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Abstract Metabolic disease is caused by a combination of genetic and environmental factors, 
yet few studies have examined how these factors influence signal transduction, a key mediator of 
metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phospho-
sites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with 
and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome 
was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected 
insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within 
the insulin signalling pathway, expanding our understanding of the pathway’s organisation. Further-
more, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered 
regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, 
a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action 
in insulin resistance. Our results underscore the significance of genetics in shaping global signal-
ling responses and their adaptability to environmental changes, emphasising the utility of studying 
biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex 
traits.

eLife assessment
This fundamental study provides a unique tool for assessing the range of phosphorylation in 
insulin reactions due to genetic variation and dietary influence through the utilization of genetically 
distinct mouse strains. The discoveries of this study hold substantial importance, as they shed light 
on the interplay between genetic attributes and environmental conditions in shaping the insulin-
signaling network within skeletal muscle, a crucial regulator of metabolism. The supporting evidence 
presented is compelling, and the work is anticipated to captivate a wide audience within the metab-
olism discipline due to its extensive appeal and by providing inspiration for further hypothesis-driven 
research.

Introduction
Protein post-translational modifications such as phosphorylation enable cells to rapidly respond 
to environmental changes by modifying protein function at low metabolic cost (Humphrey et al., 
2015b). As a result of this high metabolic efficiency, phosphorylation is involved in nearly all biological 
processes and is dysregulated in numerous complex diseases (Needham et al., 2019b). Advances 
in mass spectrometry-based phosphoproteomics – the unbiased identification and quantification of 
protein phosphorylation – have led to the discovery of more than 100,000 phosphosites, revealing 
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that the phosphoproteome comprises vast, interconnected phosphorylation networks (Olsen et al., 
2006; Bodenmiller et al., 2010; Needham et al., 2019a; Leutert et al., 2023), rather than the text-
book view of isolated, linear kinase cascades.

The insulin signalling network is among the most studied phosphorylation networks. Post-prandial 
increases in blood glucose stimulate pancreatic insulin secretion, coordinating a metabolic switch 
in target tissues like skeletal muscle and adipose (Haeusler et al., 2018). Insulin increases glucose 
uptake into these tissues by promoting translocation of the glucose transporter GLUT4 to the plasma 
membrane, and serves other functions like enhancing protein synthesis, downregulating lipid catab-
olism, and altering gene transcription (Haeusler et al., 2018). To coordinate these functions, insulin 
triggers a phosphorylation cascade primarily involving activation of the Ser/Thr kinase Akt, regula-
tion of downstream kinases including mTORC1 and GSK3, and modulation of parallel signalling arms 
(Haeusler et al., 2018; Gehart et al., 2010; Sylow et al., 2013). Seminal phosphoproteomics studies 
demonstrated that this cascade regulates over a thousand phosphosites, with many still uncharacter-
ised in insulin action (Humphrey et al., 2013; Humphrey et al., 2015a; Krüger et al., 2008). Insulin 
resistance – the failure of insulin to promote glucose uptake in its target tissues – is triggered by 
genetic and environmental factors such as family history of metabolic disease and high-calorie diets 
(James et al., 2021). Although insulin resistance is a major precursor of metabolic disease including 
type 2 diabetes, its mechanistic basis remains unresolved (James et  al., 2021; Fazakerley et  al., 
2019; van Gerwen et al., 2023).

Interactions between genetics and environment significantly regulate biomolecular processes, 
including insulin resistance (Civelek and Lusis, 2014; Hunter, 2005; Nelson et  al., 2022; Mont-
gomery et al., 2013). As signalling pathways connect the extracellular environment to intracellular 
proteins, they are likely a major conduit of gene-by-environment interactions. Yet, how global phos-
phorylation signalling networks are regulated across different genetic backgrounds is relatively unex-
plored. Recent phosphoproteomics studies in yeast (Grossbach et al., 2022) and mice (Zhang et al., 
2023) identified genetic variants affecting multiple phosphosites, but did not analyse the phosphopro-
teome’s response to acute perturbation, which is crucial to its role as a signal transduction system. We 
have also shown marked variation in acute signalling responses to exercise or insulin across individuals 

eLife digest When we eat, the pancreas releases a hormone called insulin, which helps our tissues 
absorb glucose. Insulin works by triggering a cascade of events in cells, which include adding chem-
ical tags called phosphate groups at thousands of specific locations on proteins. This tag causes the 
changes needed to move glucose from the blood into cells and also regulates many other essential 
functions in the cell.

If this process stops working and the body becomes resistant to the effects of insulin, it can lead to 
type 2 diabetes. This can result from a complex combination of genetic and lifestyle factors, which are 
difficult to study systematically in people. An alternative approach to understand these influences is to 
study mice, which are commonly used to investigate metabolic diseases and have contributed to our 
understanding of the mechanisms of type 2 diabetes. Using carefully bred mice allows precise control 
of their genetics and environment, revealing the independent and joint effects of these factors.

Monitoring differences in the phosphate groups on proteins, van Gerwen et al. studied five distinct 
inbred mouse strains fed either an ordinary diet or one that was high in fat and sugar. Nearly half of 
the biochemical events triggered by insulin were altered by genetics on the ordinary diet. High-fat, 
high-sugar feeding also reshaped the pattern of phosphate tags depending on the mouse strain. By 
examining these cellular responses, van Gerwen et al. identified proteins that may regulate the insulin 
response in muscle cells. Increasing the activity of one of these enzymes reversed insulin resistance in 
skeletal muscle cells grown in the laboratory.

This research underscores the importance of genetics in controlling insulin responses and shaping 
the impact of environmental challenges. It establishes a new opportunity in personalised medicine, 
which seeks to understand how an individual’s genetics combine with their lifestyle to shape health. 
Furthermore, it identifies potential new targets for treating insulin resistance, paving the way for 
future research to develop more effective diabetes treatments.

https://doi.org/10.7554/eLife.89212
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(Needham et al., 2022). However, this study did not systematically assess the relative contributions of 
genetics and the environment (Needham et al., 2022). Understanding how these variables intersect 
with signal transduction is fundamental to our basic knowledge of signalling and the advancement 
of personalised medicine, which advocates individualised treatment regimens based on genetic risk 
factors and gene-by-environment interactions (Hunter, 2005; McCarthy et al., 2008).

Inbred mice allow precise control of genetics and environment unachievable in human studies, 
enabling examination of how these factors interact to influence biomolecular systems (Lusis et al., 
2016). Here, we performed phosphoproteomics on insulin-stimulated or control skeletal muscle 
from five genetically distinct inbred mouse strains fed either an ordinary chow diet or a high-fat, 
high-sugar ‘western style’ diet. Strikingly, we found that genetic background influenced both the 
phosphoproteomic insulin response of chow-fed mice, as well as how these responses were modified 
by high-fat, high-sugar feeding. These signalling changes were reflected in altered activity profiles of 
multiple kinases and provided insight into the functional organisation of the insulin signalling network 
by revealing subnetworks of coregulated phosphosites. A major challenge in phosphoproteomics 
studies is pinpointing important regulatory events among the many responding to a stimulus. We 
reasoned that associating changes in protein phosphorylation across the gene-by-environment land-
scape with phenotypic change – in this case insulin-stimulated glucose uptake – would dissect mech-
anistic targets with greater fidelity. This approach generated known as well as candidate regulators 
of insulin-stimulated glucose uptake, leading us to demonstrate that glycolytic upregulation reverses 
insulin resistance. Our work represents the first global portrait of insulin signalling network plasticity 
in response to genetic and environmental variation, which will serve as an important resource in future 
studies of insulin action and resistance.

Results
Phosphoproteomics of insulin signalling in mouse skeletal muscle
To study how protein phosphorylation networks are affected by genetics and environment, we exam-
ined insulin signalling in five genetically distinct inbred mouse strains including four lab strains with 
diverse metabolic phenotypes (C57Bl6J, NOD, BXH9, and BXD34) (Nelson et  al., 2022), and the 
wild-derived CAST strain (Figure 1a). Mice underwent a 6-week diet regimen of standard lab diet 
(CHOW) or a high-fat high-sucrose diet (HFD), which is commonly used to induce insulin resistance 
(Nelson et al., 2022; Burchfield et al., 2018). Consistent with their diverse genetics, these strains 
differed in morphometric parameters (body weight, adiposity, lean mass) and metabolic traits (fasting 
blood glucose, fasting blood insulin, glucose tolerance) both on the CHOW diet and in their response 
to HFD-feeding (Figure 1—figure supplement 1).

We focused on skeletal muscle, as it is the site of greatest post-prandial glucose uptake and the 
most significant contributor to impaired glucose disposal in type 2 diabetes (DeFronzo, 1988). Specif-
ically, we chose to examine the soleus muscle, because its largely oxidative fibre composition resem-
bles human muscle tissue more than other murine muscles (Schiaffino and Reggiani, 2011). Mice 
were injected retro-orbitally with saline control or insulin for 10 min, and the soleus was collected for 
phosphoproteomic analysis (Figure 1a). A tritiated 2-deoxyglucose (3H-2DG) tracer was co-injected 
to measure soleus glucose uptake.

