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Abstract
Low muscle mass is associated with numerous adverse outcomes independent of other associated
comorbid diseases. We aimed to predict and understand an individual’s risk for developing low muscle
mass using proteomics and machine learning. We identi�ed 8 biomarkers associated with low pectoralis
muscle area (PMA). We built 3 random forest classi�cation models that used either clinical measures,
feature selected biomarkers, or both to predict development of low PMA. The area under the receiver
operating characteristic curve for each model was: clinical-only = 0.646, biomarker-only = 0.740, and
combined = 0.744. We displayed the heterogenetic nature of an individual’s risk for developing low PMA
and identi�ed 2 distinct subtypes of participants who developed low PMA. While additional validation is
required, our methods for identifying and understanding individual and group risk for low muscle mass
could be used to enable developments in the personalized prevention of low muscle mass.

Introduction
Sarcopenia is a clinical syndrome characterized by low muscle strength and low muscle quality or
quantity, and its presence is often associated with low physical performance.1,2 While sarcopenia often
considered a result or a complication of age and comorbid conditions, sarcopenia as a disease in and of
itself is independently associated with numerous adverse outcomes including injury, disease, and
mortality.1 Thus it is crucial to identify those at risk for developing sarcopenia in order to intervene before
adverse outcomes occur.3

One approach to measuring the low muscle quantity aspect of sarcopenia is the use of computed
tomography (CT), including the measurement of pectoralis muscle area (PMA) on CT imaging of the
chest. Prior work has demonstrated the utility of these measurements for predicting adverse outcomes
such as exacerbations of respiratory disease and death.4,56 In addition, a variety of clinical factors and
biomarkers have been identi�ed as being associated with low muscle mass, such as comorbid
conditions, demographics such as age, and biomarkers such as those associated with in�ammation.3,7–9

However, little research has been conducted evaluating the prediction of incident low muscle mass, a key
problem that must be addressed in order to help prevent it from occurring, and the studies that do exist
are often limited by a small sample size or a lack of longitudinal data.5,6,9 Additionally, more work needs
to be done examining what drives the risk for low muscle mass on the individual level. This is especially
relevant as the bene�ts of precision-based approaches to medicine over disease-based approaches have
become more realized in the medical community. Muscular dystrophies, sarcopenia, and cachexia have
all been viewed as appropriate for undergoing precision-based care due to the variability of patients’
genetic makeup, health, and exposure to therapies.11

We leveraged longitudinal data collected from a large cohort of current and/or former smokers to identify
peripheral protein blood biomarkers associated with the development of CT-derived PMA.12 In hopes of
identifying those at highest risk for developing low PMA, we hypothesized that we could predict the
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development of low PMA by using a machine learning classi�cation model that utilizes the identi�ed
biomarkers in conjunction with clinical measures and demographics. Additionally, we aimed to not only
predict low muscle mass but also to illustrate and understand individual and group risk for it.

Results

Participant Characteristics
The Genetic Epidemiology of COPD (COPDGene) study enrolled 10,305 participants at baseline. For this
study the analysis was limited to the 598 current and/or former smoking participants and 98 never-
smoking control participants with complete data available (e-Figure 1). The current and/or former
smoking cohort was made up of 48% men and 52% women. The cohort was 10.7% Black and 89.3%
White. The mean age and BMI were 61.8 and 28.9 respectively. 36.3% were current smokers, 63.7% were
former smokers, and the mean pack years was 42.9. Among the never-smoking control group, the 25th
percentile of gender-strati�ed PMA at baseline was 44.9 cm2 for men (n = 32) and 24.5 cm2 for women (n 
= 66). Based on these values, there were 415 current and/or former smoking participants who did not
have low PMA at baseline and 183 who did. Of the 415 current and/or former smoking participants that
did not have low PMA at baseline, 22.9% developed low PMA at phase 2 (Table 1).
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Table 1
Baseline characteristics of COPDGene participants used in this study, non-strati�ed and strati�ed by low

pectoralis muscle area at baseline.

