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Abstract: This paper introduces a deconvolution-based method to enhance the elevation
resolution of a linear array-based three-dimensional (3D) photoacoustic (PA) imaging system.
PA imaging combines the high contrast of optical imaging with the deep, multi-centimeter spatial
resolution of ultrasound (US) imaging, providing structural and functional information about
biological tissues. Linear array-based 3D PA imaging is easily accessible and applicable for ex
vivo studies, small animal research, and clinical applications in humans. However, its elevation
resolution is limited by the acoustic lens geometry, which establishes a single elevation focus.
Previous work used synthetic aperture focusing (SAF) to enhance elevation resolution, but the
resolution achievable by SAF is constrained by the size of the elevation focus. Here, we introduce
the application of Richardson-Lucy deconvolution, grounded in simulated point-spread-functions,
to surpass the elevation resolution attainable with SAF alone. We validated this approach using
both simulation and experimental data, demonstrating that the full-width-at-half-maximum
of point targets on the elevation plane was reduced compared to using SAF only, suggesting
resolution improvement. This method shows promise for improving 3D image quality of existing
linear array-based PA imaging systems, offering potential benefits for disease diagnosis and
monitoring.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent decades, photoacoustic (PA) imaging has garnered increasing attention as a noninvasive
hybrid imaging modality that combines the high contrast of optical properties and the high spatial
resolution of ultrasound (US) imaging [1–3]. In PA imaging, a laser beam induces thermoelastic
expansion in biological tissues, converting laser energy into ultrasonic waves that are recorded
and used for image reconstruction [4]. Employing nonionizing radiation (both acoustic and
optical), PA imaging is safe for animal and human use within regulatory laser energy limits,
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offering functional insights through chromophore detection like deoxy/oxy-hemoglobin. Various
contrast agents have been developed for PA imaging, such as biocompatible dyes, plasmonic
nanoparticles, carbon nanotubes, organic nanoparticles, and microbubbles [5–7], each with unique
energy conversion mechanisms. For example, bio-compatible dyes convert light to acoustic
energy through fluorescence. Plasmonic nanoparticles absorb light energy through the plasmon
resonance effect, where free charges on the surface of plasmonic nanoparticles resonate with light.
Disease-specific contrast agents, like prostate-specific membrane antigens (PSMA)-specific PA
contrast agents [8–11], highlight PA imaging’s potential in targeted diagnostics. Compared to
limited-depth optical imaging modalities, such as confocal microscopy and optical coherence
tomography, PA imaging, particularly with near-infrared laser excitation, provides superior spatial
resolution in multi-centimeter imaging depth due to ultrasonic wave’s weak scattering. Among
many PA imaging system configurations, linear array-based PA imaging using commercially
available handheld linear array US transducers is an economical option and makes PA imaging
more readily available for clinical applications [12]. The only FDA-approved commercial
PA system (Imagio, Seno Medical, USA) for clinical applications so far is equipped with a
linear array transducer. However, the arbitrary orientation of 2D image acquisition complicates
consistent region of interest (ROI) imaging, which is vital in monitoring. Also, volumetric ROI
is visualized mentally based on continuously acquired 2D images. As a result, diagnosis relies
heavily on clinician expertise [13]. Mechanically scanning the linear array US transducer in
the elevation direction facilitates 3D PA imaging [14–15]. However, it was observed that the
elevation resolution of the 3D PA image is worse than the resolution on the lateral plane since only
fixed focusing was applied on the elevation plane due to the acoustic lens. It is worth mentioning
that simply reducing the elevation motion step size will not improve the elevation resolution.

Several methods have been proposed to enhance the elevation resolution in linear array-
based PA imaging systems [16]. Approaches involving multiple translation scans [17–21]
exhibit substantial improvement in elevation resolution but are limited by slow scanning speeds.
Modifying the transducer array presents another effective method [22], though it may incur
additional costs and complicates the clinical approval process. An alternative strategy employs
synthetic aperture focusing (SAF) in combination with various image reconstruction algorithms
to enhance elevation resolution [23–27]. While these methods may not achieve the same level
of resolution enhancement as those involving multiple scans or transducer modifications (as
SAF’s elevation resolution is constrained by the size of the elevation focus [16]), they offer the
advantage of fast data acquisition and do not necessitate transducer modification, making them
more suitable for clinical applications.