Using the EasyPhos workflow and data-independent acquisition (DIA) mass spectrometry 
(Humphrey et al., 2018; Bekker-Jensen et al., 2020), we quantified 28,809 phosphopeptides across 
95 biological samples, corresponding to 23,126 unique high-confidence phosphosites (class I; locali-
sation score >0.75) on 3507 proteins (Figure 1b, Supplementary file 1). On average, we quantified 
15,395 phosphopeptides in each sample (Figure 1—figure supplement 2a). Due to the range in 
soleus mass across strains (Figure 1—figure supplement 1d) we altered the protein material used for 
EasyPhos (C57Bl6J and NOD: 755 µg, BXH9 and BXD34: 511 µg, CAST: 364 µg), though phospho-
peptide quantification was minimally affected, with only 12.4% fewer phosphopeptides quantified on 
average in CAST compared to the C57l6J/NOD (average 13,891.56 vs 15,851.29 Figure 1—figure 
supplement 2a). Furthermore, while different strains clustered noticeably by the amount of protein 
material used, samples from animals of the same strain and diet were still highly correlated and gener-
ally clustered together, implying the data are reproducible (Figure 1—figure supplement 2b–d).

https://doi.org/10.7554/eLife.89212
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To explore the soleus insulin signalling network, we examined phosphopeptides altered by insulin 
stimulation in at least one of the ten strain-diet combinations. First, to allow comparison across condi-
tions, phosphopeptides were retained if they were quantified well enough to assess the effect of 
insulin in more than eight strain-diet combinations (≥3 insulin-stimulated values and ≥3 unstimulated 
values in each combination). We then tested the resulting 10,432 highly quantified phosphopeptides 
for significant differences between unstimulated and insulin-stimulated samples (three-way ANOVA 
insulin main effect q-value <0.05) that were of sufficient magnitude in at least one strain-diet combi-
nation (insulin/unstimulated fold change >1.5). This resulted in 441 insulin-regulated phosphopep-
tides on 232 proteins, which is noticeably more than recent studies of 10 min insulin signalling in 
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Figure 1. Phosphoproteomics of insulin signalling in mouse skeletal muscle. (a) Workflow for skeletal muscle phosphoproteomics of insulin signalling. 
(b) Quantification of skeletal muscle phosphoproteomics. (c) Volcano plot identifying insulin-regulated phosphopeptides. The greatest log2(insulin/
unstimulated) fold change across strain-diet combinations is plotted against significance (insulin stimulation main effect, three-way ANOVA). Three 
phosphopeptides with -log10 q-values greater than 35 were removed for visual clarity. (d–g) Example insulin-regulated phosphopeptides. The protein 
and phosphorylated amino acid are indicated, as well as the number of phosphosites on the phosphopeptide (e.g. ‘P1’). n=4–6 biological replicates.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Genetics and diet alter morphometric and metabolic phenotypes.

Figure supplement 2. Quality control analysis of phosphoproteomics data.

Figure supplement 3. Characterisation of the insulin-regulated phosphoproteome.

https://doi.org/10.7554/eLife.89212
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patient-derived myoblasts (174 phosphopeptides; Batista et al., 2020) and 242 phosphopeptides 
(Haider et  al., 2021) or mouse adipose tissue (319 phosphopeptides; Fazakerley et  al., 2023; 
Figure 1b and c; Supplementary file 1).

Our analysis recovered many well-studied insulin-regulated phosphosites, including Akt substrates 
such as T247 on Akt1s1 (PRAS40), S939 on Tsc2, and S9 on Gsk3β (Figure 1d–f), as well as targets of 
downstream kinases including the Gsk3β substrate S641 on Gys1 (Figure 1g). Enrichment of Gene 
Ontology (GO) biological processes recapitulated canonical insulin signalling axes including ‘insulin 
receptor signalling pathway’, ‘phosphatidylinositol 3-kinase signalling’, ‘protein kinase B signalling’, 
and ‘TORC1 signalling’, and multiple pathways related to glucose metabolism, fatty acid metabo-
lism, autophagy, and protein translation, reflecting known targets of insulin action (Figure 1—figure 
supplement 3a). Furthermore, insulin-regulated phosphosites were enriched for insulin regulation 
in our previous human skeletal muscle phosphoproteome (fold enrichment = 4.22, p=9.50 × 10–24, 
one-sided Fisher’s exact test, Figure 1—figure supplement 3b; Needham et al., 2022). Despite this, 
only half of all insulin-regulated phosphopeptides (228/441) were previously annotated as insulin-
regulated in the PhosphositePlus database (Hornbeck et al., 2015; Figure 1—figure supplement 
3c), highlighting the potential of our data to discover novel aspects of insulin signalling while reca-
pitulating known components. In addition to insulin, exercise also promotes GLUT4 translocation in 
skeletal muscle (Klip et al., 2019). We identified a small subset of phosphosites regulated by insulin 
in this study that were also regulated by exercise in two separate human phosphoproteomics studies 
(Needham et al., 2022; Hoffman et al., 2015; Figure 1—figure supplement 3d; Supplementary 
file 2, phosphosites: Eef2 T57 and T59, Mff S129 and S131, Larp1 S498, Tbc1d4 S324, Svil S300, Gys1 
S645), providing a starting point for exploring conserved signalling regulators of GLUT4 translocation. 
Overall, our phosphoproteomics data provide a comprehensive and high-quality atlas of insulin signal-
ling in mouse skeletal muscle.

Genetics and diet modulate insulin signalling
The influence of genetic and environmental variation on global insulin signalling responses is largely 
unknown. We therefore developed a pipeline to address this question using our phosphoproteomics 
data (Figure 2a). First, we converted the intensity values of each insulin-regulated phosphopeptide 
to ‘insulin response’ values, by normalising insulin-stimulated data to the unstimulated median of the 
corresponding strain-diet combination. Since protein expression should not change within a 10 min 
insulin stimulation (Fazakerley et al., 2023), this allowed us to parse out protein abundance differ-
ences across strains and diets and focus solely on acute signalling processes. We then assessed the 
impact of genetics in CHOW-fed mice by identifying phosphopeptides with differing insulin responses 
in one or more strains compared to C57Bl6J (‘Strain effect’). Lastly, we explored the effects of HFD-
feeding on signalling as two types of ‘Diet effects’, either as a ‘Uniform diet effect’ – where HFD-
feeding affects each strain similarly – or a ‘Strain×Diet effect’ – where its impact depends on the 
mouse strain. Analyses of ‘Strain effects’ and ‘Diet effects’ were performed separately, so a phospho-
peptide could have both a Strain effect and a Strain×Diet/Uniform diet effect.

Almost half of the 441 insulin-regulated phosphopeptides displayed a Strain effect (Figure 2b, 
Supplementary file 1). These included phosphopeptides where C57Bl6J had a stronger insulin 
response than other strains, such as S15 on the RNA methyltransferase Rnmt (Figure  2c), and 
phosphopeptides where C57Bl6J had a weaker insulin response, such as S48 on the vesicle fusion 
regulator Vamp3 (Figure 2d). Vamp3 S48 is predicted to be highly functional (functional score = 0.750) 
(Ochoa et al., 2020), its phosphorylation correlates with glucose uptake in insulin-stimulated and/or 
exercised human skeletal muscle (Needham et al., 2022), and Vamp3 overexpression rescues GLUT4 
translocation in insulin resistance (Schwenk et al., 2012), suggesting that this site may represent a 
genetically variable control point of GLUT4 trafficking. In general, insulin responses were weaker in 
the four remaining strains compared to C57Bl6J, though the extent of this trend was strain-dependent 
(Figure 2e). In all, the strain-affected phosphopeptides reveal a unique fingerprint of insulin signalling 
within each strain (Figure 2f), highlighting the complex and widespread effects of genetic variation 
on signalling networks.

We next examined the impact of HFD-feeding in insulin signalling. Strain×Diet effects were more 
prevalent than Uniform diet effects (110 vs 10 phosphopeptides, Figure 2g; Supplementary file 1), 
suggesting that the molecular impact of dietary perturbation was strongly modulated by genetic 

https://doi.org/10.7554/eLife.89212
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Figure 2 continued on next page
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background. Strain×Diet effects impacted known regulatory phosphosites such as the inhibitory site 
S78 on Map2k4, whose insulin response was attenuated by HFD-feeding only in C57Bl6J and CAST 
(Figure 2h). Map2k4 activates p38 and JNK kinases which have been implicated as drivers of HFD-
induced insulin resistance (Gehart et al., 2010), and based on the behaviour of S78, the orchestration 
of this detrimental signalling axis in HFD-feeding may depend on genetic background.

HFD-feeding exerted complex effects on signalling, with the balance between suppressed and 
enhanced insulin responses varying across strains (Figure 2i). Furthermore, insulin-regulated phospho-
peptides were largely altered by HFD-feeding in only a single strain, and when multiple strains were 
affected, they often changed in opposite directions (Figure  2j–k). For instance, multiple insulin 
responses were strengthened in BXH9 but weakened in C57Bl6J or CAST (Figure 2k), such as S500 
on the translation regulator Larp4b (Figure 1—figure supplement 3e). Principal component analysis 
supported the highly divergent impact of dietary perturbation, as HFD-feeding displaced each strain 
in a distinct direction in principal component space (Figure 2l). Strain×Diet and Strain effects were 
driven by a mixture of changes to insulin-stimulated phosphorylation, unstimulated phosphorylation, 
or both, highlighting the complexity of these signalling alterations (Figure 1—figure supplement 
3f–g). This analysis demonstrates the pervasive role of genetics in shaping signalling networks, as 
genetic background profoundly modulated the effect of HFD-feeding on insulin signalling.

Exploring genetic and dietary modulation of the insulin signalling 
network
To understand the insulin signalling circuitry and functional pathways modulated by genetics and 
diet, we curated a network of 160 insulin-regulated phosphosites, comprising sites from a knowledge 
pathway-derived list of canonical insulin signalling proteins (Needham et al., 2022) and substrates 
of insulin-regulated kinases (Figure 3, see Methods). Strain and diet affected multiple highly studied 
signalling sites, including Tsc2 S939 (Diet effect), Gsk3α S21 (Strain and Diet effects), and Tbc1d4 
T649 (Strain and Diet effects), while other sites such as Gsk3β S9 and Akt1s1 T247 were unaffected. 
Interestingly, strain and diet affected both canonical and non-canonical insulin signalling proteins to a 
similar extent (Figure 1—figure supplement 3h–i). Non-canonical phosphosites could shed light on 
underappreciated outcomes of insulin action either altered or unaffected by genetics and the envi-
ronment, such as the p70S6K substrate S47 on Dnajc2 (Strain and Diet effects), which drives cellular 
senescence (Barilari et al., 2017), and S315 on Pcyt1a (no Strain or Diet effect), which inhibits phos-
phatidylcholine biosynthesis (Agassandian et al., 2005; Figure 3).

