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Abstract

INTRODUCTION:With emergence of disease-modifying therapies, efficient diagnos-

tic pathways are critically needed to identify treatment candidates, evaluate disease

severity, and support prognosis. A combination of plasma biomarkers and brief dig-

ital cognitive assessments could provide a scalable alternative to current diagnostic

work-up.

METHODS:We examined the accuracy of plasma biomarkers and a 10-minute super-

vised tablet-based cognitive assessment (Tablet-based Cognitive Assessment Tool

Brain Health Assessment [TabCAT-BHA]) in predicting amyloid β positive (Aβ+) sta-
tusonpositronemission tomography (PET), concurrent disease severity, and functional

decline in309older adultswith subjective cognitive impairment (n=49),mild cognitive

impairment (n= 159), and dementia (n= 101).

RESULTS: Combination of plasma pTau181, Aβ42/40, neurofilament light (NfL), and

TabCAT-BHA was optimal for predicting Aβ-PET positivity (AUC = 0.962). Whereas

NfL and TabCAT-BHA optimally predicted concurrent disease severity, combining

these with pTau181 and glial fibrillary acidic protein was most accurate in predicting

functional decline.

DISCUSSION:Combinations of plasma and digital cognitivemarkers show promise for

scalable diagnosis and prognosis of ADRD.
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Highlights

∙ The need for cost-efficient diagnostic and prognostic markers of AD is urgent.

∙ Plasma and digital cognitive markers provide complementary diagnostic contribu-

tions.

∙ Combination of thesemarkers holds promise for scalable diagnosis and prognosis.

∙ Future validation in community cohorts is needed to inform clinical implementation.

1 BACKGROUND

The prevalence of Alzheimer’s disease and related dementias (ADRD)

continues to rise and is estimated to affect 153 million individuals

worldwide by 2050.1 Despite these alarming projections, the rates of

missed, inaccurate, or delayed diagnoses of dementia remain high,2,3

particularly in underserved populations, including racially and ethni-

cally diverse individuals residing in high-income countries and those

residing in low- and middle-income countries.4 Access to timely and

accurate diagnostic services remains limited,5,6 and the need for

globally scalable, accessible, and cost-effective diagnostic markers of

ADRD is urgent. Implementation of such markers is also critical for

establishing the infrastructure for case identification and treatment

management as disease-modifying therapies become available.

Plasma biomarkers offer greater accessibility and cost effective-

ness compared to the current gold standard clinical testing using

cerebrospinal fluid (CSF) or positron emission tomography (PET).

Among these, plasma amyloid β (Aβ), phosphorylated tau (pTau),

neurofilament light (NfL) chain, and glial fibrillary acidic protein

(GFAP) represent the most promising markers to date and are

closest to clinical implementation.7–9 Growing evidence supports

the role of the ratio of plasma Aβ1-42 to Aβ1-40 (Aβ42/40) as a

marker of cerebral Aβ pathology,7–11 plasma pTau at threonine-181

(pTau181) or at threonine-217 (pTau217) as a marker AD-related

neuropathology,7–9,12–18 plasma NfL as an etiologically non-specific

marker of neuroaxonal injury,7–9,19,20 and plasma GFAP as a marker of

reactive astrogliosis.7–9,20,21 Given clinical and etiological heterogene-

ity of ADRD, a combination of different biomarkers is likely to offer

greater accuracy and precision compared to any single marker, with

each predictor explaining unique variance of an underlying disease

process. Several studies support this premise showing that various

combinations of plasma Aβ42/40, pTau, NfL, and GFAP showed high-

est accuracy in predicting Aβ positivity based on CSF22,23 and PET24

anddifferentiating clinicalADdementia fromother neurodegenerative

syndromes.25,26 Combination of markers also exhibited highest test-

retest reliability over time, which is a critical consideration for clinical

implementation.22

Expert recommendations also highlight the importance of examin-

ing high-performing combinations of plasma and other clinical mark-

ers, particularly cognitive assessments, to maximize their diagnostic

and prognostic potential.8,9 While scarce but promising evidence to

date supports complementary contributions of paper-and-pencil neu-

ropsychological and plasma markers to predicting conversion to AD

dementia,27,28 cognitive measures that could be used in combina-

tion with plasma biomarkers in novel clinical algorithms must have

characteristics that support, not hinder, widescale implementation.

In particular, use of most traditional assessments (e.g., the Mini-

Mental State Examination) in routine healthcare workflows has been

limited by their poor sensitivity to milder stages of impairment,29 lim-

ited validity in diverse populations,30 and costly training, time, and

administration demands.31,32 To address these limitations, substantial

progress has been made in development of sensitive and reliable dig-

ital cognitive assessments highlighting their potential as scalable and

efficient clinical markers not requiring access to highly trained special-

ists, lengthy clinical evaluations, or complex scoring and interpretation

algorithms.31,32 Examining the combination of scalable digital cogni-

tive andplasmamarkers, therefore,mayprovide critical insights for the

development of novel efficient clinical algorithms.

This study evaluated the accuracy of a combination of plasma

biomarkers (Aβ42/40, pTau181, NfL, and GFAP) and a 10-minute

examiner-administered tablet-based cognitive battery (Tablet-based

Cognitive Assessment Tool Brain Health Assessment, TabCAT-BHA) in

predicting Aβ-PET positivity, disease severity, and functional decline.