Deconvolution-based methods are widely used to enhance image resolution across various
imaging modalities [28–30]. Among these, Richardson-Lucy (R-L) deconvolution is noteworthy
for its iterative approach that leverages the known point spread function (PSF) of the imaging
system to improve resolution [31–32]. Compared to other deconvolution techniques, such as
Fourier transform-based deconvolution, R-L deconvolution is superior in image restoration. This
method has been effectively employed to enhance in-plane resolution in ring-shape array-based
PA tomography by precisely measuring PSFs across the imaging field of view [33]. While
acquiring PSFs in some PA imaging systems presents challenges, the blind deconvolution (BD)
method based on R-L deconvolution [34] has proven effective in enhancing resolution across
various PA imaging modalities, including PA computed tomography [35–36] and PA microscopy
[37], and super-resolution photoacoustic imaging [38–39]. However, as of yet, R-L deconvolution
and its counterparts have not been applied in linear array-based 3D PA imaging systems to
improve elevation resolution. Ideally, PSF of the linear array-based 3D PA imaging system would
be obtained without experimentation, allowing for the direct application of R-L deconvolution
for optimal results. Fortunately, the progress in PA imaging simulation technology now allows
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for the accurate computational determination of PSFs, paving the way for new applications of
R-L deconvolution in enhancing 3D PA imaging.

In this paper, we simulated the linear array-based PA imaging system and used point targets to
obtain PSFs based on SAF results. The R-L deconvolution method was subsequently applied to
surpass the elevation resolution attainable with SAF alone. The proposed deconvolution-based
method was first validated using simulation data, ensuing the method’s theoretical efficacy.
Wethen extended our validation to experimental data. The experimental imaging subjects included
a fishing wire phantom, chosen for its simplicity and suitability for resolution assessment, and
ex vivo pork liver, selected to demonstrate the method’s applicability to biological tissues. The
results show that the proposed method attains superior elevation resolution compared to the SAF
method alone. This advancement promises to enhance the capabilities of linear array-based PA
imaging systems, potentially leading to more accurate and detailed imaging in clinical settings.

2. Methods

2.1. Elevation synthetic aperture focusing

To overcome the challenge of poor elevation resolution in linear array-based 3D PA imaging
system, the SAF technique was applied along the elevation direction [26]. For conventional linear
array-based 3D PA imaging, the US transducer is linearly actuated with a fixed step size. A 3D
volume is formed by stacking 2D images beamformed with respect to the lateral plane. SAF
applies another stage on beamforming on the elevation plane to enhance both elevation resolution
and signal-to-noise ratio (SNR). In SAF, the focal point of the acoustic lens in the ultrasound
transducer is treated as a virtual source as shown in Fig. 1. SAF achieves the enlargement of the
receive aperture by synthesizing the received RF data in relevant sub-apertures with appropriate
delays. Considering RFn as the beamformed RF data on the lateral plane at step n in the elevation
motion, with a total of Np steps, slices of RFn are synthesized on the elevation plane using
delay-and-sum (DAS). The synthesized RF data, denoted as RFDAS, is formulated in Eq. (1).

RFDAS(zi, yi) =

Np∑︂
n=1

RFn(td(yn, zi, yi, n)) (1)

where zi and yi are physical locations of a particular pixel i in the axial direction and the elevation
direction, respectively. The time delay between the location of pixel i and the virtual source in
the elevation location yn is denoted as td, being computed as

td(yn, zi, yi, n) =

√︂
(yi − yn)

2 + (zi − F)2 + F
c

(2)

where F is the elevation focal depth, c is the speed of sound.

2.2. Richardson-Lucy (R-L) deconvolution

The probability that a pixel has a certain intensity can be modeled using a Poisson probability
mass function,

P(k) = e−λ
λk

k!
(3)

where k is the pixel intensity, P(k) ∈ R is the probability that a given pixel has an intensity of k. λ
stands for the mean pixel intensity in the photoacoustic image. Then the statistics of the entire
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Fig. 1. Synthetic aperture focusing on the elevation plane applied onto the linear array-based 
3D photoacoustic imaging framework.

2.2 Richardson-Lucy (R-L) deconvolution
The probability that a pixel has a certain intensity can be modeled using a Poisson probability 
mass function,

𝑃(𝑘) = 𝑒―𝜆 𝜆𝑘

𝑘!
(3)

Where 𝑘 is the pixel intensity, 𝑃(𝑘) ∈ 𝑅 is the probability that a given pixel has an intensity of 
𝑘. 𝜆 stands for the mean pixel intensity in the photoacoustic image. Then the statistics of the 
entire image can be modelled as

𝑃(𝐾|𝐸) =
𝑀×𝑁

𝑖=1
𝑒―𝐸𝑖 ∙

𝐸𝑖
𝐾𝑖

𝐾𝑖!
(4)