  Baseline
Characteristics

Low PMA at
Baseline

No Low PMA at
Baseline

n   598 183 415

Gender, n (%) Men 287 (48.0) 117 (63.9) 170 (41.0)

Women 311 (52.0) 66 (36.1) 245 (59.0)

Race, n (%) Black 64 (10.7) 1 (0.5) 63 (15.2)

White 534 (89.3) 182 (99.5) 352 (84.8)

Age, mean (SD)   61.8 (8.7) 66.7 (7.8) 59.7 (8.2)

BMI, mean (SD)   28.9 (5.7) 28.1 (5.8) 29.2 (5.6)

Smoking Status, n (%) Current
Smoker

217 (36.3) 53 (29.0) 164 (39.5)

Former
Smoker

381 (63.7) 130 (71.0) 251 (60.5)

Pack Years, mean (SD)   42.9 (23.6) 47.1 (24.7) 41.1 (22.9)

Developed Low PMA at
Phase 2, n (%)

  - - 95 (22.9)

BMI = body mass index, COPDGene = Genetic Epidemiology of COPD, PMA = pectoralis muscle area,
SD = standard deviation

Biomarker Feature Selection
There were 355 peripheral protein blood biomarkers that passed the univariate screen. Of those, 8
biomarkers were deemed important for predicting the development of low PMA by the Boruta feature
selection algorithm: Histone acetyltransferase type B catalytic subunit (Hat1), Secreted protein acidic and
rich in cysteine (SPARC), Lymphotoxin alpha 1/ beta 2 (Lymphotoxin a1/b2), Growth/differentiation
factor 15 (GDF15), Cell adhesion molecule-related/down-regulated by oncogenes (CDON), Neurexophilin-
1 (NXPH1), Vascular cell adhesion protein 1 (VCAM-1), and EGF-containing �bulin-like extracellular matrix
protein 1 (EFEMP1) (Table 2).
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Table 2
Biomarkers that underwent a univariate screen (Weltch’s t-Test, FDR q < 0.10) between those without and
with low PMA at baseline and were considered relevant for predicting the development of low pectoralis

muscle area via Boruta feature selection.
Biomarker Mean

(SD) No
Low PMA
at
Baseline
(n = 415)

Mean
(SD)
Low
PMA at
Baseline
(n = 183)

T-
statistic
(P
value)

FDR
q
value

Brief Description

Histone
acetyltransferase type
B catalytic subunit
(Hat1)

6.04
(0.39)

5.96
(0.35)

2.66
(0.008)

0.038 Enzyme associated with the
acetylation of newly
synthesized histone H4.15

Vascular cell
adhesion protein 1
(VCAM-1)

9.54
(0.27)

9.60
(0.26)

-2.60
(0.010)

0.045 Cell adhesion molecule
whose expression is induced
on endothelial cells during
in�ammatory disease. Plays
a role in the regulation of
leukocyte migration.14

Secreted protein
acidic and rich in
cysteine (SPARC)

9.99
(0.64)

9.75
(0.69)

4.13

(< 
0.001)

< 
0.001

Glycoprotein associated with
the binding of cells and
matrix components.37

Lymphotoxin alpha 1/
beta 2 (Lymphotoxin
a1/b2)

4.34
(0.27)

4.28
(0.30)

2.39

(0.017)

0.072 Cytokines associated with the
adaptive immune response
and the maintenance of
lymphoid organ
architecture.38

Growth/differentiation
factor 15 (GDF15)

7.19
(0.39)

7.39
(0.37)

-6.00

(< 
0.001)

< 
0.001

Cytokine released in response
to stress and tissue injury.39

Cell adhesion
molecule-
related/down-
regulated by
oncogenes (CDON)

8.76
(0.22)

8.68
(0.21)

3.94

(< 
0.001)

0.001 Transmembrane glycoprotein
associated with Hedgehog
proteins and myoblast
differentiation.19,40

Neurexophilin-1
(NXPH1)

8.93
(0.39)

8.83
(0.41)

2.84

(0.005)

0.025 Glycoprotein whose detected
expression (in humans) is
strongest in the spleen.41

EGF-containing
�bulin-like
extracellular matrix
protein 1 (EFEMP1)

7.42
(0.18)

7.49
(0.21)

-3.90

(< 
0.001)

0.001 Glycoprotein that has a role in
basement membranes.42

Abbreviations: FDR = false discovery rate, PMA = pectoralis muscle area, SD = standard deviation

