRs and PCL-5 scores.
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To examine the in�uence of sex on the relationship between OCRs and PCL-5 scores, we conducted GLM
analyses for males (N = 94) and females (N = 181), separately. In these analyses, we included age, years
of education, scanning site, income, marital status, employment status, and ADI as covariates. The
correlation results between OCRs and PCL-5 scores for females and males are presented in Fig. 3B and
Fig. 3C, respectively. While no signi�cant association was found between OCRs and PCL-5 scores in the
male group, we did observe signi�cant associations between the OCR of state 1 and state 3 with PCL-5
scores at WK2 and M3. Notably, only the association between OCR of state 3 and PCL-5 at WK2 remained
signi�cant after applying FDR correction (r=-0.244, β= -0.0030, SE = 0.0011, 95% CI: -0.0048~-0.0010,
pcorrected = 0.014, N = 181). We also observed a positive link between state 1 OCR and WK2 PCL-5 (r = 
0.153, β = 0.0027, SE = 0.0013, 95% CI: -0.0003 ~ 0.0040, puncorrected = 0.0402, N = 181). Additionally, OCR
of state 1 showed a positive link with M3 PCL-5 (r = 0.178, β = 0.0034, SE = 0.0014, 95% CI: 0.0015 ~ 
0.0062, puncorrected = 0.0167, N = 154) and OCR of state 3 showed a negative link with M3 PCL-5 (r=-0.164,
β=-0.0028, SE = 0.0012, 95% CI: -0.0052~-0.0008, puncorrected = 0.0273, N = 154). However, none of them
were signi�cant after FDR correction.

To verify that the strong correlation in females is not due to their larger sample size compared to males,
we tested the correlations between state 3 OCR and WK2 PCL-5 scores in both groups. Using Fisher's z-
transformation and calculating standard errors, we found a signi�cant difference in the correlations
between females and males (|Z-test statistic| = 1.734, p = 0.041), suggesting that the relationship between
OCRs and PCL-5 scores at WK2 differs signi�cantly between sexes.

Both posttraumatic stress (PTS) and non-PTS group generate similar dFNC states

We categorized participants into posttraumatic stress or PTS (N = 124) and non-PTS (N = 151) groups
based on their WK 2 PCL-5 scores, with a cutoff point of 31. Those scoring above 31 were classi�ed as
PTS, while those below were considered non-PTS 39. We used the term PTS instead of PTSD because the
classi�cation was based on PCL-5 scores at the time of imaging (i.e., WK2), before an o�cial PTSD
diagnosis till WK8. We then examined state pattern differences between the two groups by performing
separate k-means clustering analyses on their dFNC data.

Figure 4 demonstrates a notable similarity in brain states between the PTS and non-PTS groups, as
anticipated. We quanti�ed the similarity by calculating the Pearson correlation coe�cient between
corresponding states' FNC. The correlations between state 1 of the non-PTS group and state 1 of the PTS
group, state 2 of the non-PTS group and state 2 of the PTS group, and state 3 of the non-PTS group and
state 3 of the PTS group were 0.9632 (N = 1378, where N is number of connections, p ~ 0), 0.9880 (N = 
1378, p ~ 0), and 0.8938 (N = 1378, p ~ 0), respectively (see Fig. 4A and 4B). The p-value, displayed as
zero in MATLAB, indicates a very small value, suggesting strong statistical signi�cance and reinforcing
the robustness of our �ndings. Comparing the OCR of states in the non-PTS and PTS groups, we found a
consistent pattern: state 1 consistently showed the highest OCR, while state 2 exhibited the lowest OCR in
both groups (Fig. 4C and 4D). These results suggest a consistent OCR pattern across states in both
groups, indicating a high degree of similarity in identi�ed brain states between the non-PTS and PTS
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groups. Additionally, our �ndings that individuals with PTS tend to spend more time in state 1 compared
to those without PTS corroborate our main �nding that have established a connection between the
heightened OCR of this state and PCL-5, hinting at the potential clinical relevance of this brain state in
PTS.

Discussion
Our current research aimed to investigate the signi�cance of temporal changes in brain connectivity,
measured by dynamic functional network connectivity (dFNC), in indicating the presence and severity of
PTSD symptoms. Additionally, we examined the in�uence of sex-speci�c differences on the predictive
ability of these connectivity measures. Our results indicate that the amount of time spent in an inter-
network brain state serves as a protective factor against PTSD, whereas time spent in an intera-network
brain state is linked to a higher PTSD symptom severity. Furthermore, we observed that the negative
association between the duration spent in an inter-network brain state and PCL-5 is more pronounced in
the female group.