No functional pathways were overrepresented within strain or diet-affected phosphosites relative 
to all insulin-regulated sites, implying that genetics and environment modulate most or all outcomes 
of insulin. For instance, strain and diet affected regulatory phosphosites controlling vesicle trafficking 
(S348, T575, S595, and T649 on the GLUT4 trafficking regulator Tbc1d4); glucose metabolism (S469 
and S486 on Pfkfb2, which promote glycolysis); mitochondrial structure and function (S129 on Mff, 
which promotes mitochondrial fission); autophagy (S555 on the master autophagy regulator Ulk1); 
gene transcription (the inhibitory site S108 on the transcription factor Tfeb); and mRNA translation 
(S236 on ribosomal proteins S6, S422 on Eif4b, and S64 and T69 on Eif4ebp1, which promote trans-
lation). Interestingly, Strain and Diet effects overlapped significantly (fold enrichment = 1.50, p=4.40 
× 10–9, two-sided Fisher’s exact test, Figure  1—figure supplement 3j), implying some phospho-
sites may be more amenable to regulation overall. As a notable exception, all six insulin-regulated 
phosphosites on Plin1 had Diet effects while only one had a Strain effect (Figure 3). Plin1 coats and 
regulates lipid droplets, hence this enrichment of Diet effects may represent a signalling response 

phosphopeptides with a Strain effect. Missing values are coloured grey. (g) The number of total insulin-regulated phosphopeptides and those with diet 
effects. (h) A phosphopeptide with a Strain×Diet effect. A two-way ANOVA was performed on insulin response values followed by two-sided t-tests 
comparing HFD to CHOW within each strain (q-values: *). (i–j) The number of phosphopeptides with a Strain×Diet effect in (i) each strain, or (j) each 
number of strains. Colour indicates whether the insulin response in HFD is stronger vs CHOW, weaker vs CHOW, or both in different strains (‘Mixed’). 
(k) Heatmap displaying all insulin-regulated phosphopeptides with a Uniform diet effect or Strain×Diet effect. Inset displays example sites where BXH9 
effects contrasted other strains. (l) Principal component analysis (PCA) of all insulin-regulated phosphopeptides using the log2(insulin/unstimulated) fold 
changes for each strain-diet combination. The percentage of total variance explained by each principal component is indicated. */#: 0.01≤q<0.05, **/##: 
0.001≤q<0.01, ***/###: q<0.001. n=4–6 biological replicates.

Figure 2 continued
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Figure 3. Exploring genetic and dietary modulation of the insulin signalling network. A curated network of 160 insulin-regulated phosphosites. 
Phosphosites are depicted as circles where the outline colour denotes the direction of insulin regulation, and the inner colour denotes the presence of 
Strain effects or Diet effects (either a Strain×Diet or Uniform diet effect). Black arrows indicate regulatory relationships from proteins to other proteins or 
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to increased intramuscular lipids in the HFD condition. Overall, genetics and environment triggered 
widespread alterations in insulin signalling impinging on diverse cellular pathways.

Genetics and diet rewire insulin-regulated kinase signalling
The extensive signalling changes caused by genetics and diet may result from altered kinase regu-
lation. We tested this hypothesis using a kinase substrate enrichment analysis (KSEA) (Hernandez-
Armenta et al., 2017) on phosphopeptide insulin responses. KSEA accurately captured the activation 
of canonical insulin-regulated kinases (Akt, mTOR, p70S6K, and p90RSK) and the deactivation of 
GSK3, confirming the validity of the approach (Figure 4a). Focussing on CHOW-fed mice, we iden-
tified seven kinases differentially enriched across mouse strains (ANOVA adjusted p-value <0.05, 
Figure 4b). For example, insulin activated SGK and deactivated GSK3 more in C57Bl6J and NOD 
than in other strains (Figure 4b). Extending this analysis to all mice, we identified kinases with Uniform 
diet or Strain×Diet effects (Figure  4c). Akin to our analysis of individual phosphosites (Figure  2), 
Strain×Diet effects were more prevalent than Uniform diet effects (five kinases compared to one), indi-
cating that genetic background strongly influences the impact of HFD-feeding on kinase signalling. 
These results suggest that the observed phosphosite signalling changes could be partly due to altered 
insulin regulation of multiple kinases.

Biological variation reveals functional organisation of the insulin 
signalling network
KSEA predicted changes in overall kinase activity, but we questioned if substrates of the same kinase 
could be differentially regulated by genetic and environmental variation. As a case study we exam-
ined substrates of Akt – a master regulator of insulin signal transduction – to assess the similarity 
of their insulin responses across strains and diets. Strikingly, we observed a range of both positive 
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Figure 4. Genetics and diet rewire insulin-regulated kinase signalling. (a) Kinase substrate enrichment analysis 
(KSEA) (Hernandez-Armenta et al., 2017) of five canonical insulin-regulated kinases using insulin response values 
and kinase substrate annotations from PhosphositePlus (Hornbeck et al., 2015). (b–c) Kinase enrichment scores 
were tested for (b) Strain effects (CHOW ANOVA adjusted p<0.05) or (c) Strain×Diet effects (two-way ANOVA 
interaction effect adjusted p<0.05) and Uniform diet effects (Diet main effect adjusted p<0.05, interaction effect 
adjusted p≥0.05). n=4–6 biological replicates.
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and negative correlations (Figure 5a). For instance, while Tsc2 S939 and Akt1s1 T247 both activate 
mTORC1, their insulin responses correlated poorly (r=0.202, p=0.168, Figure 5b). Supporting these 
findings, similar heterogeneity in Akt substrate insulin responses has previously been observed in skel-
etal muscle from humans with differing metabolic health (Tonks et al., 2013). Hierarchical clustering 
revealed four distinct groups of positively correlated Akt substrates (Figure 5a), suggesting these 
groups may coordinate distinct functional outputs of Akt signalling.

We next explored if the genetic and environmental variation in our study could reveal organi-
sational principles of the entire insulin signalling pathway. By performing weighted gene correla-
tion network analysis (WGCNA; Zhang and Horvath, 2005; Langfelder and Horvath, 2008), we 
identified eight subnetworks of coregulated insulin-responsive phosphopeptides (Figure 5c) varying 
in size from 16 to 120 phosphopeptides, with 91 assigned to no subnetwork (Figure 5d, Supple-
mentary file 3). Examining the subnetwork ‘eigenpeptides’ – a weighted average of the constit-
uent phosphopeptides (Zhang and Horvath, 2005; Langfelder and Horvath, 2008 )– revealed 
that the subnetworks captured distinct effects of genetics and diet on insulin signalling (Figure 5e; 
Figure 5—figure supplement 1a). For example, HFD-feeding attenuated the insulin response of 
subnetwork I in CAST and C57Bl6J strains (t-test adjusted p=0.0256, 0.0365), while subnetwork II 
was affected by HFD-feeding only in CAST and NOD (Figure 5e; Figure 5—figure supplement 1a, 
t-test adjusted p=0.00258, 0.0256). This suggests that the subnetworks may be sensitive to distinct 
cellular information.

Next, we characterised the regulatory and functional nature of these subnetworks. Canonical insulin-
regulated kinases such as Akt and mTOR were enriched across multiple subnetworks (Figure  5f), 
confirming that genetic and environmental variation can reveal uncoupling of substrates targeted by 
the same kinase (Figure 5a–b). Nevertheless, visualising these subnetworks within our curated insulin 
signalling pathway (Figure 3) revealed cases where signal flowed through a single subnetwork, such 
as from Erk2 (Y185) to its target kinase Rsk2 (T365 and S369) and Rsk2 substrates (Gab2 S211 and 
Nos1 S847) within subnetwork III (Figure 5—figure supplement 2). Within multipl phosphorylated 
proteins, phosphosites either belonged to the same subnetwork (e.g. Plin1) or diverse subnetworks 
(e.g. Tbc1d4 and the transcription factor Nfatc2), suggesting the latter may serve as hubs integrating 
diverse cellular information (Figure 5—figure supplement 2).

Some subnetworks were enriched in specific cellular compartments (GO), implying that common 
localisation may facilitate coregulation of phosphosites (Figure  5g). Coregulation may partition 
functional outcomes of insulin action, as certain biological processes were enriched only in select 
subnetworks (Figure  5h). These included known insulin targets like ‘negative regulation of lipid 
catabolic process’ in subnetwork I and ‘positive regulation of glycogen biosynthetic process’ in I, VI, 
and VIII (Figure 5h). To further probe functional differences, we analysed phosphopeptide subnet-
work membership scores, which revealed additional pathways enriched in individual subnetworks. 
However, these results were not significant after p-value adjustment and hence are suggestive only 
(Figure  5—figure supplement 1b–d). Lastly, we leveraged our previous phosphoproteomic time 
course of insulin signalling to interrogate subnetwork dynamics (Humphrey et al., 2013) and found 
that phosphopeptide insulin response dynamics varied across subnetworks (Figure 5i). This reveals 
distinct temporal regulation as another feature underlying the substructure of the insulin signalling 
network. Overall, genetic and environmental diversity illuminated the complex coregulation structure 
of insulin signalling, featuring subnetworks that evade known network circuitry and present unique 
functional signatures.