TabCAT-BHA is a brief, multidomain battery that showed excellent

sensitivity to mild cognitive impairment (MCI) and typical and atypi-

cal dementias,33–35 high reliability in tracking change over time,34 and

associations with Aβ- and tau-PET burden.36 In accordance with the

U.S. National Alzheimer’s Project Act37 to improve detection of cog-

nitive impairment following a concern, the sample included older adult

participants with subjective or objective cognitive impairment. Partici-

pants were racially and ethnically diverse individuals across diagnostic

groups to support generalizability and applicability of findings in pop-

ulations that have been historically excluded from ADRD biomarker

research.38

2 METHODS

2.1 Participants

The study was approved by the University of California San Fran-

cisco (UCSF)Committee onHumanResearch. All participants provided

written informed consent. Participants were adults aged 50 or older

enrolled in longitudinal observational studies at theUCSFMemory and
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Aging Center, who were clinically characterized as having subjective

cognitive impairment (SCI) ormet criteria forMCI or dementia. All par-

ticipants underwent a comprehensive diagnostic evaluation consisting

of neurological examination, multidomain neuropsychological testing,

clinical interviewwith an informant including Clinical Dementia Rating

Scale (CDR),39 and structural neuroimaging. Clinical diagnoses were

made in multidisciplinary consensus conferences based on published

criteria as previously described.12,33,34

The SCI group (n = 49) included older adults who endorsed wors-

ening of their memory or other thinking abilities on clinical interview,

but performed within normal limits on neurological evaluation, neu-

ropsychological testing, and CDR. Among 159 participants with MCI,

72 (45%) were characterized with an AD spectrum clinical syn-

drome, including 58with amultidomain amnestic syndrome,40 10with

logopenic variant of primary progressive aphasia (lvPPA),41 and 4

with posterior cortical atrophy (PCA).42 The remaining participants

with MCI were clinically diagnosed with a non-AD spectrum syn-

dromes, including non-amnestic MCI (n = 56), corticobasal syndrome

(CBS, n = 4),43 non-fluent variant of primary progressive aphasia

(nfvPPA, n = 16),41 progressive supranuclear palsy (PSP, n = 4),44

semantic variant of primary progressive aphasia (svPPA, n = 5),41 and

traumatic encephalopathy syndrome (TES, n = 2).45 Among 101 par-

ticipants with dementia, 48 (48%) were clinically diagnosed with an

AD spectrum syndrome, including 41 with AD amnestic dementia,46

5 with lvPPA,41 and 2 with PCA.42 The remaining participants were

diagnosedwith behavioral variant frontotemporal dementia (n=31),47

CBS (n = 3),43 dementia with Lewy bodies (n = 4),48 nfvPPA (n = 2),41

PSP (n= 6),44 svPPA (n= 6),41 and TES (n= 1).45

All participants completed a blood draw and TabCAT-BHA at base-

line independent of standard diagnostic procedures. The average time

difference between a blood draw and TabCAT-BHA completion was

2.3± 7.7 days.We only included participants whose plasma biomarker

measurements were successful. Additional exclusion criteria were

presence of severe psychiatric illness, known non-neurodegenerative

neurological condition affecting cognition, or significant substance use

disorder and/or systemic illness. Longitudinal disease severity data

were available in a subsample of 32 SCI, 107MCI, 46 dementia partic-

ipants who completed the CDR at baseline and annual follow-up visits

(n= 185with 2 visits; n= 88with 3 visits; n= 38with 4 or more visits).

Average time between visits was 1.3± 0.6 years.

2.2 Measures and procedures

2.2.1 TabCAT-BHA

TabCAT-BHA is a 10-min cognitive battery programmed in the Tab-

CAT software platform (UCSF, San Francisco, CA). It is comprised

of 2 required subtests: Favorites (associative memory) and Match

(executive functioning and processing speed); and 2 optional subtests:

Line Orientation (visuospatial) and Animal Fluency (language).33–35

Detailed task descriptions are available at memory.ucsf.edu/tabcat

RESEARCH INCONTEXT

1. Systematic review:We reviewed the literature onplasma

biomarkers for diagnosis and prognosis of Alzheimer’s

disease and related dementias using traditional sources

(e.g., PubMed). Supplementing plasma biomarkers with

cognitive and other clinical tools offers greater accuracy,

and there are ongoing efforts to examine high performing

combinations of differentmarkers tomaximize diagnostic

precision.

2. Interpretation: Our findings show that a combination of

plasma and digital cognitive markers is highly accurate

at predicting amyloid β-positron emission tomography

(Aβ-PET) positivity, concurrent disease severity, and lon-

gitudinal functional decline.

3. Future directions: Replication of the results in more rep-

resentative and socioeconomically diverse communities

is needed to support future clinical implementation of

thesemarkers.

and were described previously.33,34 All participants completed the

TabCAT-BHA on a 9.7-inch iPad with a trained examiner in a pri-

vate examination room. Performance on the TabCAT-BHA battery

was included in all analyses in the form of a previously validated

cognitive composite score,34 which is based on the demographically

adjusted (age, sex, education, testing language) Favorites and Match

scores.

2.2.2 Plasma biomarker measurements

Blood samples were obtained by venipuncture in ethylenediaminete-

traacetic acid (EDTA) tubes for plasma as previously described.12 After

centrifugation at 2000 g for 10 min at 4◦C, plasma samples were

aliquoted in polypropylene tubes and stored at −80◦C, with an aver-

age needle-to-freezer time <2 h. Before analysis, samples underwent

only one freeze-thaw cycle. Biomarker concentrations were measured

in duplicate using commercially available pTau181 V2 (pTau181; lot

#503008) and Neurology 4-PLEX E (Aβ40, Aβ42, NfL, and GFAP; lot

#503105) Quanterix kits (Billerica, MA) on the Simoa HD-X platform

at UCSF. For each kit 100microliters of plasmawere diluted 1:4 by the

instrument. The instrument operator was blinded to clinical variables.