Predicting Low PMA with Machine Learning
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Regarding the prediction models’ discrimination (Fig. 1), the clinical-only model had an area under the
receiver operating characteristic curve (AUROC) of 0.646, which was worse than the biomarker-only
model’s AUROC of 0.740, but their difference did not reach statistical signi�cance (p for AUC comparison 
= 0.093). The combined model had better discrimination than the clinical-only model with an AUROC of
0.744 (p for comparison = 0.032) but was not better than the biomarker-only model (p for comparison = 
0.779). Model calibration curves are found in the supplementary material. The Brier scores of the
combined model and the biomarker-only model were identical (0.174) while the Brier score of the clinical-
only model was slightly higher (0.203). (Combined model: e-Figure 2, clinical-only and biomarker-only
models: e-Figures 3–4). The testing set included 139 participants and the training set included 168
participants after down sampling (276 originally).

Individual Risk
For the combined model, the order of importance of the predictors was GDF15, EFEMP1, CDON,
Lymphotoxin a1/b2, VCAM-1, age, ON, NXPH1, Hat1, gender, pack years, height, and weight (Fig. 2).
Feature importance analysis of the clinical-only and biomarker-only models are found in the
supplementary material (e-Figures 5–6).

Visual evaluation of the relationships between the measurements of each model’s training set’s (n = 168)
predictors and their respective Shapley additive explanation (SHAP) values suggests that several may
have de�nable thresholds. For example, for the combined model, GDF15 and EFEMP1 had breakpoints
near the middle of their range. (Combined model: Fig. 3, e-Figure 7, clinical-only and biomarker-only
models: e-Figures 8–9.) In addition, visual evaluation of the force plots from 10 randomly selected
participants revealed a large amount of heterogeneity in the covariates that drive the individual
participant’s �nal predicted probability. The mean predicted probability of the combined, biomarker-only,
and clinical only models’ training sets were 0.337, 0.337, and 0.333 respectively (combined model: Fig. 4,
e-Figure 10, clinical-only and biomarker-only models: e-Figures 11–14).

Group Risk
K-Means clustering resulted in 3 distinct clusters of participants based on the silhouette coe�cient.
Performing principal component analysis (PCA) on the combined model’s biomarkers’ standardized
SHAP values resulted in the �rst component explaining 27.6% of the variance and the second component
explaining 20.5% of the variance. When strati�ed for the development of low PMA, one cluster was
predominantly made up of participants who did not develop low PMA, and the remaining 2 clusters were
predominantly made up of participants who did develop low PMA (Fig. 5). All the feature selected
biomarkers’ SHAP values were signi�cantly different between the 3 clusters via one-way ANOVA (P < 
0.001). The clusters that were predominantly made up of participants who developed low PMA had
different SHAP pro�les from one another despite having the same outcome. The cluster that was
predominantly made up of participants who did not develop low PMA had consistently low SHAP values
(Fig. 6).

Feature Selected Biomarkers Relationship with PMA
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Finally, of the 5 most important feature selected biomarkers, baseline EFEMP1 was signi�cantly (P = 
0.008) negatively correlated (r = -1.29) with PMA change. Baseline CDON was signi�cantly (P = 0.009)
positively correlated (r = 0.127) with PMA change. The remaining 3 biomarkers at baseline were not
signi�cantly correlated with PMA change (Table 3).

Table 3
Relationships between the 5 most important feature selected biomarkers at baseline for predicting low
pectoralis muscle area and the change in pectoralis muscle area (cm^2) between baseline and phase 2

(n = 415).
Biomarker Pearson Correlation

Coe�cient
P
value

Growth/differentiation factor 15 (GDF15) -0.049 0.317

EGF-containing �bulin-like extracellular matrix protein 1
(EFEMP1)

-0.129 0.008

Cell adhesion molecule-related/down-regulated by oncogenes
(CDON)

0.127 0.009

Lymphotoxin alpha 1/ beta 2 (Lymphotoxin a1/b2) 0.048 0.332

Vascular cell adhesion protein 1 (VCAM-1) -0.011 0.823

Discussion
Leveraging longitudinal data from the COPDGene study, we developed a machine learning classi�cation
model that predicted the development of low PMA in smokers using clinical measures, demographics,
and peripheral protein blood biomarkers. This model outperformed a model that utilized only clinical
measures and demographics as predictors and performed similarly to one that incorporated biomarker
information only. In addition, subsequent analysis of the models suggests that there may be speci�c cut-
points of interest for the biomarkers identi�ed, and that there is a large amount of heterogeneity in what
drives an individual patient’s risk for developing low PMA. This heterogeneity was used to cluster the
participants into distinct subtypes.