Dynamic FNC offers an enhanced predictive power compared to static FNC (sFNC), supplying an
additional layer of information about the severity of symptoms in brain disorders over time, a level of
detail not attainable by its static counterparts 40–42. For instance, a recent study demonstrated that a
classi�cation model relying on dFNC features surpassed the performance of other classi�cation models
in patients diagnosed with multiple sclerosis 42. In another study involving participants with PTSD, the
temporal variability, as captured by dFNC, demonstrated a higher classi�cation accuracy than the model
obtained only by sFNC features 41. Our study demonstrates that dFNC features associate not only with
current traumatic stress symptoms, but predict future symptoms of PTSD and may reveal important sex
differences.

In our study sample, comprising participants exposed to traumatic events, we analyzed dFNC and
differentiated three distinct brain network states. Two out of the three states (i.e., state 2&3) exhibited a
higher degree of integration in the sensory network, while state 1 demonstrated a more disconnected
sensory network. State 3 manifested the strongest connectivity within the CCN, within the CBN, and
between the CBN and the SCN. Moreover, we found that state 1 was characterized by intera-network
connectivity, while the other two states exhibited inter-network connections with both strong negative and
positive connectivity among brain networks. These observations collectively highlight that brain networks
display substantial dynamism, a characteristic they maintain even without the presence of external
stimuli as has been observed in other brain disorders 21–25,29,40. Additionally, we investigated whether the
dynamics of brain networks in participants with PTS differed from those in the non-PTS group. Upon
separately analyzing data from both groups of participants, we observed that each group generated
similar dFNC states, as expected and observed in other disorders43. This suggests that the dynamic
nature of brain networks persists irrespective of PTS, highlighting the potential complexities and
resilience of the brain's network dynamics in the face of trauma and related disorders.



Page 13/30

A prior study, employing the same population as the current research, demonstrated that the static
functional connectivity between the left dorsolateral prefrontal cortex (DLPFC) and the arousal network
(AN), as well as between the right inferior temporal gyrus (ITG) and the default mode network (DMN),
could predict both WK2 and M3 PCL-5 scores 20. In the current study, we found that the whole-brain OCRs
estimated from dFNC predict the PCL-5 at the time of neuroimaging data collection (referred to as WK2),
as well as the PCL-5 scores 10 weeks post-data collection (referred to as month 3 or M3). Our new
analyses contribute to a deeper understanding of the neurobiological mechanisms underlying PTSD by
looking at brain network dynamics.

Speci�cally, we found that participants with higher PCL-5 scores tend to spend more time in an intera-
network brain state, referred to as state 1. Importantly, the amount of time spent in this state was found
to predict future symptom severity at M3 (Fig. 3A). State 1 is characterized by reduced connectivity
among sensory networks, including visual, auditory, and sensory motor networks. Furthermore, our results
con�rmed that spending more time in an inter-network brain state (state 3) is negatively correlated with
PCL-5 scores at WK2 and M3 (Fig. 3A). State 3 is characterized by increased connectivity among sensory
networks, suggesting enhanced information exchange and integration between these networks. Previous
studies have consistently reported impairments in visual processing, as well as auditory processing, in
individuals with PTSD 44,45. Multiple neuroimaging studies have demonstrated alterations in the
functioning of the visual, auditory, and motor cortex among participants with PTSD 45–47. Notably,
abnormal activation in the visual cortex during picture viewing tasks has been observed in these
individuals 45. Furthermore, signi�cant alterations in visual processing have been identi�ed within the
ventral visual stream, which is responsible for processing object properties 45. This suggests that PTSD
affects the speci�c components of the visual system involved in object recognition and perception, as
previous �ndings highlight a role for structural integrity of the ventral visual stream in the development of
PTSD 48,49. Our current �ndings, in conjunction with previous reports of subtle de�cits in sensory
networks, particularly the visual sensory system in PTSD, provide compelling evidence that disruptions in
information integration among sensory networks are closely linked to the severity of PTSD symptoms48–

51. Enhancing the connectivity and integration within these networks could potentially serve as a
therapeutic target for mitigating symptom severity and improving outcomes in individuals with PTSD 52.