For pTau181, all samples were measured above the kit lower limit of

quantification (LLOQ) of 0.085 pg mL−1 with the mean coefficient of

variation (CV) of 7.3%. For Aβ40 and Aβ42, all samples were measured

above the LLOQof 1.02 pgmL−1 and 0.378 pgmL−1 (respectively) with

the average CVs of 3.3% and 3.4% (respectively). For NfL and GFAP, all

samples weremeasured above the LLOQof 0.400 pgmL−1 and 2.89 pg

mL−1 (respectively)with themeanCVsof 5.3%and6.3% (respectively).
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2.2.3 Aβ-PET acquisition and processing

Aβ-PETwas performed independent of diagnostic procedures in a sub-

set of 105 participants, including 6 with SCI, 64 with MCI (36 with

AD spectrum, 28 with a non-AD spectrum), and 35 with dementia (19

with AD spectrum, 16with a non-AD spectrum). Aβ-PET acquired with
11C-Pittsburgh Compound B (PIB, n = 82), 18F-Florbetapir (n = 22),

or 18F-Florbetaben (n = 1) radiotracers. The average time between

plasma sample collection and PET imaging was 136 ± 256 days. PET

scans were acquired in list mode on PET-CT scanners (GE Discovery

VCT, n = 22; Siemens Biograph 6 Truepoint, n = 83) using standard

acquisition protocols: 50-70 min acquisition for Florbetapir and PIB

and90-110min post injection for Florbetaben. PETdatawere attenua-

tion correctedusing lowdoseCTand reconstructed as four five-minute

frames using an ordered subset expectation maximization algorithm.

PET frameswere realigned to the first one andaveraged; thismeanPET

imagewas used to perform a visual read by a trained clinician following

FDA-approved guidelines for Florbetaben and Florbetapir, or internal

reading guidelines for PIB (see49,50 for validation of the PIB-PET visual

read approach in PET-to-autopsy studies).

2.2.4 Apolipoprotein E genotyping

Apolipoprotein E (APOE) genotyping was performed in 302 (98%) par-

ticipants (48 SCI, 155 MCI, 99 dementia) and was based on DNA

analysis from peripheral blood samples as described previously51

APOE 𝜀4 status was coded as “1” for homozygotes and heterozygotes

of 𝜀4 and as “0” otherwise. There were eight participants with a 𝜀2/𝜀4

genotype in the whole sample, whose APOE data were not used in the

analyses.

2.3 Statistical analyses

Baseline group differences were determined using analyses of vari-

ance (ANOVA) for continuous variables and Fisher’s exact tests for

categorical variables. Pairwise comparisons were performed using the

Bonferroni method. Values of raw concentrations of plasma pTau181

(skewness= 1.2, kurtosis= 1.4), NfL (skewness= 5.0, kurtosis= 36.2),

and GFAP (skewness = 2.0, kurtosis = 5.6) were not normally dis-

tributed and were natural log-transformed for baseline ANOVA and

linear regression analyses. The distribution of Aβ42/40 ratio was

within expectations for a normal distribution (skewness = 0.01, kurto-

sis = 0.34). Transformed values approximated normal distributions for

each biomarker, including log-transformed pTau181 (skewness = 0.0,

kurtosis=−0.5), log-transformedNfL (skewness= 0.6, kurtosis= 1.3),

and log-transformedGFAP (skewness= 0.2, kurtosis=−0.1).

We performed logistic regression models with receiver operat-

ing characteristic (ROC) curves to determine the accuracy of plasma

biomarkers and TabCAT-BHA in differentiating Aβ-PET status at base-
line. Individual models were run for each of the markers and the full

model was comprised of all markers included simultaneously. Model

selection was performed using the information-theoretic approach

based on the Akaike information criterion (AIC).27,52 The optimal

model was defined as having the lowest AIC and was considered to

maximize the optimal trade-off between model fit and sparsity.52 Dif-

ferences between areas under the ROC curves (AUC) were examined

using DeLong tests. All models were performed with and without

covariates for age (years), sex (coded as “1” for female and “0” formale),

education (years), APOE 𝜀4 status (coded as “1” for presence of one or

two 𝜀4 alleles and “0” for absence of an 𝜀4 allele), and time difference

between PET acquisition and plasma collection (days).

Multiple linear regression models were used to examine baseline

associations of plasma and TabCAT-BHA markers with disease sever-

ity measured by the CDR Sum of Boxes score (CDR-SB). All variables

were included simultaneously, and unstandardized coefficients were

reported. Linear mixed effect models with random intercepts and

slopes were used to examine the associations between baseline val-

ues of plasma and TabCAT-BHA markers with longitudinal changes on

the CDR-SB (number of visits: mean = 2.62, SD = 0.85). All models

controlled for age, sex, education, and APOE 𝜀4 status; longitudinal

analyses additionally controlled for time since baseline visit (years)

and baseline clinical diagnosis. To account for phenotypic heterogene-

ity, we additionally repeated both baseline and longitudinal models

in AD spectrum and FTLD spectrum clinical groups separately using

CDR plus the National Alzheimer’s Coordinating Center FTLD rating

(CDR+NACC/FTLD) Sum of Boxes as an outcome.53

All analyses were performed in R (v 4.2.3, R Project for Statistical

Computing) with two-tailed significance level set at P < 0.05. Lin-

ear models were checked for overdispersion, influential values, and

multicollinearity. We report P values without adjusting for multiple

comparisons as this methodology focuses on avoiding one or more

results with P < 0.05 in the case where all differences are truly zero,

which represents an unlikely hypothesis in our analyses. Therefore, we

use scientific judgment rather than formal methods of adjustment to

indicate where caution is warranted despite findings with P< 0.05.