Leveraging biological variation to identify drivers of insulin 
responsiveness
We have so far described the marked influence of genetic background and HFD-feeding on skeletal 
muscle insulin signalling, evident at the level of individual phosphosites, protein kinases, and coreg-
ulated network modules. We hypothesised that by associating this signalling diversity with a pheno-
typic output of insulin, such as enhanced glucose uptake, we would filter out mechanistically irrelevant 
phosphosites and hence prioritise molecular regulators of the phenotype. To test this hypothesis, we 
measured in vivo glucose uptake with 3H-2DG tracer in the same muscle samples used for phosphopro-
teomics. Insulin-stimulated glucose uptake differed by more than twofold across strains (two-way 
ANOVA strain effect p=4.78 × 10–7) and was almost uniformly decreased by HFD-feeding (two-way 
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Figure 5. Biological variation reveals functional organisation of the insulin signalling network. (a) Pairwise Pearson’s correlation of the insulin response 
values of insulin-regulated Akt substrates. Substrates were separated into four clusters by hierarchical clustering followed by tree cutting. (b) The 
correlation between insulin response values of the Akt substrates Tsc2 S939 and Akt1s1 T247. Linear regression is indicated with 95% confidence 
intervals. (c) Rationale for performing weighted gene correlation network analysis (WGCNA). (d) Pairwise Pearson’s correlation of all insulin-regulated 

Figure 5 continued on next page
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ANOVA diet effect p=1.83 × 10–5) (Figure 6a). This highlights that genetic background and dietary 
status are key determinants of insulin responsiveness.

To prioritise signalling nodes responsible for differences in insulin responsiveness, we correlated 
all insulin-regulated phosphopeptides with glucose uptake in insulin-stimulated muscles, resulting in 
37 significantly correlated phosphopeptides (r>0.35 or <–0.35, q-value <0.1, Figure 6b). The most 
significantly correlated phosphopeptide contained T1174 and S1176 on the nitric oxide synthase 
Nos3. The latter serves as a positive control for our analysis, as this site is known to be phosphor-
ylated in response to insulin to promote in vivo glucose uptake by vasodilation (Roy et al., 1998; 
Bahadoran et al., 2020; Dimmeler et al., 1999; Figure 6c). Other correlated phosphopeptides that 
could modulate insulin responsiveness include S1751 on Afdn, a phosphosite implicated in insulin 
action (Lundh et al., 2019), and S196 on the Prkag2 subunit of AMPK, a major metabolic signalling 
hub promoting glucose uptake (O’Neill, 2013 Figure 6b). These examples suggest that our analysis 
prioritised regulators of glucose uptake.

While the above analysis identified phosphosites associated with glucose uptake through their 
absolute abundance, we hypothesised that for some phosphosites, the magnitude of their response to 
insulin may be a stronger determinant of insulin action. We found that the insulin response values of 13 
phosphopeptides correlated with insulin-stimulated glucose uptake (r>0.35 or <–0.35, q-value <0.1, 
Figure 6d). These were largely distinct from the 37 phosphopeptides identified in our first analysis, 
indicating that the two approaches captured complementary information. Several of these phospho-
peptides could regulate insulin-stimulated glucose uptake, such as the regulatory site S469 on the 
enzyme Pfkfb2 which activates glycolysis, a major pathway for glucose consumption (Deprez et al., 
1997; Marsin et al., 2000; Ros and Schulze, 2013; Figure 6e), and S177 on Rcsd1, which could 
affect GLUT4 vesicle transport via actin cytoskeleton remodelling (Stöckli et al., 2011; Figure 6d). 
The associations identified in these analyses could arise uniquely at the level of protein phosphoryla-
tion or could be driven by changes in total protein abundance. To assess this, we mined soleus total 
proteomics data from a recent study of seven CHOW and HFD-fed mouse strains, three of which 
were in common with this study (C57BL6J, BXH9, BXD34) (Nelson et al., 2022). Of the 34 glucose 
uptake-associated phosphoproteins we identified, 16 were quantified in both studies and only two 
additionally correlate with glucose uptake at the total protein level (Ppp6r1 and Ttn, Figure 6—figure 
supplement 1a). Hence, it seems likely that most glucose uptake-phosphosite associations were not 
driven by protein abundance changes, underscoring the utility of phosphoproteomics to provide 
unique information on top of more classical omics layers.

In addition to individual phosphosites, the status of larger signalling network components could 
also influence insulin responsiveness. Kinase enrichment scores affected by strain or diet did not 
correlate with glucose uptake (Supplementary file 4), suggesting insulin action is not dominated 
by the net activity of specific kinases. Interestingly, two WGCNA-derived insulin signalling subnet-
works correlated with glucose uptake: subnetwork V (r=0.436, p=0.00173) and subnetwork I (r=0.332, 
p=0.0197, Figure  6f). Subnetwork V could modulate glucose uptake through actin cytoskeleton 
remodelling via Rscd1 S177, through glucose metabolism promotion via Gys1 S641 (Supplementary 
file 3), and by influencing GLUT4 vesicle trafficking due to its enrichment at ‘cytoplasmic vesicle 
membranes’ (Figure 5g). It was also enriched in substrates of GSK3, which has been implicated in 
insulin resistance in skeletal muscle (Dokken et al., 2005; Henriksen and Teachey, 2007; Ring et al., 
2003) and adipose tissue (Fazakerley et al., 2023). Subnetwork I, the largest cluster containing 27% 
of insulin-regulated phosphopeptides, was enriched in multiple kinases and biological processes 

phosphopeptides separated into WGCNA-derived subnetworks. The number of phosphopeptides in each subnetwork is indicated below the heatmap. 
(e) The ‘eigenpeptide’ of each subnetwork. The median of each strain-diet combination is shown. (f–h) The enrichment of (f) PhosphositePlus-derived 
kinase substrate annotations (Hornbeck et al., 2015), (g) Gene Ontology (GO) cellular compartments, and (h) GO biological processes within each 
subnetwork relative to the entire phosphoproteome (one-sided Fisher’s exact test, Benjamini-Hochberg p-value adjustment). (i) The time taken for 
phosphopeptides to reach maximum insulin-stimulated intensity in a previous study of insulin signalling dynamics (Humphrey et al., 2013). The number 
of phosphopeptides mapped into the study is indicated above each bar.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Characterising insulin signalling subnetworks.

Figure supplement 2. Organisation of insulin signalling subnetworks.

Figure 5 continued
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Figure 6. Leveraging biological variation to identify drivers of insulin responsiveness. (a) The uptake of 3H-2DG into mouse soleus muscle after a 
10 min injection of insulin (1 U/kg lean mass; ‘insulin’) or saline (‘unstimulated’) calculated as a rate constant (Ki). Two-sided t-tests were performed on 
insulin-stimulated uptake values to compare HFD to CHOW within each strain (adjusted p-value: *) or each strain to C57Bl6J within either diet (adjusted 
p-value: #). n=4–6 biological replicates. (b) Pearson’s correlation between log2 intensity of insulin-regulated phosphopeptides and 3H-2DG uptake 
within insulin-stimulated mice. Significantly correlated phosphopeptides (q-value <0.1, r>0.35 or r<–0.35) are coloured green and select correlated 
phosphopeptides are labelled. (c) Correlation of Nos3 T1174, S1176 insulin-stimulated intensity with insulin-stimulated 3H-2DG uptake. Linear regression 
is indicated with 95% confidence intervals. (d) As in (b), using phosphopeptide insulin response values. (e) Correlation of the Pfkfb2 S469 insulin 
response with insulin-stimulated 3H-2DG uptake. (f) Correlation of weighted gene correlation network analysis (WGCNA) subnetwork eigenpeptides with 
insulin-stimulated 3H-2DG uptake. Significant correlations are indicated (*). (g) Rationale and workflow for overexpressing Pfkfb3 to rescue palmitate-
induced insulin resistance. (h) The fold change of unstimulated to insulin-stimulated glucose uptake (100 nM insulin, 20 min) in L6-GLUT4-HA myotubes 
with or without Pfkfb3 overexpression, treated with palmitate (125 µM, 16 hr) or BSA vehicle control. A two-way ANOVA was performed followed by 
Tukey’s post hoc tests (*). Not all significant comparisons are shown. n=4 biological replicates. */#: 0.01≤p<0.05, **/##: 0.001≤p<0.01, ***/###: p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Characterisation of glucose uptake-correlated phosphosites.

Figure supplement 2. Overexpression of Pfkfb3 enhances glycolytic capacity and reverses palmitate-induced insulin resistance.

Figure 6 continued on next page
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(Figure  5f and h), suggesting it may be a central regulatory hub for various outcomes of insulin 
action including glucose uptake. Examining the subnetwork membership scores for glucose uptake-
correlated phosphopeptides also revealed a preference for clusters V and I, supporting this analysis 
(Figure 6—figure supplement 1b–c). Overall, compartmentalisation of insulin-responsive phospho-
sites into subnetworks may enable independent control of insulin’s functional outputs, since only two 
subnetworks correlated with insulin-stimulated glucose uptake.

Upregulating glycolysis reverses insulin resistance
We next aimed to validate our approach for identifying regulatory mechanisms of insulin-stimulated 
glucose uptake. S469 on Pfkfb2 correlated highly with glucose uptake follow insulin stimulation 
(Figure 6e). Phosphorylation of this site leads to increased production of F2,6BP, a potent glycolytic 
agonist, suggesting that activating glycolysis may play a key role in muscle insulin responsiveness. This 
is consistent with our previous findings that glycolytic enzyme abundance was strongly associated with 
ex vivo insulin-stimulated glucose uptake in muscle from inbred mice (Nelson et al., 2022), that the 
insulin resistance-reversing small molecule thiostrepton enhances glycolytic capacity (Masson et al., 
2023), and that decreasing glycolytic flux caused insulin resistance in vitro (Trefely et al., 2015). To 
further establish glycolysis as a regulator of insulin responsiveness in skeletal muscle, we decided to 
investigate whether upregulating glycolysis through F2,6BP production can restore insulin-stimulated 
glucose uptake in insulin resistance.