This work has several strengths, one of which is the use of a large-scale longitudinal research cohort that
enabled the prediction of low muscle mass utilizing an abundance of protein biomarkers in the initial
panel. Prior efforts to predict low muscle mass using biomarkers have often been cross-sectional with
relatively small and non-diverse cohorts and with relatively small candidate biomarker panels.7,10,13 Also,
by utilizing all-relevant feature selection tools such as Boruta, we were able to select a small number of
relevant biomarkers of interest. Subsequent evaluation using SHAP analysis and K-Means clustering
provided insights into potential threshold values for those biomarkers as well as demonstrating the
heterogeneity in what contributes to a speci�c individual’s probability of developing low PMA. We believe
our methods for biomarker selection and analyzing patient risk are novel to the issue of low muscle
mass.
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In terms of speci�c �ndings, the 8 biomarkers that were deemed important for predicting low PMA were
surprisingly diverse, with roles ranging from leukocyte migration regulation to histone acetylation.14,15

Some of the biomarkers found validated prior research. For example, serum GDF15 has been identi�ed as
a potential biomarker for sarcopenia due to it being negatively correlated with muscle mass16 and muscle
power17 in humans. Although, we could not �nd any research relating circulating CDON to muscle mass,
it has been shown that mice with satellite cell-speci�c CDON ablation had impaired muscle generation18

and it is believed that CDON positively regulates skeletal myogenesis.19,20

Interestingly, some of the biomarkers found contradicted prior research. For example, Hat1-haplode�cient
mice have been revealed to have a shorter lifespan and more premature age-related phenotypes,
including muscle atrophy, than wildtype mice.21 Moreover, satellite cell VCAM-1 null mice had delayed, or
decreased myo�bril growth compared to wildtype mice.22 These contradictions may be due to species
differences and contrasts in function between circulating biomarkers and biomarkers’ expression in
muscle, a notable weakness of our current work which relies on peripheral biomarkers.

Some of the biomarkers found may help elucidate prior unclear research. For example, a cross-species
meta-analysis identi�ed EFEMP1 as consistently overexpressed in the muscle with age, and even
consistently overexpressed in all studied tissues in their analyses.23 However, there are areas where
EFEMP1 appears to be reduced during aging such as the super�cial zone of the articular cartilage24, and
mice with inactivated EFEMP1 appear to age prematurely.25 In our study, EFEMP1 was found to increase
the likelihood of developing low PMA in our model, and it was found that EFEMP1 measurements were
higher in the cohort that had low PMA at baseline. Altogether, this suggests that the upregulation of
EFEMP1 may be an adaptive response to delay the inevitable aging and muscle loss processes. Similarly,
con�icting data also exists for the role of SPARC in muscle biology and sarcopenia. For example, there
has been evidence that SPARC both positively and negatively effects the differentiation of
myoblasts.26,27 Moreover, one group found that serum SPARC was signi�cantly higher in a sarcopenic
cohort compared to a non-sarcopenic cohort while, another group found the opposite, although the latter
�nding was not statistically signi�cant and there were concurrent disease processes.7,28 In our study
SPARC was found to decrease the likelihood of developing low PMA in our model, and it was found that
SPARC measurements were higher in the cohort that did not have low PMA at baseline. Together, this
suggests that SPARC likely has a negative role in the complex muscle loss process. Hopefully, our results
concerning EFEMP1 and SPARC will help minimize the ambiguity of these biomarkers.

With regards to the identi�cation of novel biomarkers related to low muscle mass, neither NXPH1 nor
Lymphotoxin a1/b2 appear to have a connection with low muscle mass in the literature. Whether our
�ndings re�ect true associations or confounding is unclear and further work is needed to better elucidate
what roles, if any, these proteins may play in the development of low muscle mass.