3 RESULTS

3.1 Baseline differences

The study cohort was comprised of 309 older adults, including 49

participants with SCI, 159 with MCI, and 101 with dementia. Base-

line demographic and clinical characteristics, plasma biomarker levels,

and TabCAT-BHA performance are reported in Table 1. Among 260

participants with MCI and dementia, 120 (46%) were diagnosed with

an AD spectrum clinical syndrome, 77 (30%) with an FTLD spec-

trum syndrome, and 63 (24%) with other clinical syndromes (detailed

description is provided in Methods). The SCI, MCI, and dementia

groups did not significantly differ with regard to age, sex, APOE ε4 sta-
tus, and AD spectrum clinical phenotype (Table 1). Participants in the

SCI group had more years of education compared to the MCI group
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TABLE 1 Baseline demographic and clinical characteristics and biomarker values.

SCI (n= 49) MCI (n= 159) Dementia (n= 101) P-Value

Age (years),M (SD) 68.9 (9.3) 68.2 (9.3) 67.4 (9.9) 0.623

Sex (female), n (%) 26 (53%) 82 (52%) 43 (43%) 0.311

Education (years),M (SD) 16.4 (3.6) 14.8 (4.0) 15.2 (3.0) 0.033

Race/ethnicity 0.001

Asian, n (%) 12 (24%) 21 (13%) 8 (8%)

Non-Hispanic Black, n (%) 2 (4%) 6 (4%) 3 (3%)

Hispanic, n (%) 13 (27%) 25 (16%) 12 (12%)

Non-HispanicWhite, n (%) 22 (45%) 107 (67%) 78 (77%)

APOE e4 allele, n/total n (%) 13/46 (28%) 49/152 (32%) 34/96 (35%) 0.697

AD spectrum syndrome, n (%) – 72 (45%) 48 (48%) 0.799

No. of longitudinal visits,M (SD) 2.8 (0.9) 2.6 (0.8) 2.3 (0.5) <0.001

Years since baseline (longitudinal visits

only),M (SD)
2.7 (1.6) 1.9 (1.1) 1.4 (0.7) <0.001

CDR-SB,M (SD) 0.26 (0.53) 2.04 (1.42) 5.89 (2.29) <0.001

Plasma Aβ42/40 (pgml−1),M (SD) 0.07 (0.01) 0.07 (0.01) 0.06 (0.01) 0.029

Plasma pTau181 (pgml−1),M (SD) 1.57 (0.69) 2.03 (1.05) 2.47 (1.41) <0.001*

PlasmaNfL (pgml−1),M (SD) 23.59 (12.97) 29.67 (24.77) 42.36 (39.15) <0.001*

PlasmaGFAP (pgml−1),M (SD) 126.52 (56.04) 163.93 (106.54) 206.59 (125.68) <0.001*

TabCAT-BHACognitive Composite,M (SD) −0.71 (1.19) −2.30 (1.74) −3.99 (1.95) <0.001

Note: Group differences were examined using analyses of variance for continuous outcomes and Fisher’s exact tests for categorical outcomes.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CDR-SB, Clinical Dementia Rating Scale Sumof Boxes;M,mean;MCI, mild cognitive impair-

ment; NfL, neurofilament light; SCI, subjective cognitive impairment; SD, standard deviation; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain

Health Assessment.

*P-values are based on natural log-transformed plasma pTau181, NfL, and GFAP values.

and included fewer individuals who identified as non-Hispanic White

compared to theMCI and dementia groups (Table 1).

As shown in Table 1, post hoc pairwise comparisons revealed

that plasma Aβ42/40 concentrations were higher in participants with

dementia compared to those with MCI (P = 0.025) but not SCI

(P = 0.222). Concentrations of plasma pTau181 were significantly dif-

ferent across groups with highest levels in participants with dementia

(P vs. MCI = 0.034; P vs. SCI < 0.001) followed by those with MCI (P

vs. SCI= 0.043). PlasmaNfLwas elevated in dementia when compared

to MCI (P < 0.001) and SCI (P < 0.001); differences between MCI and

SCI groupswere not significant (P=0.242). Similarly, plasmaGFAPwas

higher in dementia participants compared to MCI (P = 0.002) and SCI

(P<0.001)withno significant differencesbetweenMCI andSCI groups

(P = 0.094). Performance on the TabCAT-BHA was significantly differ-

ent across diagnostic groups with worst performance in participants

with dementia (P vs. MCI < 0.001; P vs. SCI < 0.001) followed by MCI

(P vs. SCI< 0.001).

3.2 Associations with Aβ-PET at baseline

In a subset of 105 participants who completed Aβ-PET (6 SCI, 64

MCI, 35 dementia), 58 (55%) were classified as Aβ positive based on

expert visual read,49,50 including 4/6 participants with SCI, 34/64 with

MCI, and 20/35 with dementia. In individual models without covari-

ates, plasma pTau181 had the highest AUC to differentiate Aβ+ vs. Aβ-
in the total sample (n = 105; AUC = 0.895, 95% confidence interval

[CI]: 0.832-0.959) and SCI and MCI groups only (n = 70; AUC = 0.888,

95% CI: 0.808-0.967). Inclusion of covariates for age, female sex, edu-

cation, APOE 𝜀4 status, and time difference between PET acquisition

and plasma collection improved discrimination for each of the mark-

ers (Table 2) with plasma pTau181 again exhibiting the highest AUC in

the total sample (n = 101; AUC = 0.933, 95% CI: 0.885-0.980) and in

SCI and MCI groups only (n = 67; AUC = 0.939, 95% CI: 0.883-0.995).