Where 𝐾 ∈ 𝑅𝑀×𝑁 is 2D image data on the elevation plane obtained by an imaging device, E ∈
𝑅𝑀×𝑁 is the 2D image uncorrupted by noise and 𝑃(𝐾|𝐸) ∈ 𝑅 is the joint probabilities of all 
pixels. The objective of deconvolution is to find the E which maximizes 𝑃(𝐾). Taking 
logarithms on both sides’ of (4) yields

𝑙𝑛(𝑃(𝐾|𝐸)) = ―
𝑀×𝑁

𝑖=1
(𝐸𝑖 ― 𝐾𝑖 ∙ 𝑙𝑛(𝐸𝑖) + 𝑙𝑛(𝐾𝑖!) ) (5)

In a linear, shift-invariant imaging system, the image without noise (𝐸) can be modeled as the 
convolution between the unblurred image without noise (𝑂) and 𝑃𝑆𝐹 (𝐻) of the imaging 
system.

𝐸 = 𝑂 ∗ 𝐻 (6)
where ∗  is two-dimensional convolution. The objective of R-L deconvolution is to maximize 𝑃
(𝐾|𝐸), which is essentially maximizing 𝑃(𝐾|𝑂). A loss function 𝐽(𝑂) can be derived by 

Fig. 1. Synthetic aperture focusing on the elevation plane applied onto the linear array-based
3D photoacoustic imaging framework.

combining the above equations with the logarithmic of the total probability and adding a 
negative sign. Minimizing loss function 𝐽(𝑂) is equivalent to maximizing 𝑃(𝐾|𝐸),

𝐽(𝑂) = (𝑂 ∗ 𝐻 ― 𝐾 ∙ 𝑙𝑛(𝑂 ∗ 𝐻) ) (7)

where 𝐽(𝑂) is a convex function which guarantees to have a minimum (here the product ∙  and 
natural logarithm 𝑙𝑛 are elementwise). The optimization can be done using gradient descent, 
with the gradient of 𝐽(𝑂) computed as

∇𝐽(𝑂) =
∂𝐽(𝑂)

∂𝑂 = 𝟏 ―
𝐾

𝑂 ∗ 𝐻 ∗ 𝐻+ (8)

𝐻+(𝑥,𝑦) = 𝐻( ― 𝑥, ― 𝑦) (9)
Where 𝟏 ∈ 𝑅𝑀×𝑁 is a matrix of ones. In Eq. (8) the division is elementwise. A minimum of 
𝐽(𝑂) can be found in an iterative way by updating 𝑂 (and therefore 𝐸) in each iteration, where 
𝛿 is the rate of gradient descent.

𝑂𝑖+1 = 𝑂𝑖 ― 𝛿 ∙ ∇𝐽(𝑂𝑖) (10)
𝐸𝑖+1 = 𝑂𝑖+1 ∗ 𝐻 (11)

2.3 Linear array-based PA imaging system

The linear array-based PA imaging system we implemented includes a linear array ultrasound 
transducer (L22_14vX LF, Verasonics, USA) with an 18 MHz central frequency, and a dual-
head optical fiber bundle (01140-REVC, CeramOptec, USA) with a 22 mm length line output. 
A Q-switched Nd:YAG laser (Q-smart 450, Quantel, USA)  outputted pulsed laser at 20 Hz, 
and an optical parametric oscillator (MagicPRISM, Opotek, USA) was used to modulate the 
laser wavelength. An US imaging research platform (Vantage 128, Verasonics, USA) was used 
to acquire PA signals with a maximum sampling frequency of 62.5 MHz. A linear actuator 
(VT-80, Physik Instrumente, Germany) was used for elevation linear motion with 0.8 µm 
unidirectional repeatability.

Fig. 2. Schematic of linear array-based 3D photoacoustic imaging system.

2.4 Elevation PSF simulation and simulation validation

A simulation was carried out using the k-Wave MATLAB simulation package [40] to model 
the elevation PSF of the PA imaging system. A model of the L22_14vX LF transducer was set 
up, and its specifications are summarized in Table 1. The grid size was 1750 (axial) by 10 
(lateral) by 500 (elevation) with a spatial step size of 20 µm in all directions, resulting in a 
maximum supported photoacoustic frequency of 37 MHz. Perfectly matched layers (PMLs) of 
10 grid point thick were placed on edges along the lateral and axial directions, and 15 grid 
points thick were posed on edges along the elevation direction. Only one element is used to 
receive PA signals to minimize the grid size. Point targets were placed at five different depths 

Fig. 2. Schematic of linear array-based 3D photoacoustic imaging system.