Since Pfkfb2 requires phosphorylation by Akt to produce F2,6BP substantially, increasing F2,6BP 
production via Pfkfb2 would require enhanced activating site phosphorylation, which is difficult to 
achieve in a targeted fashion, or phosphomimetic mutation of activating sites to aspartate/gluta-
mate, which often does not recapitulate the molecular effects of serine/threonine phosphorylation 
(Dephoure et al., 2013). By contrast, the paralog Pfkfb3 has high basal production rates and lacks an 
Akt motif at the corresponding phosphosites (Ros and Schulze, 2013). We therefore rationalised that 
overexpressing Pfkfb3 would robustly increase F2,6BP production and enhance glycolysis regardless 
of insulin stimulation and Akt signalling (Figure 6g). To avoid systemic effects of Pfkfb3 overexpres-
sion we studied cultured L6-GLUT4-HA myotubes, which display robust insulin regulation of GLUT4 
trafficking and develop insulin resistance upon palmitate treatment, mimicking lipotoxicity, a trigger 
of in vivo insulin resistance (Hoehn et al., 2009). While L6 cells are of rat origin, they are preferable to 
the popular C2C12 mouse cell line since the latter lack an insulin-responsive vesicular compartment 
(Tortorella and Pilch, 2002) and undergo spontaneous contraction, resulting in confounding non-
insulin-dependent glucose uptake (Portiér et al., 1999).

As anticipated, Pfkfb3 overexpression increased glycolytic capacity in L6-GLUT4-HA myotubes as 
measured by extracellular acidification rate (ECAR) (Figure 6—figure supplement 2a–c). Pfkfb3 over-
expression also restored insulin-responsive glucose uptake to normal levels in palmitate-treated cells 
(Figure 6h; Figure 6—figure supplement 2d). This effect was only observed in cells treated with 
palmitate and insulin, suggesting it specifically modulated insulin action rather than non-specifically 
increasing glucose uptake through enhanced glucose consumption (Figure 6—figure supplement 
2d). This may be due to enhanced insulin signalling, as we have previously observed that transient 
Pfkfb3 overexpression increased Akt signalling in HEK293 cells (Trefely et  al., 2015). However, 
immunoblotting of canonical insulin-responsive phosphosites on Akt and its substrates GSK3α/β and 
PRAS40 revealed minimal effect of palmitate treatment and Pfkfb3 overexpression (Figure 6—figure 
supplement 2e–f), hence more detailed phosphoproteomics studies are needed to clarify whether 
Pfkfb3 overexpression restored insulin action by modulating insulin signalling. Overall, our results 
further establish glycolytic flux as a major determinant of the glucose uptake arm of muscle insulin 
action and highlight the power of studying phosphoproteomics across the gene-by-environment land-
scape to identify causal drivers of complex phenotypes. We anticipate that our catalogue of glucose 

Figure supplement 2—source data 1. Unedited scans of western blots for panels (b) and (f).

Figure supplement 2—source data 2. Pdf containing unedited scans of western blots alongside the edited scans in panels (b) and (f).

Figure supplement 3. Additional glucose uptake correlation analysis.

Figure 6 continued
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uptake-correlated phosphosites will provide a rich starting point for future investigations into mecha-
nisms of insulin action and resistance.

Discussion
The environment shapes the flow of information from genotype to phenotype. Many studies have 
interrogated the role of intermediate molecular layers such as the transcriptome or proteome, however 
few studies have examined how protein post-translation modifications participate in this informa-
tion transfer. Here, we have approached this problem by leveraging diverse inbred mouse strains 
and phosphoproteomics to examine the insulin signalling network across a landscape of genetic and 
dietary variation. Genetic background significantly altered the insulin signalling network both inde-
pendently and in concert with dietary status, affecting myriad phosphosites and multiple kinases. We 
exploited this variation in signalling responses in two ways – to study the partitioning of the Akt and 
insulin signalling pathways into distinct subnetworks of coregulated phosphosites; and to identify 
potential regulators of insulin responsiveness by associating phosphorylation with insulin-stimulated 
glucose uptake. Finally, validation studies in L6 myotubes confirmed the major role of accelerated 
glycolysis as a key regulator of insulin responsiveness.

Genetic and diet-driven signalling changes did not transmit linearly through our current model of 
the insulin signalling network, illustrating that this model remains incomplete. Notably, substrates of 
kinases such as Akt clustered into distinct groups based on differing insulin responses. Hence, it is 
an oversimplification to model signalling pathways as networks of individual kinases since substrates 
of the same kinase display independent regulation. This could arise from localisation of a kinase 
to distinct substrate pools (Bloom and Cross, 2007; Steinberg and Hardie, 2023; Lavoie et al., 
2020); interactors targeting a kinase to different substrates (Bloom and Cross, 2007); substrate 
phosphorylation by alternate kinases (Meyuhas, 2015); the dephosphorylation of specific substrates 
by phosphatases; kinase post-translational modifications altering substrate specificity; and distinct 
substrate phosphorylation kinetics (Humphrey et al., 2013). As our knowledge of the repertoire of 
kinase substrates continues to deepen (Johnson et al., 2023), future research should explore how 
the above mechanisms contribute to finer regulation of these substrates. Genetic and environmental 
variation also exposed a coregulation subnetwork structure within the insulin signalling network. 
The enrichment of subnetworks in distinct biological processes, and the selective association of two 
subnetworks with glucose uptake, suggests that this coregulation structure may direct independent 
control of distinct outcomes of insulin action. This exciting possibility necessitates further investiga-
tion, including replication in independent cohorts and spatiotemporal characterisation of subnetwork 
dynamics. Alternatively, one could overlap subnetworks with genetic information, such as genes asso-
ciated with glucose homeostasis and other metabolic traits in human GWAS (Chen et al., 2021), or 
muscle-specific eQTLs or pQTLs genetically colocalised with similar traits (Molendijk et al., 2022), to 
further prioritise subnetwork-associated phenotypes and identify potential drivers within subnetworks.

Muscle insulin signalling responses vary across individuals (Needham et al., 2022; Tonks et al., 
2013), and our results suggest that baseline genetic differences and an individual’s environment 
both alter signalling, with the environment’s influence depending strongly on genetic background. 
Signalling pathways are popular therapeutic targets due to their importance in human health and 
the relative ease of pharmaceutical interventions (Attwood et al., 2021). Our results advocate for a 
personalised approach to such therapies, implying that the efficacy of treatments aiming to correct 
pathological signalling responses will depend on an individual’s genetic background. In cancer, where 
signalling networks are dysregulated heterogeneously, modelling patient-specific networks has 
already shown promise for identifying personalised drug targets (Eduati et  al., 2020; Montagud 
et al., 2022). Personalised medicine approaches will also be aided by a comprehensive understanding 
of how genetics shape signalling networks and potentiate their modulation by the environment. 
Recent studies have made the first step, revealing that the ground-state phosphoproteome can be 
altered by mutations affecting network components such as kinases, phosphatases, and phosphopro-
teins, as well as the molecular milieu the network is exposed to including extracellular signalling 
ligands (Grossbach et al., 2022; Zhang et al., 2023). An important corollary of such genetic factors 
is that multiple genetic backgrounds should be studied when establishing generalisable signalling 
responses. Our data indicate that insulin responses in C57BL6J – the most commonly studied mouse 
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strain – are not necessarily generalisable, indicated by phosphosites such as S15 on Rnmt that were 
insulin regulated almost exclusively in C57Bl6J.

A major challenge in studying signal transduction with omics technologies is that hundreds to 
thousands of molecular events typically respond to a cellular signal, making it difficult to pinpoint 
the most crucial regulatory nodes. To tackle this challenge, we previously demonstrated that asso-
ciating phosphoproteomics with physiological phenotypes across diverse individuals enriches for 
phosphosites more likely to modulate biological responses (Needham et al., 2022). Here, we have 
elaborated on this approach, revealing that associating phosphorylation with phenotype across a 
genetic and environmental landscape can identify regulators of specific biological processes, such as 
insulin-stimulated glucose uptake. Our results recapitulated known glucose uptake regulators and led 
to further validation of glycolytic flux as a modulator of insulin responsiveness. We have previously 
demonstrated that reduced glycolytic flux impairs GLUT4 translocation and insulin signalling (Trefely 
et al., 2015), implying that the status of glycolysis is sensed by proteins regulating insulin action. An 
enhanced glycolytic metabolic tone may alter production of reactive oxygen species, a known modu-
lator of insulin action (Hoehn et al., 2009; Houstis et al., 2006; Fazakerley et al., 2018) and insulin 
signalling (Su et al., 2019). Alternatively, recent approaches to map protein-metabolite interactions 
could identify points of allosteric crosstalk between glycolytic metabolites and insulin action proteins 
(Piazza et al., 2018; Hicks et al., 2023), hence broadening our understanding of the bidirectional 
communication between insulin action and metabolism.

It was striking that only several dozen insulin-regulated phosphopeptides associated significantly 
with glucose uptake. Since insulin triggers multiple distinct cellular outcomes, it is possible that only a 
subset of insulin-responsive phosphosites contribute to enhanced glucose uptake. Moreover, many of 
these phosphosites might only be permissive for insulin-stimulated glucose uptake and are not major 
regulatory nodes determining the fidelity of the process. For example, while mutation of the four 
primary Akt regulatory sites on Tbc1d4 blocks GLUT4 translocation (Sano et al., 2003), none of these 
phosphosites featured strong positive correlations with glucose uptake in our analysis (Figure 6—
figure supplement 3). This implies that their phosphorylation may promote glucose uptake in a func-
tionally permissive, switch-like fashion. We suggest that the glucose uptake-associated phosphosites 
we have identified will be enriched in major regulators of insulin responsiveness, necessitating future 
functional studies to characterise these sites and explore their involvement in insulin resistance.