Interestingly, when assessing the feature importance of the combined model’s predictors we noticed that
the protein biomarkers appeared more important than most of the clinical predictors. While this could be



Page 10/22

taken to support the use of proteomics for identifying those at risk for low muscle mass, it is important to
caution that there are numerous other clinical predictors that can and should be evaluated, including both
complicated screening tools as well as simple clinical questions related to weight loss and exercise
capacity. These extensive analyses are beyond the scope of this current investigation but should be done
to better explore these issues.

Notably, for the quantitative predictors in our models there is a greater range of positive impact values
than negative impact values. In other words, the models avoid giving strong negative impact values
regardless of the predictors’ actual values, insinuating that there is not one realistic predictor value that
can drastically negatively affect the model’s outcome. Interestingly, the 5 most important biomarkers for
predicting low PMA, when assessed individually at baseline, were not highly correlated with change in
PMA between baseline and phase 2. This highlights the potential strength of tools such as machine
learning to identify predictors that may not be readily apparent when using more traditional statistical
analyses. Similarly, tools such as SHAP analysis may enable insights into speci�c relationships between
predictors and outcomes. For example, plotting the SHAP values against the predictor measurements
allowed us to examine the threshold at which the impact direction changes. The plots for age and pack
years are especially illustrative. This information may help determine threshold values for concern in
clinical applications. The SHAP force plots also help illustrate what is happening on the individual level
and show the multifactorial nature of low muscle mass. This could be especially helpful when
considering personalized medicine approaches to speci�c patients, as different patients may have
different pathobiological processes responsible for the same phenotype, and thus they may respond
differently to targeted therapy. Our cluster analysis supports this theory as they illustrated 2 distinct
subtypes of participants who developed low PMA. This could be due to differences in biomarker pro�les,
or perhaps due to underlying conditions, for example, aging and smoking-related disease. Interestingly, of
the 3 clusters, it appears that the cluster that mostly did not develop low PMA is the densest cluster, and
therefore has a less variance than the other 2 clusters. Perhaps this consistency is indicative of a
“normal” pro�le subtype. As expected, when comparing the biomarkers’ SHAP pro�les between the 3
clusters, the cluster that was mostly composed of those who did not develop low PMA consistently had
the lowest SHAP values (when examining the median). The other 2 clusters had considerably different
biomarker SHAP pro�les from one another. For example, the participants in Cluster 1 developed low PMA
with CDON and Lymphotoxin a1/b2 having a negative impact on their predicted probability for
developing low PMA. On the other hand, Cluster 3 developed low PMA with CDON and Lymphotoxin
a1/b2 having a positive impact on their predicted probability for developing low PMA. Surprisingly, the
most important biomarkers overall, GDF15 and EFEMP1, had similar SHAP values in both clusters,
indicating that it may be the less important biomarkers that are the most responsible for this
strati�cation.

Clinically, this study demonstrates that it may be possible to identify patients at highest risk for low
muscle mass before it develops, potentially enabling targeted interventions ranging from diet and
exercise to current and novel pharmacologic therapies. This is especially important given both the
growing recognition of the bene�ts of personalized medicine and the growing recognition that muscle
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loss, while often related to other co-morbid diseases, is a distinct process independently associated with
morbidity and mortality. Finally, our approach to biomarker selection and risk analysis is not unique to
low muscle mass and could be expanded to other domains as well, potentially enabling the identi�cation
of important biomarkers and underlying pathways for other clinical problems.

Unfortunately, this project had several limitations. We did not have a validation cohort and the
participants enrolled in this study were less diverse than the general population, which may reduce its
generalizability. In addition, there is likely collinearity between some of the biomarkers and clinical
measures. For example, plasma GDF15 has been shown to be signi�cantly positively associated with
age.29 It is therefore di�cult to separate the effects of age from the effects of speci�c protein biomarkers.
Moreover, SHAP analyses assume independence between the predictors, which may not be the case.
Finally, although the feature importance results are interesting, they do not indicate causality, only
association, signi�cantly limiting their interpretation.

In summary, using proteomics and machine learning, we identi�ed protein biomarkers associated with
low PMA in smokers, developed risk prediction tools able to predict the development of low PMA over 5
years of follow-up, and analyzed individual risk and group risk for developing low PMA.