In addition to the sensory networks, our �ndings reveal that state 1 is characterized by relatively lower
within-CBN connectivity and between CBN and SCN connectivity (i.e., CBN/SCN) compared to the other
two states. This observation aligns with previous structural neuroimaging studies that have reported
reduced cerebellar volumes in individuals with PTSD 53,54. Furthermore, functional neuroimaging studies
have provided corresponding evidence by demonstrating alterations in neural activity and functional
connectivity of the cerebellum in PTSD 55. Our new �nding, that participants with higher PCL-5 scores
preferentially spent more time in the state characterized by lower CBN, adds another layer of information
to the understanding of temporal network patterns associated with CBN in PTSD. This suggests that
alterations in cerebellar connectivity patterns may play a role in modulating symptom severity and could
serve as potential markers for the disorder.
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In the subsequent analysis, we investigated the in�uence of sex on the relationship between brain
network dynamics and symptom severity. We observed that the association between OCRs, and PCL-5
scores was more prominent in females. Speci�cally, the correlation between state 3 OCR and WK2 PCL-5
was statistically signi�cant within the female group, and the strength of this correlation was notably
higher among females compared to males (Fig. 3B and C). It is worth noting that previous studies have
extensively explored the role of sex in the development of PTSD, with emerging evidence suggesting
differences in symptomatology and underlying neurobiology between males and females 33,56–60. In line
with these �ndings, our results further support the notion that the identi�ed dFNC biomarkers, particularly
when correlating with symptom severity, are stronger in females; this could potentially re�ect the higher
prevalence of PTS/PTSD in this demographic.

Recent large-scale genomic studies show that women of European and African ancestry may have higher
heritability for PTSD than men, suggesting that genetic factors may also play a signi�cant role in the
disorder's development, particularly in interaction with sex differences 61,62. However, it's important to
note that biological sex is not the primary determinant of the various neurophenotypes associated with
adverse post-traumatic outcomes; other factors such as low socioeconomic status also play a signi�cant
role 34,35. To avoid a narrow focus on sex alone, our analysis took into consideration all available
socioeconomic and demographic factors from the dataset. This approach allowed us to conduct a
comprehensive analysis of the connection between OCRs and PTSD symptom severity, speci�cally
considering the sex effect. Additionally, women's risk for PTSD is partially determined by the fact that
they experience sexual traumas more frequently. For example, a study shows that women exhibit almost
twice the PTSD symptoms in sexual assault survivors63. However, in the AURORA dataset, the type of
trauma does not play a major role in driving sex differences. The traumas are primarily motor vehicle
collisions (MVCs) for both women and men, yet sex differences in dFNC link with PTSD sympthom
severity are still observed.

Several limitations should be acknowledged while interpreting the present �ndings. The overall sample
size was relatively modest, and the sample sizes amongst the comparison groups (male vs. female) were
not the same. Furthermore, participants who completed all scans and had more complete datasets may
differ from those who did not complete all scans, making it unclear if the results apply to dropouts who
may be at higher risk for PTSD after trauma. In this study, we examined dFNC in individuals with PTS and
a non-PTS group, both of whom were exposed to trauma. To gain a comprehensive understanding,
further research is required to directly compare the dFNC features among the PTSD group, a group of
healthy individuals exposed to a traumatic event, and a group of healthy individuals who have not
undergone any traumatic experiences. However, we assume that healthy individuals exposed to trauma
could serve as a more suitable control group for those with PTSD, facilitating our understanding of the
underlying neural processes of PTSD. Additionally, in this study, we investigated the relationship between
dFNC features and the severity of PTSD symptoms at various time points. However, to enhance our
understanding, future research should compare dFNC features among groups exhibiting different PTSD
trajectories during a one-year assessment. In our study, we utilized the initial neuroimaging data available
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from the AURORA study, which was collected two weeks post-trauma, before any PTSD diagnosis at week
8. Given that the AURORA study also gathered neuroimaging data at six months post-trauma, future
research would bene�t from examining the dFNC patterns using the resting-state fMRI data from this
later time point. Such analysis could yield more profound insights into the evolving brain dynamics
associated with PTSD.

Conclusions
In summary, our investigation into the dFNC of civilians recently exposed to trauma revealed distinct
patterns in brain network dynamics. Our �ndings indicate that the duration participants spent in certain
brain network states can forecast both their current and subsequent PCL-5 scores. Speci�cally, we
identi�ed that spending time in an intra-network brain state is associated with higher PCL-5 scores, while
engagement in an inter-network brain state correlates with lower PCL-5 scores. Furthermore, our analysis
highlighted the role of multiple brain networks encompassing the visual, auditory, sensory-motor, and
cerebellar networks, in PTSD. We also observed a stronger association between brain dynamics and PCL-
5 scores in females compared to the male group. By incorporating sex-speci�c disparities, tailoring
interventions and treatment strategies accordingly, we can potentially develop more effective and
personalized approaches for PTSD.