image can be modelled as

P(K |E) =
M×N∏︂
i=1

e−Ei ·
Ei

Ki

Ki!
(4)

where K ∈ RM×N is 2D image data on the elevation plane obtained by an imaging device,
E ∈ RM×N is the 2D image uncorrupted by noise and P(K |E) ∈ R is the joint probabilities of all
pixels. The objective of deconvolution is to find the E which maximizes P(K). Taking logarithms
on both sides’ of (4) yields

ln(P(K |E)) = −

M×N∑︂
i=1

(Ei − Ki · ln(Ei) + ln(Ki!)) (5)

In a linear, shift-invariant imaging system, the image without noise (E) can be modeled as the
convolution between the unblurred image without noise (O) and PSF (H) of the imaging system.

E = O ∗ H (6)

where ∗ is two-dimensional convolution. The objective of R-L deconvolution is to maximize
P(K |E), which is essentially maximizing P(K |O). A loss function J(O) can be derived by
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combining the above equations with the logarithmic of the total probability and adding a negative
sign. Minimizing loss function J(O) is equivalent to maximizing P(K |E),

J(O) =
∑︂

(O ∗ H − K · ln(O ∗ H)) (7)

where J(O) is a convex function which guarantees to have a minimum (here the product · and
natural logarithm ln are elementwise). The optimization can be done using gradient descent,
with the gradient of J(O) computed as

∇J(O) =
∂J(O)

∂O
=

[︃
1 −

K
O ∗ H

]︃
∗ H+ (8)

H+(x, y) = H(−x,−y) (9)

where 1 ∈ RM×N is a matrix of ones. In Eq. (8) the division is elementwise. A minimum of J(O)

can be found in an iterative way by updating O (and therefore E) in each iteration, where δ is the
rate of gradient descent.

Oi+1 = Oi − δ · ∇J(Oi) (10)

Ei+1 = Oi+1 ∗ H (11)

2.3. Linear array-based PA imaging system

The linear array-based PA imaging system we implemented (Fig. 2) includes a linear array
ultrasound transducer (L22_14vX LF, Verasonics, USA) with an 18 MHz central frequency, and a
dual-head optical fiber bundle (01140-REVC, CeramOptec, USA) with a 22 mm length line output.
A Q-switched Nd:YAG laser (Q-smart 450, Quantel, USA) outputted pulsed laser at 20 Hz, and
an optical parametric oscillator (MagicPRISM, Opotek, USA) was used to modulate the laser
wavelength. An US imaging research platform (Vantage 128, Verasonics, USA) was used to
acquire PA signals with a maximum sampling frequency of 62.5 MHz. A linear actuator (VT-80,
Physik Instrumente, Germany) was used for elevation linear motion with 0.8 µm unidirectional
repeatability.

2.4. Elevation PSF simulation and simulation validation

A simulation was carried out using the k-Wave MATLAB simulation package [40] to model the
elevation PSF of the PA imaging system. A model of the L22_14vX LF transducer was set up,
and its specifications are summarized in Table 1. The grid size was 1750 (axial) by 10 (lateral)
by 500 (elevation) with a spatial step size of 20 µm in all directions, resulting in a maximum
supported photoacoustic frequency of 37 MHz. Perfectly matched layers (PMLs) of 10 grid point
thick were placed on edges along the lateral and axial directions, and 15 grid points thick were
posed on edges along the elevation direction. Only one element is used to receive PA signals
to minimize the grid size. Point targets were placed at five different depths in the center of
elevation scan range. PA signals of 18 MHz were repeated for five cycles in each emission with a
source strength of 5 MPa. The sampling frequency of the simulation was 248 MHz. The original
simulation data was downsampled, and the sampling frequency became 62.5 MHz to match with
the actual imaging system. A water medium is assumed for wave propagation whose physical
properties [41] are summarized in Table 2. The step size of elevation movement is 0.1 mm, with
a scanning range of 10 mm. The lab desktop used for simulation had an AMD Ryzen 3970x
32-core 64-thread processor, 128 GB RAM, and an Nvidia TITAN RTX GPU with 24 GB of
memory. Computation in k-Wave was accelerated by the GPU and the entire simulation took 25
hours.