Methods

Parent Study
Data was acquired through COPDGene study: an ongoing longitudinal observational study that examines
the development of chronic obstructive pulmonary disease in smokers. There were 10,198 current and/or
former smokers and 107 non-smoking control participants initially enrolled in COPDGene (e-Figure 1). All
participants were non-Hispanic white or African American, and all current and/or former smokers had a
minimum of 10 pack years. Data was collected at baseline (phase 1) and after 5 years of follow-up
(phase 2). Additional phase 3, 10-year follow up visits are currently in progress and are not included in
this current study. Data used for this study included an extensive questionnaire at baseline, CT of the
chest at baseline and phase 2, and peripheral protein blood biomarker measurements via the SomaScan
assay at baseline. The biomarkers were measured in relative �uorescent units and the measurements
were normalized and natural log transformed.30 PMA (cm2) was derived using a single axial CT image at
the level of the aortic arch and the suprasternal notch using a previously described method.5 All research
was performed in accordance with relevant guidelines. All participants provided written informed consent,
and the study was approved by the institutional review board at each of the 21 centers including Brigham
and Women’s Hospital.12

De�ning Low PMA
For this study, we de�ned the current and/or former smokers as having low PMA if they had a PMA that
was less than the 25th percentile of baseline never-smoking control participants, strati�ed by gender. We
de�ned the current and/or former smokers as having low PMA at baseline and at phase 2.
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Biomarker Feature Selection
To identify protein biomarkers of interest, we performed an initial univariate screen comparing mean
biomarker measurements in current and/or former smokers with (n = 183) and without (n = 415) low PMA
at baseline. There were 1,317 initial biomarkers and only the biomarkers with a Welch’s t-test false
discovery rate (FDR) q < 0.10 were retained. We then utilized Boruta feature selection with a one-step
correction to identify the most relevant biomarkers for predicting the development of low PMA, i.e., the
change from not having low PMA at baseline to having low PMA at the 5-year follow-up visit. The default
parameters were used except for the number of estimators which was set to ‘auto’ and the maximum
depth which was set to 8. Boruta was chosen due to it being an all-relevant feature selection method,
meaning that it aims to uncover all the relevant features as opposed to uncovering the minimal number
of features that score well.31,32

Predicting Low PMA with Machine Learning
To identify participants at highest risk for developing low PMA and to determine the utility of clinical and
biomarker data to predict low PMA, we built 3 random forest classi�cation models to predict the
development of low PMA, i.e. the change from not having low PMA at baseline to having low PMA at the
5-year follow-up visit.33 The �rst was a clinical-only model that incorporated easily attainable baseline
clinical measures (height, weight, pack years) and demographics (age and gender). The second was a
biomarker-only model that incorporated the baseline protein biomarkers selected using the feature
selection process. The third model incorporated both the clinical measures/demographics and the
selected biomarkers. All models were trained on the same 2/3 random sample and tested on the
remaining 1/3. Finally, 2:1 down-sampling was performed to account for event prevalence. Model
hyperparameters were tuned using Bayesian optimization. The models’ performances were summarized
by the AUROC, the calibration curve, and the Brier score (“the mean squared difference between the
predicted probability and the actual outcome”) of their respective testing sets.33 The calibration curves
were calculated using 10 bins.

Individual Risk
To assess the importance of the combined model’s individual predictors and to examine the predictors’
impact (strength and direction) on the predicted probability for developing low PMA, a SHAP summary
plot was built.34 SHAP plots utilize SHAP values which are assigned to each predictor and indicate how
much the predictor, alone, contributes to a model’s prediction. This is based on the game theory idea of
Shapley values which represent the average marginal contribution of a predictor across all possible
combinations of predictors. In other words, on the individual level, the difference between the predicted
probability and the expected (base) probability is the sum of the SHAP values for every predictor.34,35 To
determine if there were possible threshold values for the predictors, the clinical measurements and the 5
most important biomarker measurements were then plotted against their respective SHAP values. In
addition, to visualize how SHAP values were affecting the prediction on the individual level, SHAP force
plots were built for 10 randomly selected individuals: 5 predicted to develop low PMA and 5 predicted to



Page 13/22

not develop low PMA (using the mean predicted probability of the combined model’s training set as the
cutoff point).36 All SHAP analyses focused on the training set of the combined model unless otherwise
speci�ed.