Findings on the performance of individual plasma and TabCAT-BHA

markers in discriminating Aβ-PET status without and with covariates

are presented in Table 2.

In a combined model, in which all markers were included simul-

taneously with demographic and clinical covariates, plasma Aβ42/40,
pTau181, NfL, and TabCAT-BHA cognitive composite were the only

significant predictors of Aβ-PET positivity in the total sample with

an AUC of 0.971 (95% CI: 0.944-0.997, Table 3). The optimal model

offering the best trade-off between model fit and sparsity based

on the AIC included plasma Aβ42/40, pTau181, NfL, TabCAT-BHA,
and age (Table 3). Discrimination accuracy of the optimal model

(AUC= 0.964, 95%CI: 0.936-0.993)was significantly better compared
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TABLE 2 Accuracy of individual plasma biomarkers and TabCAT-BHA in discriminating Aβ-PET status.

AUC (95%CI) SN SP PPV NPV

Total sample without covariates (47 Aβ-PET negative vs. 58Aβ-PET positive)

Aβ42/40 0.750 (0.655–0.845) 0.690 0.766 0.784 0.667

pTau181 0.895 (0.832–0.959) 0.879 0.809 0.850 0.844

NfL 0.493 (0.367–0.619) 0.931 0.319 0.628 0.789

GFAP 0.772 (0.678–0.866) 0.862 0.596 0.725 0.778

TabCAT-BHA 0.700 (0.602–0.799) 0.345 1.000 1.000 0.553

Total sample with covariatesa (45 Aβ-PET negative vs. 56Aβ-PET positive)

Aβ42/40 0.886 (0.824–0.948) 0.679 0.933 0.927 0.700

pTau181 0.933 (0.885–0.980) 0.804 0.933 0.938 0.792

NfL 0.864 (0.793–0.935) 0.786 0.822 0.846 0.755

GFAP 0.895 (0.835–0.956) 0.875 0.778 0.831 0.833

TabCAT-BHA 0.918 (0.866–0.971) 0.893 0.844 0.877 0.864

SCI andMCI only without covariates (32 Aβ-PET negative vs. 38Aβ-PET positive)

Aβ42/40 0.790 (0.683–0.898) 0.711 0.813 0.818 0.703

pTau181 0.888 (0.808–0.967) 0.921 0.750 0.814 0.889

NfL 0.527 (0.373–0.681) 0.921 0.344 0.625 0.786

GFAP 0.772 (0.659–0.886) 0.789 0.656 0.732 0.724

TabCAT-BHA 0.642 (0.513–0.772) 0.474 0.781 0.720 0.556

SCI andMCI only with covariatesa (31 Aβ-PET negative vs. 36Aβ-PET positive)

Aβ42/40 0.927 (0.867–0.986) 0.806 0.935 0.935 0.806

pTau181 0.939 (0.883–0.995) 0.806 0.968 0.967 0.811

NfL 0.883 (0.798–0.967) 0.889 0.774 0.821 0.857

GFAP 0.913 (0.843–0.983) 0.889 0.839 0.865 0.867

TabCAT-BHA 0.883 (0.805–0.960) 0.667 0.935 0.923 0.707

Abbreviations: Aβ-PET, amyloid βpositron emission tomography;APOE, apolipoprotein E;AUC, area under theROCcurve;GFAP, glial fibrillary acidic protein;

MCI,mild cognitive impairment;NfL, neurofilament light;NPV, negative predictive value; PPV, positive predictive value; SCI, subjective cognitive impairment;

SN, sensitivity; SP, specificity; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain Health Assessment.
aCovariates include age (years), sex (female), education (years), presence of APOE 𝜀4 allele (binary), and time difference between PET acquisition and plasma

collection (days).

to the reduced models including plasma pTau181, TabCAT-BHA, and

age (AUC = 0.919, 95% CI: 0.868-0.970; P vs. optimal model = 0.023)

and plasma pTau181 and age only (AUC = 0.897, 95%CI: 0.833-0.960;

P vs. optimal model = 0.011) using Delong tests. Performance of

combinedmodels is presented in Figure 1.

3.3 Associations among markers and disease
severity at baseline

Plasma biomarkers were significantly correlated with each other with

magnitudes of associations ranging from weak (Aβ42/40 with NfL,

ρ = −0.169, P = 0.003) to strong (NfL with GFAP, ρ = −0.575,

P < 0.001). TabCAT-BHA cognitive composite showed moderate cor-

relations with plasma GFAP (ρ = −0.307, P < 0.001) and weaker

correlations with plasma Aβ42/40 (ρ = 0.196, P < 0.001), pTau181

(ρ=−0.271, P< 0.001), and NfL (ρ=−0.211, P< 0.001). Bivariate cor-

relations among all scalable markers by diagnostic group are reported

in Supplementary Table 1.

Weperformed individualmultiple linear regressionmodels to exam-

ine baseline associations between each of the scalable markers with

Clinical Dementia Rating (CDR) Sum of Boxes. All markers were indi-

vidually associated with disease severity when covarying for age,

female sex, education, and presence of at least one APOE ε4 allele,

including Aβ42/40 (β = −32.231, P = 0.005), pTau181 (β = 0.956,

P = 0.002), NfL (β = 1.306, P < 0.001), GFAP (β = 1.479, P < 0.001),

and TabCAT-BHA (β=−0.719, P< 0.001). The results are illustrated in

Figure 2.