Data were synthesized on the elevation plane using DAS-based SAF with an F-number of
2.0. After SAF, we sampled patches around five point targets as PSFs, and the elevation plane
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Table 1. L22_14vX LF
transducer parameters

Central frequency [MHz] 18

Number of elements 128

Pitch [mm] 0.1

Element width [mm] 0.08

Element length [mm] 1.6

Elevation focal depth [mm] 20

Table 2. Assumed acoustic
and optical properties of

water

Sound speed [m/s] 1480

Density [kg/m3] 1000

α0 [dB/(cmMHzb)] 0.0021

b 2.0

B/A 4.98

was divided into three regions: above the focal depth, at the focal depth, and below the focal
depth. PSFs in each region are averaged to get a representative PSF. In R-L deconvolution, data
were deconvoluted using PSFs from the corresponding regions. Results were evaluated using the
full-width-at-half-maximum (FWHM) and signal-to-noise ratio (SNR).

2.5. Validation with experimental data

Experiments were carried out, including a fishing wire phantom and an ex vivo pork liver sample,
to validate the proposed method. The black fishing wire has a diameter of 200 µm. Four wires
were included in the phantom (arranged in a 2 by 2 grid) with an axial spacing of 5 mm and
an elevation spacing of 10 mm. Pork liver was chosen for its hemoglobin richness, a common
chromophore for PA imaging. The ex vivo pork liver sample was submerged in saline. In both
experiments, subjects were imaged using the experimental setup with a 720 nm laser and an
elevation motion step size of 0.1 mm. After stacking 2D images, PA data were firstly beamformed
on the lateral plane using the beamforming function in k-Wave and then synthesized on the
elevation plane using DAS-based SAF with a F-number of 2.0. Data were then deconvoluted using
the simulated PSF below the focal depth. We employed 10 iterations in the R-L deconvolution
process for both datasets. The computation time is approximately 0.2 seconds for each elevation
frame. The wire phantom and the ex vivo dataset consist of 128 elevation frames to formulate a
3D volume, and thus the total computation time is approximately 26 seconds for each volumetric
dataset. FWHM and SNR were used for image quality evaluation.

3. Results

3.1. Elevation PSF simulation

The original data on the elevation plane at the central lateral location of the linear array transducer
are shown in Fig. 3 (a), data after applying SAF are shown in Fig. 3 (b), and results after applying
R-L deconvolution to the SAF data (abbreviated as SAFDeconv) are shown in Fig. 3 (c). The
corresponding PSF was used in R-L deconvolution at each depth, as shown in Fig. 4 (a-c). The
beam profiles of five-point targets are plotted in Fig. 5. All point targets were used in the image
quality evaluation. FWHM and SNR are computed, and the statistics are presented in Fig. 6. It
was found that SAFDeconv achieved smaller FWHM values at all depths compared to SAF. It is
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worth noting that at 20 mm (the elevation focal depth), SAFDeconv brought improvement, while
SAF did not make obvious changes to FWHM compared to the original data. In terms of SNR,
SAFDeconv performed better than SAF at all depths.
3. Results
3.1 Elevation PSF simulation

Fig. 3. Simulated images of point targets with linear motion along the elevation direction. (a) 
Data on the elevation plane at the central lateral location of the linear array transducer. (b) 

Data on the elevation plane focused with SAF. (c) Data on the elevation plane focused with 
SAF and enhanced with R-L deconvolution (SAFDeconv).

Fig. 4. PSF sampled from Fig. 3 (b). (a) Averaged PSF of the region above the elevation focal 
depth. (b) Averaged PSF at the elevation focal depth. (c) Averaged PSF of the region below 

the elevation focal depth.

Fig. 3. Simulated images of point targets with linear motion along the elevation direction.
(a) Data on the elevation plane at the central lateral location of the linear array transducer.
(b) Data on the elevation plane focused with SAF. (c) Data on the elevation plane focused
with SAF and enhanced with R-L deconvolution (SAFDeconv).

3. Results
3.1 Elevation PSF simulation

Fig. 3. Simulated images of point targets with linear motion along the elevation direction. (a) 
Data on the elevation plane at the central lateral location of the linear array transducer. (b) 

Data on the elevation plane focused with SAF. (c) Data on the elevation plane focused with 
SAF and enhanced with R-L deconvolution (SAFDeconv).

Fig. 4. PSF sampled from Fig. 3 (b). (a) Averaged PSF of the region above the elevation focal 
depth. (b) Averaged PSF at the elevation focal depth. (c) Averaged PSF of the region below 

the elevation focal depth.

Fig. 4. PSF sampled from Fig. 3 (b). (a) Averaged PSF of the region above the elevation
focal depth. (b) Averaged PSF at the elevation focal depth. (c) Averaged PSF of the region
below the elevation focal depth.