Group Risk
Additionally, to examine whether there were any distinguishable groups within the participants, we
clustered the combined model’s training set based on the biomarkers’ standardized SHAP values. This
was done using PCA, to reduce dimensionality, and K-Means clustering. The optimal number of clusters
was based on the silhouette coe�cient of the raw SHAP values. We then strati�ed the clusters based on
whether the participants developed low PMA in phase 2. Differences in the biomarkers’ raw SHAP values
between the 3 clusters were then assessed using a one-way ANOVA and visualized using box plots. All
SHAP analyses focused on the training set of the combined model unless otherwise speci�ed.

Feature Selected Biomarkers Relationship with PMA
Finally, to explore the relevance of the 5 most important biomarkers, Pearson correlation coe�cients were
calculated between the biomarkers at baseline and the change in PMA between the 2 phases (cm2)
amongst participants without low PMA at baseline.

Statistics
All analyses were conducted using Python 3.9.7 and R 4.0.3. All statistical tests were 2-tailed and P
values < 0.05 were taken to mean statistical signi�cance unless otherwise speci�ed. The initial univariate
screen included a Welch’s t-test where FDR q < 0.10 (calculated using the Benjamini-Hochberg procedure)
was taken to mean statistical signi�cance. The AUROCs were compared using a t-test. A one-way ANOVA
and boxplots were used to examine and visualize the differences in biomarker SHAP values between
clusters. Boxplots included means (red triangles), medians (black lines) and error bars (1.5x the
interquartile range). Pearson correlation coe�cients were calculated to examine the relationship between
biomarkers and change in PMA between baseline and phase 2.
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Figure 1
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Predicting Low Pectoralis Muscle Area

Areas under the receiver operating characteristic curves (AUROC) of our 3 random forest classi�cation
models built to predict low pectoralis muscle area (PMA). Five clinical measures were used in the clinical-
only model: age, gender, pack years, height, and weight. Eight feature selected biomarkers for predicting
the development of low PMA were used in the biomarker-only model: Histone acetyltransferase type B
catalytic subunit (Hat1), Secreted protein acidic and rich in cysteine (SPARC), Lymphotoxin alpha 1/ beta
2 (Lymphotoxin a1/b2), Growth/differentiation factor 15 (GDF15), Cell adhesion molecule-related/down-
regulated by oncogenes (CDON), Neurexophilin-1 (NXPH1), Vascular cell adhesion protein 1 (VCAM-1),
and EGF-containing �bulin-like extracellular matrix protein 1 (EFEMP1). The combined model used
predictors from both the clinical-only and biomarker-only models. The combined model and the clinical-
only model were signi�cantly different (P = 0.032). The combined model and the biomarker-only model
were not signi�cantly different (P = 0.78). The clinical-only model and the biomarker-only model were not
signi�cantly different (P = 0.09).

Figure 2

Combined Model Summary Plot
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The combined random forest classi�cation model’s training set’s (n = 168) predictors ordered by
importance for predicting low pectoralis muscle area (PMA). Shapley additive explanation (SHAP) values
indicate the predictors' impact on the probability of developing low PMA. For numeric predictors, red
indicates a high value and blue indicates a low value. For the sole categorical predictor, “Women”, red and
blue represent women and men respectively. Five clinical measures were used: age, gender, pack years,
height, and weight. Eight feature selected biomarkers for predicting the development of low PMA were
used: Histone acetyltransferase type B catalytic subunit (Hat1), Secreted protein acidic and rich in
cysteine (SPARC), Lymphotoxin alpha 1/ beta 2 (Lymphotoxin a1/b2), Growth/differentiation factor 15
(GDF15), Cell adhesion molecule-related/down-regulated by oncogenes (CDON), Neurexophilin-1
(NXPH1), Vascular cell adhesion protein 1 (VCAM-1), and EGF-containing �bulin-like extracellular matrix
protein 1 (EFEMP1).