Our work demonstrates that genetic and environmental variation can profoundly modulate global 
signalling networks and that the influences of these factors are intrinsically entwined. We show that 
the resulting diversity in signalling responses can be leveraged to pinpoint regulators of insulin-
stimulated glucose uptake, providing a powerful methodological framework for interrogating the 
regulatory basis of complex biological pathways.

Limitations of this study
First, this study focused on male mice and examined only five inbred strains. This limited number of 
strains may mean that our association analysis was underpowered to detect some regulators of insulin 
responsiveness. Importantly, however, this does not imply that the regulators identified are incorrect, 
but only that there may be more to discover with larger cohorts. In addition, studies incorporating 
male and female subjects found that mouse insulin sensitivity was affected by interactions between 
sex and strain (Parks et al., 2015), and insulin signalling in stem cell-derived myoblasts by interactions 
between sex and donor metabolic health (Haider et al., 2021). Hence, we anticipate that sex would 
contribute another important dimension to the web of interactions between genetics, diet, and insulin 
signalling identified here. Future work should therefore extend our approach across a broader range 
of genetic backgrounds, as well as in female mice. Second, we only examined insulin signalling after 
10 min, since measuring multiple timepoints would have drastically increased the number of animals 
and samples required. Integration of dynamic phosphoproteome data from cultured cells indicated 
that insulin signalling dynamics may contribute to trends in our data (Figure 5i), suggesting the explo-
ration of signalling at additional timepoints may be fruitful in the future.

Third, mammalian tissues are a heterogeneous mixture of cell types, and differences in this mixture 
could result in different signalling responses measured at the whole tissue level. In our experience, the 
soleus can be reproducibly dissected as an intact muscle with little contamination from surrounding 
tissues, making it unlikely that cell-type composition varied across samples due to tissue collection. 

https://doi.org/10.7554/eLife.89212
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However, we cannot exclude the possibility that differences in the composition of the soleus muscle 
across strains and diets contributed to the signalling changes we detected. We were also unable to 
determine the extent to which signalling changes arose from muscle-intrinsic or -extrinsic factors. For 
instance, body weight varied substantially across mice and correlated significantly with 25% of Strain- 
and Diet-affected phosphopeptides (Figure 6—figure supplement 3c), suggesting obesity-related 
systemic factors likely impact a subset of the muscle insulin signalling network. Furthermore, genetic 
differences in lifespan could alter the ‘biological age’ of different strains and their phosphoproteomes, 
though we could not assess this possibility since lifespan data is not available for most strains used. 
Lastly, as we did not perform total proteomics, we did not assess whether phosphosite changes were 
caused by differences in total protein abundance. However, since protein abundance should not change 
within a 10 min insulin stimulation (Fazakerley et al., 2023), the acute insulin responses we observed 
should only reflect differences in protein phosphorylation. Furthermore, in our previous studies of 
insulin signalling in adipocytes (Fazakerley et al., 2023) or human skeletal muscle (Needham et al., 
2022) in which deep proteomes were measured in parallel, we found little global correlation between 
changes in protein phosphorylation and protein abundance across experimental conditions regard-
less of insulin stimulation, suggesting the contribution of protein abundance to phosphosite changes 
across strains and diets was likely minimal.

Methods
Statistical analysis
Most statistical analysis was performed in the R programming environment using RStudio (R version: 
4.2.1, RStudio version: 2022.07.1 Build 554). Analysis of GLUT4-HA-L6 myotube Pfkfb3 expression, 
2DG uptake, and ECAR was performed in GraphPad Prism (version: 9.3.1).

Animal details
Male C57BL/6J (C57Bl6J), BXH9/TyJ (BXH9), BXD34/TyJ (BXD34), and CAST/EiJ (CAST) mice were 
purchased from Australian BioResources (Moss Vale, NSW, Australia) while NOD/ShiLtJ (NOD) mice 
were purchased from Animal Resources Centre (Murdoch, WA, Australia). Mice were at most 9 weeks 
of age upon arrival. Mice were housed at 23°C on a 12  hr light/dark cycle in cages of 2–5, with 
free access to food and water. At 12–16 weeks of age mice were randomly allocated to a standard 
CHOW diet (13% calories from fat, 65% from carbohydrate, 22% from protein; ‘Irradiated Rat and 
Mouse Diet’, Specialty Feeds, Glen Forrest, WA, Australia) or a high-fat high-sucrose diet made in 
house (HFD; 45% calories from fat [40% calories from lard], 35% from carbohydrate [14% calories from 
starch], and 22% from protein) and sacrificed exactly 6 weeks later. The number of mice in each group 
are C57Bl6J: 8 CHOW, 10 HFD; NOD: 10 CHOW, 10 HFD; BXH9: 8 CHOW, 9 HFD; CAST: 9 CHOW, 
9 HFD; BXD34: 10 CHOW, 11 HFD. Procedures were carried out with approval from the University of 
Sydney Animal Ethics Committee following guidelines issued by NHMRC (Australia).

Assessment of body composition
Body composition of individual mice was assessed using the EchoMRI-900 to determine lean mass 
1 day before a glucose tolerance test and 5–6 days before euthanasia. Analysis was performed as per 
the manufacturer’s specifications.

Glucose tolerance test
On the day of a glucose tolerance test mice were fasted for 6 hr (0800–1400). Mice were then orally 
gavaged with 20% (wt/vol) glucose in water at 2 g/kg lean mass, and blood glucose was measured 
from the tail vein using a glucometer 0, 15, 30, 45, 60, and 90 min after the gavage. At 0 and 15 min, 
5 µL blood was also collected into an Insulin Mouse Ultra-Sensitive ELISA plate (Crystal Chem USA, 
Elk Grove Village, IL, USA). Blood insulin concentration was measured according to the manufactur-
er’s protocol, using linear extrapolation from an insulin standard curve. The area of the blood glucose 
curve (AOC) was calculated by:

	﻿‍
AOC =

n∑
i=2

(
Gi−1 − G1

)
+
(
Gi − G1

)
2

(
ti − ti−1

)
‍�
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where ‍i‍ represents the ith timepoint at which blood glucose was measured, ‍n‍ represents the last time-
point, ‍ti‍ represents the time (min) of the ith timepoint, and ‍Gi‍ represents blood glucose concentration 
(mM) at the ith timepoint.

In vivo insulin stimulation
On the day of the procedure mice were fasted for 2 hr (1100–1300). Mice were then anaesthetised 
by intraperitoneal injection of sodium pentobarbital at 80 mg/kg body mass. To counter anaesthesia-
associated declines in body temperature, mice were wrapped in aluminium foil and placed on a heating 
pad at 37°C. After 15  min anaesthesia, mice were injected retro-orbitally as previously described 
(Yardeni et al., 2011) with 50 µL plasma replacement (B. Braun, Melsungen, DEU) containing 10 µCi 
3H-2DG and saline or insulin (0.75 U/kg lean mass). Blood glucose was measured from the tail vein 
using a glucometer (AccuCheck, Roche Diabetes Care, NSW, Australia) 1 min prior to injection and 1, 
5, 7.5, and 10 min after injection. Simultaneously, 5 µL blood was collected into 95 µL 0.9% NaCl on ice 
to measure 3H-2DG blood concentration. Ten minutes after insulin injection mice were sacrificed by 
cervical dislocation and the soleus muscle was rapidly excised, immediately frozen in liquid nitrogen, 
and stored at –80°C. To measure 3H-2DG blood concentration, diluted blood samples were first centri-
fuged at 10,000 × g for 10 min to pellet blood cells. Supernatant (70 µL) was collected and combined 
with 3 mL liquid scintillation cocktail (Perkin Elmer, MA, USA: 6013321) to allow the measurement of 
3H with a Tri-Carb 2810TR Liquid Scintillation Counter (Perkin Elmer, MA, USA).

Skeletal muscle lysis
Frozen muscle tissue was powdered by grinding in a mortar and pestle chilled with liquid nitrogen 
and dry ice. To lyse powdered tissue, 200 µL lysis buffer (4% [wt/vol] sodium deoxycholate, 100 mM 
Tris-HCl pH 8.5) was added followed by 10 s vortexing. Samples were then sonicated at 4°C at 90% 
power using pulses of 2 s on, 5 s off for a total time of 1 min. Samples were then immediately boiled 
at 95°C with 1500 rpm shaking for 5 min and sonicated for a further 2 min (4°C, 90% power, 5 s on 
and 5 s off) to ensure complete lysis. Lysate was then centrifuged at 20,000 × g for 5 min and 180 µL 
supernatant was collected. Cysteine residues were reduced and alkylated by adding 40 mM chloro-
acetamide and 10 mM tris 2-carboxyethyl phosphine (TCEP) at pH 7. Lysate was incubated for 5 min 
at 45°C with 1500 rpm shaking and then incubated for a further 40 min at room temperature without 
shaking.

Next, 800 µL 100% chloroform and 1600 µL 100% methanol were added following 30 s sonication 
at 90% power. LC/MS grade water (800 µL) was added following 5 min mixing at 1000 rpm. Lysate was 
centrifuged for 5 min at 2000 × g to induce a phase separation. The majority of the aqueous phase 
(2400 µL) was removed and 2000 µL was reserved for 3H-2DG quantification. Next, 2400 µL 100% 
methanol was added following 30 s mixing at 800 rpm and centrifugation at 2000 × g for 5 min. The 
supernatant was discarded, and the protein pellet was air-dried for 5 min. Protein was reconstituted in 
200 µL lysis buffer, sonicated at 60% power for 15 s using a tip-probe sonicator, and boiled for 5 min 
in a thermomixer at 95°C with 1500 rpm shaking.