3.2. Wire phantom validation

As the first part of the experimental validation of the proposed method, we collected data on a
fishing wire phantom with wires oriented along the lateral direction of the linear array transducer.
The original data on the elevation plane at the central lateral location of the linear array transducer
are shown in Fig. 7 (a), data after applying SAF are shown in Fig. 7 (b), and SAFDeconv results
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The original data on the elevation plane at the central lateral location of the linear array 
transducer are shown in Fig. 3 (a), data after applying SAF are shown in Fig. 3 (b), and results 
after applying R-L deconvolution to the SAF data (abbreviated as SAFDeconv) are shown in 
Fig. 3 (c). The corresponding PSF was used in R-L deconvolution at each depth, as shown in 
Fig. 4 (a-c). The beam profiles of five-point targets are plotted in Fig. 5. All point targets were 
used in the image quality evaluation. FWHM and SNR are computed, and the statistics are 
presented in Fig. 6. It was found that SAFDeconv achieved smaller FWHM values at all depths 
compared to SAF. It is worth noting that at 20 mm (the elevation focal depth), SAFDeconv 
brought improvement, while SAF did not make obvious changes to FWHM compared to the 
original data. In terms of SNR, SAFDeconv performed better than SAF at all depths.

Fig. 5. Beam profiles of point targets.

Fig. 6. (a) FWHM variation versus depth. (b) SNR variation versus depth.

3.2 Wire phantom validation

As the first part of the experimental validation of the proposed method, we collected data on a 
fishing wire phantom with wires oriented along the lateral direction of the linear array 
transducer. The original data on the elevation plane at the central lateral location of the linear 
array transducer are shown in Fig. 7 (a), data after applying SAF are shown in Fig. 7 (b), and 
SAFDeconv results are shown in Fig. 7 (c). The simulated PSF shown in Fig. 4(c) was used in 
R-L deconvolution. Figs. 7 (d) - (f) show corresponding visualizations of volume data. Some 
gaps are visible in 3D visualization due to two reasons. First there were sidelobes apart from 
the main lobe in wire targets’ signal, as indicated by yellow arrows at the bottom of Fig. 7(d). 
Second there were some dysfunctional channels in our data acquisition platform, indicated by 
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Fig. 6. (a) FWHM variation versus depth. (b) SNR variation versus depth.

are shown in Fig. 7 (c). The simulated PSF shown in Fig. 4(c) was used in R-L deconvolution.
Figures 7 (d) - (f) show corresponding visualizations of volume data. Some gaps are visible in
3D visualization due to two reasons. First there were sidelobes apart from the main lobe in wire
targets’ signal, as indicated by yellow arrows at the bottom of Fig. 7(d). Second there were some
dysfunctional channels in our data acquisition platform, indicated by yellow arrows on the top of
Fig. 7(d). The beam profiles of all wire targets (cross-section view) are plotted in Fig. 8. FWHM
and SNR are presented in Table. 3. It is observed that SAFDeconv improved FWHM compared
to SAF results. The SNR of SAFDeconv is also higher than SAF results.

Table 3. FWHM and SNR of all wire targets a

Mean (std) Original SAF SAFDeconv

FWHM [mm] 3.16 (±0.25) 3.01 (±0.32) 1.98 (±0.78)

SNR [dB] 23.09 (±3.35) 24.83 (±3.31) 32.52 (±2.73)

a*Number out of parentheses is the mean value and the number in
parentheses is the standard deviation.

3.3. Ex-vivo validation

In the second part of experimental validation, a piece of pork liver was imaged, and data were
used to validate the proposed deconvolution method. Two different views of 3D visualizations of
the liver sample are shown in Fig. 9, and a cross-sectional view of the sample at the central lateral
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yellow arrows on the top of Fig. 7(d). The beam profiles of all wire targets (cross-section view) 
are plotted in Fig. 8. FWHM and SNR are presented in Table. 3. It is observed that SAFDeconv 
improved FWHM compared to SAF results. The SNR of SAFDeconv is also higher than SAF 
results.

Fig. 7. 3D photoacoustic image of fishing wire phantom. (a) Data on elevation plane at the 
central location of the linear array transducer. (b) Data on the elevation plane focused with 

SAF. (c) Data on the elevation plane with SAFDeconv. (d) – (e): 3D visualization of complete 
data corresponding to (a) – (c). (the dynamic range is [-20, 0] dB)

Fig. 8. Beam profiles of wire phantoms (cross-sectional view).

Fig. 7. 3D photoacoustic image of fishing wire phantom. (a) Data on elevation plane at
the central location of the linear array transducer. (b) Data on the elevation plane focused
with SAF. (c) Data on the elevation plane with SAFDeconv. (d) – (e): 3D visualization of
complete data corresponding to (a) – (c). (the dynamic range is [-20, 0] dB)

yellow arrows on the top of Fig. 7(d). The beam profiles of all wire targets (cross-section view) 
are plotted in Fig. 8. FWHM and SNR are presented in Table. 3. It is observed that SAFDeconv 
improved FWHM compared to SAF results. The SNR of SAFDeconv is also higher than SAF 
results.