Methods
Study population

The participants in this study are from the Advancing Understanding of Recovery after Trauma project
(AURORA) (Freeze 4.0 dataset). AURORA is a multisite longitudinal study in which participants are
enrolled within 72 hours of trauma exposure 38. In this study, the participants who experienced incidents
like a car accident, a high fall (> 10 feet), a physical assault, sexual violence, or mass casualty incident
were considered to have experienced trauma. The inclusion criteria include: 1) aged between 18 and 65
years old, 2) being alert and oriented at the Emergency Department (ED), 3) having the ability to speak
and write English �uently, 4) having no cognitive impairment, 5) having the ability to use the smartphone
for > 1-year post-enrollment. Exclusion criteria included solid organ damage, severe bleeding, a
requirement for a chest tube, and the likelihood of being admitted for longer than 72 hours. A subset of
participants underwent MRI either in the morning or the afternoon of the study visit, which occurred
approximately two weeks after the traumatic event (i.e., WK2). After preprocessing and quality check, N = 
275 participants' data were used in our study.

Clinical measures

The PTSD Checklist for DSM-5 (PCL-5) was administered to assess PTSD symptoms at multiple time
points, including pre-trauma (PRE), week 2 (WK2), week 8 (WK8), month 3 (M3), month 6 (M6), and month
12 (M12), as depicted in Fig. 1A. It is important to emphasize that different time frames were considered
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for each of the time points: the 2-week (WK2) assessment re�ected symptoms experienced over the past
two weeks, while assessments from week 8 (WK8) onwards considered symptoms over the past 30 days.
This longitudinal assessment allows for a comprehensive understanding of the participants' PTSD
symptomatology throughout the study duration. Table 1 summarizes the demographic and clinical
characteristics of the participants included in this study. Additionally, to distinguish individuals with
posttraumatic stress (PTS) from those without PTS in WK2 of the study, we employ a threshold for the
PCL-5 at 31. Participants with a PCL-5 score greater than 31 are classi�ed as having PTS, while those
with a score less than 31 are considered non-PTS 39. It is important to note that we refer to this group as
having PTS and not PTSD, as the PTSD diagnosis was made in W8, while we used the WK2 PCL-5 scores
to identify these two groups.

Imaging acquisition protocol

Participants underwent a thorough screening process before undergoing scanning, which involved
checking for any contraindications to magnetic resonance imaging (MRI) or other exclusion criteria. For
female participants and those who could potentially be pregnant, a pregnancy test was administered
prior to entering the MRI environment. MRI scans were conducted using 3T Siemens scanners at each
site. While the scan sequences remained largely consistent across imaging sites, some variations in
sequence parameters were present due to differences in hardware. The imaging protocol for each site is
outlined in Supplementary Table 1. The resting-state imaging procedure lasted approximately 9 minutes,
during which participants were instructed to keep their eyes open. They were asked to focus on the white
cross displayed at the center of the screen and maintain a state of stillness throughout the imaging
session 20.

Preprocessing

We corrected the differences in image acquisition times between slices using the statistical parametric
mapping (SPM12 @ https://www.�l.ion.ucl.ac.uk/spm/) default slice timing routines. The slice acquired
in the middle of the sequence was chosen as the reference slice. The subject's head movement was then
corrected using a rigid body, and 3-dimensional brain translations and 3-dimensional rotations were
estimated. Next, the imaging data were resampled to 3 × 3 × 3 mm3. and spatially normalized to the
Montreal Neurological Institute (MNI) space using the echo-planar imaging (EPI) template and the SPM
toolbox's default bounding box. The fMRI images were then smoothed using a Gaussian kernel with a full
width at half maximum (FWHM) of 6 mm (Step1 in Fig. 1B). It should be emphasized that while
participants in this study have also been featured in other AURORA analyses and resting-state
studies20,64, the current analyses are distinct. Additionally, the preprocessing approach diverges from the
standard protocols commonly employed in AURORA research in order to align with methodologies used
in our other work. A similar preprocessing approach has been employed in several of our previous
studies23–25,43,65.