In a linear model including all scalable markers as predictors simul-

taneously, only log-transformed plasma NfL (β = 0.625, P = 0.034),

TabCAT-BHA (β = −0.688, P < 0.001), and female sex (β = −0.676,

P = 0.013) were significantly associated with disease severity at

baseline (detailed output is reported in Supplementary Table 2). A

reduced model including log-transformed plasma NfL, TabCAT-BHA,
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TABLE 3 Results of logistic regression analyses including baseline
values of scalable plasma and TabCAT-BHAmarkers as predictors,
demographic and clinical covariates, and Aβ-PET status as an outcome
(n= 105; 47 Aβ-PET negative, 58 Aβ-PET positive).

β SE P-Value

Full model (AIC= 61)

Plasma Aβ42/40 −94.009 47.496 0.048

Plasma pTau181 2.202 0.714 0.002

PlasmaNfL −0.081 0.034 0.017

PlasmaGFAP 0.001 0.006 0.886

TabCAT-BHA −0.827 0.368 0.025

Age (years) 0.132 0.068 0.050

Sex (female) −0.290 1.033 0.779

Education (years) 0.117 0.239 0.625

APOE ε4 allele 2.138 1.285 0.096

PET/Plasma time difference (days) 0.005 0.003 0.103

Optimal model (AIC= 63)

Plasma Aβ42/40 −94.597 34.328 0.006

Plasma pTau181 2.435 0.559 <0.001

PlasmaNfL −0.088 0.031 0.005

TabCAT-BHA −0.619 0.258 0.016

Age (years) 0.079 0.046 0.085

pTau181, TabCAT-BHA, age (AIC= 84)

Plasma pTau181 1.977 0.432 <0.001

TabCAT-BHA −0.525 0.195 0.007

Age (years) 0.054 0.037 0.139

pTau181, age (AIC= 92)

Plasma pTau181 2.091 0.407 <0.001

Age (years) 0.019 0.031 0.527

Abbreviations: Aβ-PET, amyloid β positron emission tomography; AIC,

Akaike information criterion; APOE, apolipoprotein E; GFAP, glial fibrillary

acidic protein;NfL, neurofilament light; PET, positron emission tomography;

SE, standard error; TabCAT-BHA, Tablet-based Cognitive Assessment Tool

Brain Health Assessment.

and female sex as the only predictors did not result in a signifi-

cantly worse model fit using likelihood ratio testing (χ2 = 2.377,

P= 0.795).

3.4 Associations with changes in disease severity

In separate linear mixed effect models for each of the scalable mark-

ers, elevated baseline plasma pTau181 (β = 0.510, P < 0.001) and

NfL (β = 0.021, P < 0.001) were associated with greater longitudi-

nal increases on the CDR Sum of Boxes. Lower baseline TabCAT-BHA

cognitive composite values were associated with greater increases in

disease severity (β = −0.389, P < 0.001). In contrast, neither baseline

values of plasma Aβ42/40 (β = −4.490, P = 0.575) nor plasma GFAP

(β = 0.0002, P = 0.829) were significantly associated with changes in

CDR Sum of Boxes over time. Detailed outputs of each of the models

are reported in Supplementary Tables 3-7.

In a combined mixed model, in which baseline values of all scal-

able markers were included as predictors simultaneously along with

demographic and clinical covariates, higher baseline plasma pTau181

(β = 0.357, P < 0.001) and NfL (β = 0.018, P < 0.001) and lower base-

line GFAP (β = −0.002, P = 0.029) and TabCAT-BHA (β = −0.320,

P < 0.001) were independently associated with longitudinal increases

in disease severity (Figure 3). Full model output of the combinedmodel

is presented in Table 4. Based on the analysis of marginal coefficients

of determination for mixed models,54 total variance explained by the

combined effects of plasma pTau181,NfL, GFAP, and TabCAT-BHAwas

29% after accounting for fixed effects of age, sex, education, APOE ε4
status, and baseline diagnosis.

3.5 Additional analyses

To account for phenotypic heterogeneity in our sample, we per-

formed separate models examining cross-sectional and longitudinal

associations between a combination of scalable markers with dis-

ease severity in AD spectrum and FTLD spectrum subgroups using

the CDR+NACC/FTLD53 Sum of Boxes score as an outcome. In

120 participants with AD spectrum clinical syndromes (72 MCI, 48

dementia), TabCAT-BHA (β = −1.346, P < 0.001), and female sex

(β = −2.112, P = 0.027) were the only markers associated with

CDR+NACC/FTLD Sum of Boxes score cross-sectionally. In 77 indi-

viduals with FTLD spectrum diagnoses (29 MCI, 48 dementia), only

TabCAT-BHA (β=−1.341, P= 0.002) was significantly associated with

the baseline CDR+NACC/FTLD, with plasma Aβ42/40 ratio approach-
ing significance (β = −116.093, P = 0.062). The detailed results of

cross-sectional multiple regression models in AD and FTLD subgroups

are presented in Supplementary Table 8.

Baseline plasma pTau181 (β = 0.536, P < 0.001), NfL (β = 0.015,

P = 0.007), and TabCAT-BHA (β = −0.299, P < 0.001) were signifi-

cantly associated with longitudinal changes in CDR+NACC/FTLD in

linear mixed models with all scalable markers and demographic and

clinical variables included as predictors simultaneously in a subsam-

ple of participants with AD syndromes (n = 78; 51 MCI, 27 dementia).