Fig. 7. 3D photoacoustic image of fishing wire phantom. (a) Data on elevation plane at the 
central location of the linear array transducer. (b) Data on the elevation plane focused with 

SAF. (c) Data on the elevation plane with SAFDeconv. (d) – (e): 3D visualization of complete 
data corresponding to (a) – (c). (the dynamic range is [-20, 0] dB)

Fig. 8. Beam profiles of wire phantoms (cross-sectional view).
Fig. 8. Beam profiles of wire phantoms (cross-sectional view).



Research Article Vol. 15, No. 3 / 1 Mar 2024 / Biomedical Optics Express 1856

location of the linear array transducer was chosen for quantification, as shown in Fig. 10. The
original data on the elevation plane on the central lateral location of the linear array transducer
are shown in Fig. 10 (a), data after applying SAF are shown in Fig. 10 (b), and SAFDeconv
results are shown in Fig. 10 (c). As with the wire phantom data, the simulated PSF in Fig. 4
(c) was used in R-L deconvolution. Four regions of interest (ROIs) with point-shape signals
were selected for FWHM and SNR calculation, and their beam profiles are plotted in Fig. 11.
FWHM and SNR of selected ROIs are presented in Table. 4. From the statistics, it is evident that
SAFDeconv produced a smaller FWHM and a better SNR than SAF.

Table. 3. FWHM and SNR of all wire targets.
*Number out of parentheses is the mean value and the number in parentheses is the standard deviation.

Mean (std) Original SAF SAFDeconv
FWHM [mm] 3.16 (±0.25) 3.01 (±0.32) 1.98 (±0.78)
SNR [dB] 23.09 (±3.35) 24.83 (±3.31) 32.52 (±2.73)

3.3 Ex-vivo validation
In the second part of experimental validation, a piece of pork liver was imaged, and data were 
used to validate the proposed deconvolution method. Two different views of 3D visualizations 
of the liver sample are shown in Fig. 9, and a cross-sectional view of the sample at the central 
lateral location of the linear array transducer was chosen for quantification, as shown in Fig. 
10. The original data on the elevation plane on the central lateral location of the linear array 
transducer are shown in Fig. 10 (a), data after applying SAF are shown in Fig. 10 (b), and 
SAFDeconv results are shown in Fig. 10 (c). As with the wire phantom data, the simulated PSF 
in Fig.4 (c) was used in R-L deconvolution. Four regions of interest (ROIs) with point-shape 
signals were selected for FWHM and SNR calculation, and their beam profiles are plotted in 
Fig. 11. FWHM and SNR of selected ROIs are presented in Table. 4. From the statistics, it is 
evident that SAFDeconv produced a smaller FWHM and a better SNR than SAF.

Fig. 9. 3D photoacoustic images of ex vivo pork liver sample in two visualization views. (a) 
Original photoacoustic data in view 1. (b) Data focused on elevation plane with SAF in view 1. 
(c) SAFDeconv results in view 1. (d) Original photoacoustic data in view 2. (e) Data focused 

on elevation plane with SAF in view 2. (f) SAFDeconv results in view 2. (the dynamic range is 
[-40, 0] dB)

Fig. 9. 3D photoacoustic images of ex vivo pork liver sample in two visualization views.
(a) Original photoacoustic data in view 1. (b) Data focused on elevation plane with SAF in
view 1. (c) SAFDeconv results in view 1. (d) Original photoacoustic data in view 2. (e)
Data focused on elevation plane with SAF in view 2. (f) SAFDeconv results in view 2. (the
dynamic range is [-40, 0] dB)

Fig. 10. Pork liver sample on elevation plane of central lateral location of the transducer and 
selected ROIs for quantification. (a) Original photoacoustic data. (b) Data focused on elevation 

plane with SAF. (c) SAFDeconv results.

Fig. 11. Beam profiles of selected ROIs in pork liver data.

Table. 4. FWHM and SNR of selected ROIs.
*Number out of parentheses is the mean value and the number in parentheses is standard deviation.