Determining 3H-2DG uptake into muscle tissue
Anion exchange chromatography was used to quantify 3H-p2DG, representing 3H-2DG that has been 
taken up by cells. For quantification of total (phosphorylated and unphosphorylated) 3H-2DG, 375 µL 
lysate aqueous phase was combined with 1125 µL water and reserved. For quantification of unphos-
phorylated 3H-2DG, 1000 µL lysate aqueous phase was added to 300 µL 37.5% (wt/vol) AG 1-X8 anion 
exchange resin (Bio-Rad, Hercules, CA, USA: 1401441) and washed with 3 mL water to remove p2DG. 
Liquid scintillation cocktail (3 mL) was then added to 1500 µL total and unphosphorylated 3H-2DG 
solutions, and 3H-2DG was measured using a Tri-Carb 2810R Liquid Scintillation Counter. Unphos-
phorylated and total 3H-2DG scintillation counts were subtracted to quantify 3H-p2DG.

3H-2DG blood concentration at 1, 5, 7.5, and 10 min after injection was fit to an exponential curve 

‍y = Cp
(
0
)

e−Kpt
‍, where ‍Cp

(
0
)
‍ represents the predicted initial tracer concentration (DPM/µL) and ‍Kp‍ 

represents the rate of tracer disappearance from the blood (1/min), to model the disappearance of 3H-
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which likely indicates insufficient diffusion of circulating 3H-2DG into the tail vein. To account for different 
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rates of blood 3H-2DG disappearance across mice, 3H-2DG uptake was calculated as a rate constant 
(Goodner et al., 1980):

	﻿‍
Ki =

Ci
(
t
)

Kp

Cp
(
0
) (

1 − e−Kpt)
‍�

where ‍t‍ represents the time after injection that the animal was sacrificed (min) and ‍Ci
(
t
)
‍ represents the 

concentration of 3H-p2DG in the tissue harvested at time ‍t‍ (DPM/mg tissue).

Phosphoproteomics sample preparation
Phosphopeptides were isolated using the EasyPhos protocol (Humphrey et  al., 2018) with minor 
modifications. Protein (C57Bl6J and NOD: 755 µg, BXH9 and BXD34: 511 µg, CAST: 364 µg) was 
digested into peptides by incubation in 1% (wt/wt) Trypsin and LysC on a thermomixer at 37°C with 
1500  rpm shaking for 14  hr. Following digestion, 400  µL 100% isopropanol and 100  µL EasyPhos 
enrichment buffer (48% [vol/vol] TFA, 8 mM KH2PO4) were sequentially added with mixing (1500 rpm, 
30 s) after each addition. Lysate was centrifuged at 20,000 × g for 15 min to pellet insoluble mate-
rial and transferred to a deep well plate. The EasyPhos protocol was then followed from step 12 
(Humphrey et al., 2018).

Liquid chromatography-tandem mass spectrometry
Enriched phosphopeptides in MS loading buffer (2% ACN, 0.3% TFA) were loaded onto in-house 
fabricated 55 cm columns (75 µM ID), packed with 1.9 µM C18 ReproSil Pur AQ particles (Dr. Maisch 
HPLC GmbH, Ammerbuch, DEU) with a Dionex U3000 HPLC (Thermo Fisher Scientific), interfaced 
with an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific). Column temperature was 
maintained at 60°C using a column oven (Sonation lab solutions, Biberach, DEU), and peptides were 
separated using a binary buffer system comprising 0.1% formic acid (buffer A) and 80% ACN plus 
0.1% formic acid (buffer B) at a flow rate of 400 nL/min. A gradient of 3–19% buffer B was employed 
over 40 min followed by 19–41% buffer B over 20 min, resulting in approximately 1 hr gradients. 
Peptides were analysed with one full scan (350–1400 m/z, R=120,000) at a target of 3e6 ions, followed 
by 48 DIA MS/MS scans (350–1022 m/z) with higher-energy collisional dissociation (target 3e6 ions, 
max injection time 22 ms, isolation window 14 m/z, 1 m/z window overlap, normalised collision energy 
25%), and fragments were detected in the Orbitrap (R=15,000).

MS raw data processing
Raw spectral data were analysed using Spectronaut (v16.0.220606.53000). Data were searched using 
directDIA against the Mouse UniProt Reference Proteome database (January 2022 release), with 
default settings (precursor and protein Qvalue cutoffs 0.01, Qvalue filtering, MS2 quantification), with 
‘PTM localisation’ filtering turned on (threshold 0.5), and the inbuilt peptide collapse function.

Phosphoproteomics data processing
Phosphopeptide intensities were log2 transformed and median normalised. Non-class I phospho-
peptides (maximum localisation score across samples  ≤0.75) were then removed. Finally, for each 
phosphopeptide, outlier values were removed that had a log2 intensity <5 and were >6 log2 intensity 
units lower than the phosphopeptide median. Log2 fold changes between conditions were computed 
using condition medians.

Identifying insulin-regulated phosphopeptides
To allow comparison across conditions, phosphopeptides were filtered for those highly quantified 
in most strain-diet combinations. For a given phosphopeptide, this filtering was performed on two 
levels. Firstly, each of the 10 strain-diet combinations were retained if there were ≥3 insulin-stimulated 
values and  ≥3 unstimulated values. Then, the phosphopeptide itself was retained if  ≥8 strain-diet 
combinations had passed the previous filtering. Phosphopeptides were then fit to a three-way ANOVA 
with all interaction terms (‘aov’ in the R package ‘stats’) and an F-test was performed assessing the 
main effect of insulin stimulation. To correct for multiple hypothesis testing p-values were converted 
into q-values (R package ‘qvalue’; Storey, 2002). The log2(insulin/unstimulated) fold change with 
the greatest magnitude across strain-diet combinations was then calculated (max log2(insulin/

https://doi.org/10.7554/eLife.89212
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unstimulated)). Phosphopeptides were considered ‘insulin-regulated’ when q<0.05  and if insulin 
increased or decreased phosphorylation by  >1.5-fold in at least one strain-diet combination (max 
log2(insulin/unstimulated)>0.58 or <–0.58).

Calculation of insulin response values
For all phosphopeptides the distribution of ‘insulin responses’ in each strain-diet combination 
was calculated. Specifically, within each strain-diet combination all insulin-stimulated values were 
normalised by subtracting the unstimulated median.

Identifying strain and diet effects
Strain effects
For each insulin-regulated phosphopeptide a one-way ANOVA was performed modelling the insulin 
response as a function of mouse strain within the CHOW diet. p-Values were converted to q-values. 
For significant phosphopeptides (q<0.05), t-tests were performed comparing the insulin response of 
C57Bl6J to each of the other four strains. t-Test p-values were converted to q-values and considered 
significant when q<0.05. To ensure that significant differences between a strain and C57Bl6J were of 
a meaningful magnitude, the strain’s log2(insulin/unstimulated) was compared to the C57Bl6J log2(-
insulin/unstimulated). In general, if the absolute difference between the two was greater than 0.58 
this was accepted. However, this threshold was decreased for phosphopeptides with weaker insulin 
regulation. Specifically, the difference was retained if it passed the following filtering:

	﻿‍ Strain log2(insulin/unstimulated) > f(C57Bl6J log2(insulin/unstimulated))‍�

or

	﻿‍ Strain log2(insulin/unstimulated) < g(C57Bl6J log2(insulin/unstimulated))‍�

where ‍f(x)‍ and ‍g(x)‍ are defined as:

	﻿‍

f(x) =





x + 0.58, if x ≥ 2 × 0.58
5
4

x + 1
2
× 0.58, if 0 ≤ x < 2 × 0.58

x + 1
2
× 0.58, if − 1

2
× 0.58 ≤ x < 0

4
5

x + 2
5
× 0.58, if − 3 × 0.58 ≤ x < −1

2
× 0.58

x + 0.58, if x < −3 × 0.58




‍�

	﻿‍

g(x) =





x − 0.58, if x ≥ 3 × 0.58
4
5

x + 2
5
× 0.58, if 1

2
× 0.58 ≤ x < 3 × 0.58

x − 1
2
× 0.58, if 0 ≤ x < 1

2
× 0.58

5
4

x − 1
2
× 0.58, if − 2 × 0.58 ≤ x < 0

x − 0.58, if x < −2 × 0.58




‍�

An insulin-regulated phosphopeptide was considered to have a ‘Strain effect’ if the insulin response 
in at least one strain was different to C57Bl6J using the q-value and log2 fold change criteria described 
above.

Uniform diet and Strain×Diet effects
For each insulin-regulated phosphopeptide a two-way ANOVA was performed modelling the insulin 
response as a function of strain, diet, and their interaction. The p-values for the Diet and Strain×Diet 
terms were converted to q-values. Whenever the Strain×Diet term was significant (q<0.05), additional 
tests were performed to identify specific strains in which the insulin response differed between CHOW 
and HFD. If the Strain×Diet term was not significant but the Diet term was significant, a separate 
filtering procedure was performed.

When the Strain×Diet term was significant, t-tests were performed to compare the CHOW insulin 
response to the HFD insulin response within each strain. When a t-test was significant (q<0.05), the 

https://doi.org/10.7554/eLife.89212
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log2(insulin/unstimulated) filtering procedure described for ‘Strain effects’ was applied comparing 
CHOW and HFD fold changes. Insulin-regulated phosphopeptides were considered to have a 
‘Strain×Diet effect’ if there was a difference between CHOW and HFD in at least one strain.

When only the Diet term was significant, the log2(insulin/unstimulated) filtering procedure 
described for ‘Strain effects’ was applied, comparing the mean log2(insulin/unstimulated) across 
strains within CHOW, to the mean across HFD. Insulin-regulated phosphopeptides that passed this 
filter were considered to have a ‘Uniform diet effect’.