In the FTLD subsample (n = 33; 15 MCI, 18 dementia), only baseline

TabCAT-BHA (β=−0.572, P= 0.007) was significantly associated with

longitudinal increases in the CDR+NACC/FTLD, with baseline plasma

NfL (β = 0.039, P = 0.075) approaching significance. Detailed results

from thesemodels are reported in Supplementary Table 9.

4 DISCUSSION

This study examined the performance of a combination of scalable

plasma biomarkers and brief digital cognitive battery TabCAT-BHA in

relation to ADRD diagnostic outcomes. Specifically, we investigated

how well a combination of these markers was able to detect in vivo

Aβ pathology on PET, reflect disease staging at baseline, and predict
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F IGURE 1 Comparative performance of models combining plasma biomarkers, TabCAT-BHA, and demographic and clinical covariates in
discriminating Aβ-PET status. ROC curves are based on logistic regressionmodels in 105 participants (47 Aβ-PET negative, 58 Aβ-PET positive).
Full model (red) included all markers and demographic variables (age, sex, education, presence of APOE 𝜀4 allele, and time difference between PET
acquisition and plasma collection) as predictors. Optimal model (teal) offered the best fit with lowest number of predictors. Aβ-PET, amyloid β
positron emission tomography; AIC, Akaike information criterion; APOE, apolipoprotein E; AUC, area under the ROC curve; CI, confidence
interval; ROC, receiver operating characteristic; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain Health Assessment.

F IGURE 2 Baseline associations between plasma Aβ42/40 (A), pTau181 (B), NfL (C), GFAP (D), and TabCAT-BHA cognitive composite (E) with
the Clinical Dementia Rating Scale (CDR) Sum of Boxes score. Coefficients of determination are based onmultiple linear models covarying for age,
female sex, education, and presence of an APOE ε4 allele. Raw values of plasma pTau181, NfL, and GFAP concentrations were natural
log-transformed. Shapes represent clinical syndrome groups (circles=Alzheimer’s disease spectrum, triangles= frontotemporal lobar
degeneration spectrum, squares= other neurodegenerative syndromes) and colors represent diagnosis groups (red=mild cognitive impairment,
teal= dementia, green= subjective cognitive impairment). Aβ, amyloid β; APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; NfL,
neurofilament light; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain Health Assessment.
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F IGURE 3 Modeled associations of baseline values of plasma pTau181, NfL, GFAP, and TabCAT-BHAwith longitudinal changes on the Clinical
Dementia Rating (CDR) Sum of Boxes score. Regression lines are based on the results of linear mixed effect models with random intercepts and
slopes in which all markers were simultaneously included as predictors covarying for age, sex, education, presence of APOE ε4 allele, baseline
diagnostic group, and years since baseline. Colors represent values one standard deviation below themean predictor value (red lines), themean
predictor value (blue lines), and one standard deviation above themean predictor value (green lines). APOE, apolipoprotein E; GFAP, glial fibrillary
acidic protein; NfL, neurofilament light; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain Health Assessment.

TABLE 4 Results of linear mixedmodel analyses including baseline values of all scalable plasma and TabCAT-BHAmarkers as predictors,
demographic and clinical covariates, and Clinical Dementia Rating Scale (CDR) Sum of Boxes as an outcome (n= 185; 32 SCI, 107MCI, 46
dementia).

β SE df P

Baseline plasma Aβ42/40 x Years since baseline 2.060 5.937 99 0.729

Baseline plasma pTau181 x Years since baseline 0.357 0.082 103 <0.001

Baseline plasmaNfL x Years since baseline 0.018 0.004 90 <0.001

Baseline plasmaGFAP x Years since baseline −0.002 0.001 125 0.029

Baseline TabCAT-BHA x Years since baseline −0.320 0.047 120 <0.001

Baseline plasma Aβ42/40 −0.122 8.433 159 0.149

Baseline plasma pTau181 −0.128 0.117 162 0.274

Baseline plasmaNfL −0.001 0.006 157 0.876

Baseline plasmaGFAP −0.001 0.001 165 0.658

Baseline TabCAT-BHA −0.283 0.081 166 <0.001

Age (years; centered) 0.012 0.014 163 0.397

Sex (female) 0.163 0.228 164 0.476

Education (years) 0.025 0.037 165 0.500

APOE ε4 allele 0.209 0.251 166 0.408

Baseline dementia diagnosis (reference) – – – –

BaselineMCI diagnosis −3.487 0.302 165 <0.001

Baseline SCI diagnosis −4.832 0.431 164 <0.001

Years since baseline −0.940 0.477 96 0.052

Abbreviations: Aβ, amyloid β; APOE, apolipoprotein E; df, degrees of freedom; GFAP, glial fibrillary acidic protein; MCI, mild cognitive impairment; NfL, neu-

rofilament light; SCI, subjective cognitive impairment; SE, standard error; TabCAT-BHA, Tablet-based Cognitive Assessment Tool Brain Health Assessment.