Figure 3

Predictor Measurements vs. Shapley Additive Explanation Values (Combined Model)

The relationships between the clinical predictors: age, pack years, height, weight, and gender, and the 5
most important feature selected biomarkers for predicting the development of low pectoralis muscle area
(PMA): Growth/differentiation factor 15 (GDF15), EGF-containing �bulin-like extracellular matrix protein 1
(EFEMP1), Cell adhesion molecule-related/down-regulated by oncogenes (CDON), Lymphotoxin alpha 1/
beta 2 (Lymphotoxin a1/b2), Vascular cell adhesion protein 1 (VCAM-1) with their respective Shapley
additive explanation (SHAP) values. SHAP values indicate the predictors' impact on the probability of
developing low PMA. Yellow and green indicate whether the participant is a woman or a man respectively.
This is solely examining the combined random forest classi�cation model’s training set (n = 168).
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Figure 4

Force Plots for Participants with a Predicted Probability of Developing Low Pectoralis Muscle Area
Greater than the Mean Probability of the Combined Model’s Training Set

Force plots for 5 randomly selected participants from the combined random forest classi�cation model’s
training set (n = 168) with a predicted probability of developing low pectoralis muscle area (PMA) greater
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than the mean probability of the combined model’s training set (0.337). Each predictor has a Shapley
additive explanation (SHAP) value that indicates the predictors' impact on the probability of developing
low PMA. Red and blue indicate whether the impact is positive or negative respectively. Five clinical
measures were used: age, gender, pack years, weight, and height. Eight feature selected biomarkers for
predicting the development of low PMA were used: Histone acetyltransferase type B catalytic subunit
(Hat1), Secreted protein acidic and rich in cysteine (SPARC), Lymphotoxin alpha 1/ beta 2 (Lymphotoxin
a1/b2), Growth/differentiation factor 15 (GDF15), Cell adhesion molecule-related/down-regulated by
oncogenes (CDON), Neurexophilin-1 (NXPH1), Vascular cell adhesion protein 1 (VCAM-1), and EGF-
containing �bulin-like extracellular matrix protein 1 (EFEMP1).

Figure 5

Clustering Participants via Principal Component Analysis and K-Means Clustering

The plot on the left illustrates the participants in the training set (n = 168) of the combined random forest
classi�cation model, for predicting the development of low PMA, clustered based on the similarity of their
feature selected biomarkers’ Shapley additive explanation (SHAP) values using principal component
analysis (PCA) and K-Means clustering. There were 2 PCA components. The plot on the right illustrates
whether the individuals in the clusters did or did not develop low pectoralis muscle area (PMA). Black
dots indicate the centroids of the clusters. The SHAP values of eight feature selected biomarkers for
predicting the development of low PMA were used: Histone acetyltransferase type B catalytic subunit
(Hat1), Secreted protein acidic and rich in cysteine (SPARC), Lymphotoxin alpha 1/ beta 2 (Lymphotoxin
a1/b2), Growth/differentiation factor 15 (GDF15), Cell adhesion molecule-related/down-regulated by
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oncogenes (CDON), Neurexophilin-1 (NXPH1), Vascular cell adhesion protein 1 (VCAM-1), and EGF-
containing �bulin-like extracellular matrix protein 1 (EFEMP1).

Figure 6

Comparing Feature Selected Biomarker Shapley Additive Explanation Values between Clusters

Box plots comparing the feature selected biomarkers for predicting the development of low PMA’s SHAP
values between the 3 clusters that were illustrated using principal component analysis (PCA) and K-
Means clustering. All the biomarkers’ SHAP values were signi�cantly different between the 3 clusters via
one-way ANOVA (P < 0.001). Eight feature selected biomarkers for predicting the development of low
PMA were used: Histone acetyltransferase type B catalytic subunit (Hat1), Secreted protein acidic and
rich in cysteine (SPARC), Lymphotoxin alpha 1/ beta 2 (Lymphotoxin a1/b2), Growth/differentiation
factor 15 (GDF15), Cell adhesion molecule-related/down-regulated by oncogenes (CDON), Neurexophilin-
1 (NXPH1), Vascular cell adhesion protein 1 (VCAM-1), and EGF-containing �bulin-like extracellular matrix
protein 1 (EFEMP1). The black lines indicate the medians, the red triangles indicate the means, the circles
represent outliers, and the error bars represent 1.5x the interquartile range. There were 168 participants
between the 3 groups.
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