Extracting independent components using Neuromark
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We applied a hybrid Neuromark framework to extract the meaningful networks for each subject. The
Neuromark framework is based on the Neuromark template derived from two large datasets including the
human connectome project (HCP: https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release, 823 subjects after the subject selection) and genomics
superstruct project (GSP: https://dataverse.harvard.edu/dataverse/GSP, 1005 subjects after the subject
selection). This framework has been successfully implemented to many studies with a wide range of
brain imaging markers identi�ed across different brain diseases 23–25,43,65. Details of the construction of
the templates can be found in our previous Neuromark paper 66.

The Neuromark template consists 53 independent components (ICs), which were grouped into seven
functional networks based on anatomic and functional prior knowledge (Fig. 1C). These networks
included subcortical network (SCN), auditory network (ADN), sensorimotor network (SMN), visual network
(VSN), cognitive control network (CCN), default-mode network (DMN), and cerebellar network (CBN)
(Step2 in Fig. 1B) 67. All 53 ICs and their coordination are shown in Supplementary Table 2. We used
these priors (i.e., the Neuromark_fMRI_1.0 template, available in GIFT @
http://trendscenter.org/software/gift and on the TReNDS website @ http://trendscenter.org/data) to run a
fully automated ICA analysis in GIFT 68. We further: 1) detrended linear, quadratic, and cubic trends, 2)
conducted multiple regression on the six realignment parameters and their temporal derivatives, 3)
despiked detected outliers, and 4) applied a low-pass �lter (cut-off frequency at 0.15Hz) to remove noise
and artifacts.

Dynamic and static functional network connectivity estimation

The dFNC of the whole brain was estimated via a sliding window approach, as shown in Fig. 2B (Step 3).
We used a tapered window obtained by convolving a rectangle (window size = 20 TRs = 47.2 s) with a
Gaussian (σ = 3) to localize the dataset at each time point. Prior research revealed that a window size
between 30 and 60 s is a suitable option for capturing dFNC variation 69. Thus, we assumed that a
window size of 47.2 s is a reasonable choice. Next, within each window, we calculated the Pearson
correlation between any pairs of ICs. We then concatenated the dFNCs of each participant to form a (C ×
C × T) array (where C = 53 denotes the number of ICs and T = 210), which represented the changes in
brain connectivity between ICs as a function of time 67.

Dynamic functional network connectivity clustering

We next concatenated the dFNC of all subjects, as shown in Step 4 of Fig. 1B, and applied the k-means
clustering algorithm to the dFNC windows to partition the data into sets of distinct clusters representing
transient connectivity “states” 70,71. The optimal number of cluster order was estimated using the elbow
criterion based on the ratio of within to between cluster distances. By sweeping the k-value from 2 to 9,
we found that the optimal number of clusters was 3 24. We used Euclidian distance as a distance metric
in this k-means clustering algorithm with 1000 iterations (Step 4 in Fig. 1B). The k-means clustering
analysis yielded three distinct states across all 275 participants and a state vector for each individual.
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The state vector re�ects the temporal changes in whole-brain FNC. Subsequently, we determined the
occupancy rate (OCR) for each participant, which is the proportion of time spent in each state. To
compute the OCR for state i for a participant, we counted the number of windows in state i attributed to
that participant and divided this by 210 (the total number of windows). Thus, we obtained three OCR
values for each individual, corresponding to the three states. (Step 5 in Fig. 1B). Two representative state
vectors of PTSD and non-PTSD individuals and their associated OCR for each state are shown in
Supplementary Fig. 1.

Statistical analysis
We employed a General Linear Model (GLM) to explore the association between OCRs and PCL-5 scores
using data from all participants (N = 275). Our analysis included covariates such as age, sex at birth,
years of education, income, employment status, marital status, scanning site, and percentile ADI. We
constructed individual models for each OCR and time point, resulting in a total of 15 models derived from
the combination of 3 predictors and 5 time points. Additionally, we developed 15 models for each sex
group of males (N = 94) and females (N = 181). In the context of sex-strati�ed analyses, sex itself was
excluded as a covariate, and the analysis was run separately for each sex group. Therefore, we had 15
models for the whole group analysis, 15 models for the female group analysis, and 15 models for the
male group analysis. A Benjamini-Hochberg false discovery rate correction was applied to account for the
15 signi�cance tests corresponding to the correlations of each analysis. In this study, all data analysis
and statistical computations were conducted using MATLAB software (MathWorks, Natick, MA, USA)
version R2022a.
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Figure 1