Degrees of freedom are estimated using Satterthwaite’s method.
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future changes in disease severity. When each biomarker and TabCAT-

BHA were examined individually, pTau181 showed the best accuracy

in detecting Aβ-PET positivity particularly when combined with demo-

graphic and clinical information, including age, sex, education, and

APOE ε4 status (AUC = 0.933, 95% CI: 0.885-0.980, Table 2). While

these findings are largely consistent with prior reports on the per-

formance of plasma pTau181 in clinical cohorts,12–14 we found that

combining TabCAT-BHAwith demographics and clinical data enhanced

accuracy at discriminating Aβ status (AUC = 0.918, 95% CI: 0.866-

0.971, Table 2). When all markers were analyzed simultaneously, a

combination of age with plasma Aβ42/40, pTau181, NfL, and TabCAT-

BHA had the highest accuracy against Aβ-PET with an AUC of 0.962

(95% CI: 0.932-0.992) within an optimal model selection paradigm

(Figure 1). These results provide further support for superior perfor-

mance of combinations compared to any single one of the included

plasma biomarkers in relation to gold standard anchors22–26 and con-

stitute strong evidence for inclusion of scalable cognitive markers into

future algorithms.

The added value of efficient cognitive assessment was most evi-

dent across findings related to disease severity outcomes. Although

each of the scalable markers was associated with CDR Sum of

Boxes score at baseline, TabCAT-BHA cognitive composite showed

the strongest magnitude of the association (Figure 2). When all mark-

ers were included simultaneously, only TabCAT-BHA and plasma NfL

were cross-sectionally associated with disease severity (Supplemen-

tary Table 2), which is unsurprising given prior evidence of high

sensitivity of these two markers to tracking disease severity.33,55,56

While our findings are generally consistent with previously reported

baseline associations between pTau181 and CDR Sum of Boxes,12

these relationships were no longer significant when pTau181 was

included with TabCAT-BHA and plasma NfL in our sample (Supple-

mentary Table 2). These results have important implications for clinical

implementation algorithms and suggest that scalable plasma and digi-

tal cognitive markers play complementary roles for supporting ADRD

diagnosis.

In our sample, baseline plasma pTau181, NfL, GFAP, and TabCAT-

BHA were significant predictors of future functional decline and

increases in disease severity across SCI, MCI, and dementia groups

(Table 4, Figure 3). Despite limited sample sizes, these results were

mostly replicated in participants with AD spectrum clinical syndromes,

aside from loss of significance for plasma GFAP (Supplementary Table

9). In a smaller subsample with FTLD clinical syndromes, only base-

line TabCAT-BHA reached significance while plasma NfL was trending

(Supplementary Table 9). These results complement prior studies

showing that the combination of plasma pTau and cognitive tests pre-

dicted conversion from SCI and MCI to AD dementia27,28 and extend

current knowledge by examining a broader combination of markers

in a highly clinically heterogeneous cohort. The relationships between

baseline plasma pTau181, NfL, and TabCAT-BHA with longitudinal

changes in CDR were in expected directions with higher baseline

pTau181 and NfL and lower baseline TabCAT-BHA predicting faster

rates of decline (Table 4, Figure 3). We further found that the rela-

tionship between baseline plasma GFAP and CDR change was inverse

when other scalable markers were included simultaneously (Table 4).

This finding is likely related to the temporal dynamics of individual

biomarkers along the disease continuum with recent evidence imply-

ing that plasma GFAP levels exhibited highest elevations in preclinical

and early symptomatic stages of AD,57 which may explain its nega-

tive associations in our total sample enriched for FTLD syndromes

(Supplementary Table 9). Taken together, our results suggest that sup-

plementing a plasma biomarker panel of pTau181, NfL, and GFAP with

TabCAT-BHA is accurate in predicting longitudinal changes in disease

severity across AD and FTLD syndromes, making this combination

promising for diseasemonitoring.

Key strengths of this study include its focus on a novel combina-

tion of highly scalable, cost-effective, and accessible digital cognitive

tools and plasma biomarkers, clinical heterogeneity of the study sam-

ple with regard to disease severity and neurodegenerative etiology,

and greater representation of racially and ethnically diverse individ-

uals compared to most prior studies.8 At the same time, this study

has a number of important limitations. First, not all participants in

our sample completed Aβ-PET, and the prevalence of Aβ-PET positiv-

ity (55%) was higher compared to prior population-based estimates in

older adultswithout dementia (22%).58 Alongwith the fact that theAβ-
PET sample included only a few participants with SCI, these specifics

of the study sample may limit generalizability of our findings to com-

munity settings. Our sample was also overrepresented for individuals

with AD and FTLD, whereas other diseases such as Lewy body disease,

which are relativelymore common in general population, were not suf-

ficiently represented. Second, we cannot exclude the possibility of our

results being assay- and species-specific since we did not have access

to other high performing assays (e.g., mass spectrometry-based Aβ10)
or other pTau species (e.g., pTau21715). These limitations are impor-

tant to consider given reported differences in performance between

different Aβ assays10,11 and plasma pTau species,14,15 and more stud-

ies addressing the question of which combination of scalable plasma

and clinical markers offers the best diagnostic and prognostic accuracy

are needed. Also, the sample of this study was comprised of individu-

als with a low medical comorbidity burden, and given prior evidence

suggesting differential performance of plasma biomarkers in individ-

uals with certain comorbid conditions such as renal disease, stroke,

or heart disease,59 application of our findings to these clinical groups

may be limited. Finally, while this study included a racially and ethni-

cally diverse sample, replication of the results in more representative

and socioeconomically diverse communities is needed to support the

clinical validity of thesemarkers across demographic groups.

In summary, our findings support complementary roles of scalable

plasma and digital cognitive markers for detecting Aβ-PET positivity

and predicting disease severity and longitudinal functional decline in

diverse older adults with subjective and objective cognitive impair-

ment. These low-cost, accessible technologies have the potential to

complement or replace current diagnostic practices and can be used to

inform future research on identification of optimal clinical implemen-

tation algorithms for early detection of ADRD.
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