Curated insulin signalling subnetwork
A subnetwork of insulin-regulated phosphosites was curated by compiling all sites on proteins 
from a previously published knowledge pathway-derived list of canonical insulin signalling proteins 
(Needham et al., 2022). Several phosphosites and proteins that were not detected as insulin regu-
lated were included due to their importance in the insulin signalling pathway. Additionally, all in vivo 
substrates of canonical insulin-regulated kinases (Akt, mTOR, AMPK, Raf, Mek1/2, Erk1/2, p90RSK/
Rsk2, p70S6K, Pdk1, INSR) annotated in PhosphositePlus were included (Hornbeck et  al., 2015). 
Annotations from orthologous phosphosites were pooled across species using PhosphositePlus Site 
Group IDs. Phosphosite regulatory roles from PhosphositePlus were indicated after manual validation 
by literature search. Proteins were assigned to functional groups (e.g. mRNA processing, lipid metab-
olism) based on their Uniprot descriptions.

Kinase substrate enrichment analysis
Kinase substrate annotations were collated from PhosphositePlus and mapped into phosphopro-
teomics data using Site Group IDs. Only annotations supported by in vivo evidence were used. Anno-
tations for kinase isoforms (e.g. Akt1, Akt2, Akt3) were merged. Substrate annotations for GSK3 were 
supplemented with a recent list of 274 putative GSK3 substrates determined by phosphoproteomics 
and motif analysis (Fazakerley et al., 2023). Autophosphorylation sites and promiscuous phospho-
sites targeted by ≥4 kinases were removed. KSEA was then performed with the ‘ksea’ function from 
the R package ‘ksea’ (Hernandez-Armenta et al., 2017) (version: 0.1.2) using insulin response data 
and 1000 permutations to determine empirical p-values. Only phosphopeptides quantified in ≥50% 
of samples and with  ≥1 insulin response value in all strain-diet combinations were used. In each 
sample kinases with <5 quantified substrates were excluded, and only kinases with significant enrich-
ment (p<0.05) in ≥5 samples were used in subsequent analysis. To identify Strain effects on kinase 
activity, one-way ANOVAs were performed on CHOW KSEA enrichment scores. To identify Uniform 
diet or Strain×Diet effects, two-way ANOVAs were performed on KSEA enrichment scores testing 
the effects of strain, diet, and their interaction. p-Values were adjusted by the Benjamini-Hochberg 
procedure.

Insulin signalling subnetwork analysis
WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath, 2008) was performed with the ‘block-
wiseModules’ function from the R package ‘WGCNA’ (version 1.71) using the insulin response values 
of all insulin-regulated phosphopeptides. Default parameters were used except for power = 3 (deter-
mined as recommended in Zhang and Horvath, 2005), deepSplit = 3, minModuleSize = 15, reas-
signThreshold = 0, and mergeCutHeight = 0.25. Subnetwork eigengenes were extracted and termed 
‘eigenpeptides’.

One-sided Fisher’s exact tests were performed to assess the enrichment of GO Biological Processes, 
GO Cellular Compartments (R package ‘​org.​Mm.​eg.​db’ version 3.15.0) (Carlson, 2019), and kinase 
substrates in each subnetwork relative to the entire phosphoproteome. Only pathways containing 
three or more subnetwork phosphoproteins were tested. Kinase substrate enrichment was performed 
using the same annotations as KSEA. p-Values were adjusted within each analysis by the Benjamini-
Hochberg procedure. Subnetwork phosphopeptides were mapped into insulin signalling temporal 
clusters defined in our previous study of insulin signalling dynamics (Humphrey et al., 2013), using 
PhosphositePlus Site Group IDs. The timepoint at which each cluster appeared to reach its maximum 
insulin-stimulated value was used as a measure of insulin response speed.

https://doi.org/10.7554/eLife.89212
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Glucose uptake correlations
For each insulin-regulated phosphopeptide, Pearson’s correlation tests were performed to assess 
the linear association between 3H-2DG uptake in insulin-stimulated mice and phosphopeptide insulin 
response values or unnormalised insulin-stimulated log2 intensity. Phosphopeptides were considered 
correlated with 3H-2DG uptake when q<0.1 and their Pearson’s correlation coefficient was of substan-
tial magnitude (r>0.35 or r<–0.35). Pearson’s correlation tests were also performed comparing insulin-
stimulated 3H-2DG uptake to KSEA enrichment scores in individual mice or using the median in each 
strain-diet combination.

Cell lines
GLUT4-HA-L6 myoblasts (Carey et al., 2006) were grown in α-MEM supplemented with 10% fetal 
bovine serum in a humidified chamber at 37°C, 10% CO2. Differentiation was induced by changing 
media to α-MEM supplemented with 2% horse serum for 5 days. Cells were frequently tested for 
mycoplasma which always revealed no contamination.

Pfkfb3 overexpression
Platinum-E (Plat-E) retroviral packaging cells were grown to confluency and transfected with 10 μg total 
DNA: either pBabe puromycin empty vector, pBabe puromycin Pfkfb3, or pWZL neomycin HA-GLUT4. 
After 48 hr retroviral media was collected and passed through a 0.45 μm filter. L6 myotubes were 
grown to confluence and retrovirally transfected with 2 mL of HA-GLUT4 neomycin viral media in the 
presence of 10 μg/mL polybrene. The following morning, cells were split into growth media containing 
neomycin (800 μg/mL) and passaged until only successfully transfected cells remained. These cells 
were then grown to confluence and retrovirally transfected again with 2 mL of either empty vector 
puromycin viral media or Pfkfb3 puromycin viral media in the presence of 10 μg/mL of polybrene. 
The following morning, cells were split into growth media containing both neomycin (800 μg/mL) and 
puromycin (2 μg/mL) and passaged until only successfully transfected cells remained in culture.

Extracellular acidification rate
The ECAR of GLUT4-HA-L6 cells myotubes was measured using Seahorse XFp miniplates and a 
Seahorse XF HS Mini Analyzer (Seahorse Bioscience, Copenhagen, Denmark) as previously described 
(Krycer et al., 2020). Cells incubated in palmitate or BSA control were washed twice with Krebs-
Ringer Bicarbonate Buffer (Sigma, K4002) and once with standard cell culture media without bicar-
bonate (XF-DMEM, pH 7.4). Cells were then incubated in XF-DMEM without glucose at 37°C for 1 hr 
in a non-CO2 incubator, followed by assaying in the XFp Analyzer. ECAR was measured after a 12 min 
equilibration period followed by mix/wait/read cycles of 3/0/3 min. After stabilising the baseline rates, 
compounds were injected to reach a final concentration of: 10 mM glucose, 5 μg/mL oligomycin, and 
50 mM 2-deoxyglucose (2DG), allowing estimation of glucose-driven glycolysis (glucose ECAR – basal 
ECAR), glycolytic capacity (oligomycin ECAR – 2DG ECAR), and non-glycolytic acidification (equal to 
2DG ECAR). Data were normalised to protein concentration and presented as a percentage of total 
ECAR.

2DG uptake in GLUT4-HA-L6 myotubes
2DG uptake into GLUT4-HA-L6 myotubes was performed as previously described with modifications 
(Carey et al., 2006; Masson et al., 2021). Cells were incubated overnight in α-MEM supplemented 
with either BSA-coupled 125 µM palmitic acid or BSA vehicle control before being washed 3× with 
37°C HEPES-buffered saline (HBS). Cells were then incubated in HBS supplemented with 10 µM unla-
belled 2DG and either 0 or 100 nM insulin at 37°C for 15 min. Cells were then incubated for a further 
5 min following the addition of 0.5 µCi/ml [3H]-2DG in HBS. Cells were then washed on ice 5× with 
ice-cold PBS and lysed in 1 M NaOH. For non-specific background uptake, one well per condition was 
pre-treated with cytochalasin B. Counts were determined by Perkin Elmer Quantulus GCT Liquid Scin-
tillation Counter (Perkin Elmer, Waltham, MA, USA). 2DG uptake was expressed relatively to protein 
concentration as determined by bicinchoninic acid assay after neutralisation with 1 M HCl and subtrac-
tion of non-specific uptake.

https://doi.org/10.7554/eLife.89212
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Immunoblotting
GLUT4-HA-L6 myotubes were incubated overnight (16 hr) in either BSA-conjugated 125 µM palmi-
tate or BSA vehicle control. Cells were optionally treated with insulin as described above, and then 
washed in ice-cold PBS and lysed by scraping directly into 55°C Laemmli sample buffer with 10% 
(TCEP). Samples were sonicated for 24 s (3 s on/3 s off) and heated at 65°C for 5 min. Samples were 
then resolved by SDS-PAGE as previously described (Nelson et al., 2022), transferred onto PVDF 
membranes and blocked in TBS-T (0.1% Tween in Tris-buffered saline) containing 5% skim milk for 
1 hr. Membranes were then washed 3×10 min in TBS-T and incubated overnight in primary antibodies 
against Pfkfb3 (Proteintech Group; 13763-1-AP) and α-tubulin (Cell Signalling Technologies #2125; 
diluted 1:1000). Insulin-stimulated cells were additionally incubated in primary antibodies against 
pT308 Akt (Cell Signaling Technologies #2965; diluted 1:1000), pS473 Akt (Cell Signaling Technologies 
#9271; diluted 1:1000), total pan-Akt (Cell Signaling Technologies #9272; diluted 1:1000), pS21/S9 
GSK3α/β (Cell Signaling Technologies #9327; diluted 1:1000), pT246 PRAS40 (Cell Signaling Technol-
ogies #13175; diluted 1:1000), total PRAS40 (Cell Signaling Technologies #2691, diluted 1:1000), and 
14-3-3 (Santa Cruz #sc-1657, diluted 1:5000). The following day membranes were washed 3×10 min in 
TBS-T and incubated for 1 hr in species-appropriate fluorescent antibodies. Imaging and densitometry 
were performed using LI-COR Image Studio.
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