Data collection procedure and analytic pipeline: A) The PTSD Checklist for DSM-5 (PCL-5) was utilized to
evaluate PTSD symptoms at various time points, encompassing pre-trauma (PRE), week 2 (WK2), week 8
(WK8), month 3 (M3), month 6 (M6), and month 12 (M12). During the study visit at WK2 a subgroup of
participants underwent MRI scans, either in the morning or the afternoon. B) Dynamic functional network
connectivity (dFNC) analytic pipeline: Step 1: Initially, the time-course signal of 53 intrinsic connectivity
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networks (ICNs) was identi�ed through group-ICA in the Neuromak template. Step 2: Subsequently, the
identi�ed 53 ICNs were subjected to a taper sliding window segmentation to calculate FNC.  Each subject
yielded 201 FNCs, each with a size of 53 × 53. Additionally, static FNC was computed for the entire
recording duration. Step 3: To cluster the FNCs into three distinct groups, the FNC matrices were
vectorized and concatenated, followed by the utilization of k-means clustering with correlation as the
distance metric. Step 4: From the state vector, occupancy rate (OCR) was computed for each subject,
resulting in a total of three OCR features for each subject. Step 5: In order to investigate the relationship
between OCRs with the PTSD clinical measure (i.e, PCL-5), we used GLM to compute the associations,
taking into account factors such as age, sex, years of education, scanning site, income, marital status,
employment status, and percentile ADI. The resulting t-statistics from this analysis were then converted to
correlation (r) values. C) We utilized the NeuroMark pipeline to extract robust intrinsic connectivity
networks (ICNs), totaling 53 components, which demonstrate consistent replication across independent
datasets. These 53 distinct components were initially identi�ed through group-ICA analysis using the
NeuroMark template. These components were subsequently categorized into seven distinct networks,
which include the subcortical network (SCN), auditory network (AND), visual sensory network (VSN),
sensorimotor network (SMN), cognitive control network (CCN), default mode network (DMN), and
cerebellar network (CBN).

Figure 2

Three dynamic functional connectivity states identi�ed in AURORA dataset. A) Three dynamic functional
connectivity (dFNC) state identi�ed using k-means clustering method. B) To enhance clarity, the dFNC
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state displayed by removing connectivities with values between -0.3 and 0.3. States 2 and 3 exhibit
stronger positive connectivity among sensory networks (visual, auditory, and sensorimotor). State 1, on
the other hand, shows more disconnections within these networks. State 3 demonstrates increased
within-CCN connectivity and enhanced connectivity between the DMN and sensory networks compared to
state 2. State 3 also exhibits greater connectivity between the CBN and SCN compared to the other two
states. Overall, our analysis identi�es states 2 and 3 as inter-network brain state while state 1 appears to
be an intera-network brain state based on connectivity patterns. The color bar indicates the strength of
the connectivity. SCN: Subcortical network; AND: auditory network; SMN: sensorimotor network; VSN:
visual network; CCN: cognitive control network; DMN: default-mode network; and CBN: cerebellar network.
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Figure 3

Dynamic functional network connectivity occupancy rates (OCRs) link with PCL-5 . A) The correlation
between OCRs estimated from WK2 resting-state fMRI recording and PCL-5 if different time point for the
whole population. Occupancy rate (OCR) of state 1 and state 3 link with WK2 and M3 PCL-5. B) The
correlation between OCRs estimated from WK2 resting-state fMRI recording and PCL-5 if different time
point for the female group. Occupancy rate (OCR) of state 1 and state 3 link with WK2 and M3 PCL-5. C)
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The correlation between OCRs estimated from WK2 resting-state fMRI recording and PCL-5 in different
time point for the male group. No association has been observed. WK2: week 2 after trauma, WK8: week 8
after trauma, M3: month 3 after trauma, M6: month 6 after trauma, and M12: month 12 after trauma.
Correlations with associated p-values < 0.05 are highlighted with a dashed line box, while correlations
with associated False Discovery Rate (FDR) p-values < 0.05 are emphasized with a solid line box. The
color bar represents the strength of correlation.

Figure 4

Both non-PTS and PTS group generate similar dynamic functional connectivity (dFNC) state. A) the dFNC
states identi�ed only in non-PTS group. B) the dFNC states identi�ed only in PTS group.  The color bar
indicates the strength of the connectivity. SCN: Subcortical network; AND: auditory network; SMN:
sensorimotor network; VSN: visual network; CCN: cognitive control network; DMN: default-mode network;
and CBN: cerebellar network.
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