Mean (std) Original SAF SAFDeconv
FWHM [mm] 1.33 (±0.66) 1.19 (±0.30) 0.55 (±0.06)
SNR [dB] 33.07 (2.66) 38.61 (±1.73) 42.95 (±2.06)

Fig. 10. Pork liver sample on elevation plane of central lateral location of the transducer
and selected ROIs for quantification. (a) Original photoacoustic data. (b) Data focused on
elevation plane with SAF. (c) SAFDeconv results.
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Fig. 10. Pork liver sample on elevation plane of central lateral location of the transducer and 
selected ROIs for quantification. (a) Original photoacoustic data. (b) Data focused on elevation 

plane with SAF. (c) SAFDeconv results.

Fig. 11. Beam profiles of selected ROIs in pork liver data.

Table. 4. FWHM and SNR of selected ROIs.
*Number out of parentheses is the mean value and the number in parentheses is standard deviation.

Mean (std) Original SAF SAFDeconv
FWHM [mm] 1.33 (±0.66) 1.19 (±0.30) 0.55 (±0.06)
SNR [dB] 33.07 (2.66) 38.61 (±1.73) 42.95 (±2.06)

Fig. 11. Beam profiles of selected ROIs in pork liver data.

Table 4. FWHM and SNR of selected ROIsa

Mean (std) Original SAF SAFDeconv

FWHM [mm] 1.33 (±0.66) 1.19 (±0.30) 0.55 (±0.06)

SNR [dB] 33.07 (2.66) 38.61 (±1.73) 42.95 (±2.06)

a*Number out of parentheses is the mean value and the number in
parentheses is standard deviation.
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4. Discussion

Our research confirms that the R-L deconvolution method using simulated PSFs improves image
resolution on the elevation plane, surpassing the resolution limit of SAF method. The adaptability
of this method to various PA imaging systems is facilitated by using simulated PSFs, allowing for
straightforward translation to different types of linear array transducers by adjusting simulation
parameters. The required simulation, which precedes application, is a one-time process that does
not affect image acquisition time. Simulation in this work was completed in 25 hours, with time
mainly relying on the grid size; ultrasound transducers with high central frequencies require
larger grids and longer computation time. Given that the linear array transducer used in this work
has a relatively high central frequency, simulations for transducers with lower central frequencies
may be completed more quickly. Our method has potential applications beyond its current use,
including enhancing the resolution of linear array-based 3D PA imaging system used in small
animal studies [14], and optimizing handheld devices for human imaging [15]. Although using
linear array-based 3D PA imaging for whole-body imaging of large animals or humans presents
challenges, the principle of using a simulated PSF for R-L deconvolution can be extended to other
PA imaging configurations, such as PA computed tomography and PA microscopy, to improve
resolutions.

A limitation of our proposed method lies in the potential discrepancy between simulated
and actual PA signals, affecting the efficacy of R-L deconvolution. In our study, applying R-L
deconvolution to simulation data led to a 67% reduction in FWHM values compared to SAF data.
However, for experimental data, the improvements were 34% and 54% for the wire phantom
and the ex vivo pork liver samples, indicating a reduced effect. The discrepancy could be
attributed to the differences between the simulated and actual PSF frequency spectra, influenced
by factors by factors such as tissue and acoustic medium properties. Addressing this, collecting
PA signals from various tissues, analyzing their frequency spectra, and incorporating them into
simulations for case-specific PSFs could enhance accuracy. Another challenge is the using
spatially-invariant PSFs for R-L deconvolution across the entire 3D volume. The limited number
of transducer positions in practice can affect resolution of SAF results [25], particularly at the
periphery of the elevation plane. With different PSFs in periphery regions, targets could suffer
distortion after deconvolution. The PSF should be treated as a function of location rather than as
a constant to eliminate any distortion from deconvolution results. Point targets should be more
densely placed at edges of the elevation plane to capture PSF variation. Employing interpolation
methods could then determine the optimal PSF for each location, especially at the edges. A
more sophisticated method, such as establishing a model of the PSF as a function of location
using principal component analysis [33,42], could offer further improvements by minimizing
distortions in deconvolution results.

5. Conclusion

In this work, we introduced an elevation resolution enhancement method tailored for a linear
array-based PA system, leveraging R-L deconvolution and simulated PSFs. Our method
demonstrates superior resolution compared to the SAF method, as evidenced by both simulations
and experimental validations. In the simulation results, we achieved a 67% improvement in
FWHM over SAF results. Experimental validations further supported these findings, with
FWHM enhancements of 34% in wire phantom results and 54% in ex vivo pork liver tests. These
results indicate that our method could enhance elevation resolution beyond what is achievable
with SAF alone. Such enhancements in resolution are expected to refine the localization and
quantification of PA chromophores, offering benefits for disease diagnosis, follow-up evaluations,
and the development of contrast agents.
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