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Abstract

Exposure to hepatotoxic chemicals is involved in liver disease-related morbidity and mortality 

worldwide. The liver responds to damage by triggering compensatory hepatic regeneration. 

Physical agent or chemical-induced liver damage disrupts hepatocyte proteostasis, including 

endoplasmic reticulum (ER) homeostasis. Post liver injury ER experiences a homeostatic 

imbalance, followed by active ER stress response signaling. Activated ER stress response causes 

selective upregulation of stress response genes and downregulation of many hepatocyte genes. 

Acetaminophen overdose, CCl4, acute and chronic alcohol exposure, and physical injury activates 

the ER stress response, but details about the cellular consequences of the ER stress response on 

liver regeneration remain unclear. The current data indicate that inhibiting the ER stress response 

after partial hepatectomy-induced liver damage promotes liver regeneration, whereas inhibiting the 

ER stress response after chemical-induced hepatotoxicity impairs liver regeneration. This review 

summarizes key findings and emphasizes the knowledge gaps in role of ER stress in injury and 

regeneration.
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Lay summary

Liver injury induced by chemicals is a global and common problem. The liver is vulnerable to 

damage because of its central role in chemical detoxification. Following injury, the liver tries to 

repair itself by regenerating the damaged portion. The endoplasmic reticulum (ER) is part of cells 

that is necessary for normal functioning if cells including those in the liver. During liver injury, 

ER activates a stress response that affects the expression of genes, affecting how well the liver can 

regenerate. Various drugs like acetaminophen, alcohol, and even physical injuries can activate ER 

stress. A limitation in our understanding is how ER stress plays a role during liver regeneration. 

Studies suggest blocking the ER stress response can help the liver heal after a physical injury. In 

the case of chemical injuries blocking the stress response can worsen the outcome. This review 

highlights the role of ER stress response in liver regeneration and highlights potential lines of 

future investigation.
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A. Introduction

The liver is one of the largest organs in human body and performs several important 

functions including macronutrient metabolism, detoxification of xenobiotics, bile acid 

synthesis, and lipid and cholesterol metabolism.1 The liver is anatomically divided into 

four lobes and functionally into eight by the portal vein and hepatic artery.2 It is made up 

of different cell types including approximately 60% hepatocytes and approximately 40% 

nonparenchymal cells, which include cholangiocytes, hepatic stellate cells (HSCs), Kupffer 

cells, and liver sinusoidal endothelial cells.1,3 Hepatocytes are the workhorse of the liver and 

perform all the major liver functions described above.4,5 The anatomical and physiological 

arrangement of the liver exposes it to significant concentrations of toxicants and infectious 

agents which can result in hepatocyte damage and liver injury. However, the liver has a 

remarkable capacity to undergo regeneration to refurbish the damaged liver and regain 

normal function.6

Maintenance of cellular protein homeostasis (proteostasis) is a key to cellular health. To 

maintain cellular proteostasis, cells employ various mechanisms to control protein synthesis, 

folding, intracellular trafficking, and compartmentalization along with regulated protein 

degradation.7 The endoplasmic reticulum (ER) plays a critical role in regulating proteostasis, 

protein synthesis, and protein trafficking.8 An imbalance between newly synthesized 

polypeptide chains entering the ER and folded proteins exiting the ER can result in the 

accumulation of unfolded or misfolded proteins in the ER.9 This accumulation of unfolded 

proteins can trigger an ER stress response - unfolded protein response (UPR).10 The severity 

and duration of stress experienced by the cells guide whether the cells will adapt to the stress 

or undergo cell death.11

Liver injury caused by hepatotoxicant exposure or by physical damage as in partial 

hepatectomy (PH) is associated with increased histological damage and necrosis. This 

damage activates proliferation in the remnant uninjured hepatocytes to compensate for and 

restore the lost liver tissue. Hepatocytes are under an active state of proliferation during liver 

regeneration which is associated with an increase in cellular protein synthesis.12 It is likely 

that the rise in protein synthesis during liver regeneration can result in the accumulation 

of unfolded proteins in the ER lumen which can activate hepatocyte UPR. In hepatocytes, 

many genes are repressed due to activated ER stress response signaling, whereas expression 

of stress response genes, which support cell survival during stress conditions are selectively 

upregulated.13,14 The cellular and hepatological effects of ER stress on liver regeneration 

is an underexplored area of research. In this review, we attempt to summarizing the key 

findings and highlighting the knowledge gaps in our understanding of the role ER stress 

plays in liver regeneration. Although a large part of our discussion focuses on the role of ER 

stress response in liver parenchymal cells, readers are encouraged to visit Maiers and Malhi, 

201915 for a thorough discussion on the role of ER stress in hepatic stellate cells, and Zhou 

et al. 202216, for a discussion on the role of ER stress response in Kupffer cells. Finally, 

since chronic liver injury and constitutively active ER stress is associated with cellular 

apoptosis, readers are directed to visit the recent review by Zhang et al. 202217, on ER stress 

mediated cell death in conditions of liver injury.
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B. Mechanistic insights into ER stress response

The ER provides conditions that support protein folding, which is monitored by the 

members of ER protein folding machinery which ensures proteins are properly folded 

and packaged in ER exit vesicles. When unfolded proteins accumulate in the ER lumen 

the ER protein folding machinery activates the UPR. The active UPR also augments the 

targeted degradation of unfolded proteins through ER-associated degradation (ERAD).18, 

19 UPR functions by relaying the information of unfolded proteins to the cell by three 

transmembrane protein sensors: protein kinase R-like endoplasmic reticulum kinase (PERK) 

encoded by eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3); inositol-

requiring enzyme 1 (IRE1α) encoded by endoplasmic reticulum to nucleus signaling 1 

(ERN1) and activating transcription factor 6 (ATF6).10 Each of these protein sensors has a 

unique mechanism of propagating the ER stress response (Fig. 1).

Under normal physiological conditions, these UPR sensors are inactive and bound to binding 

immunoglobin protein (BiP), a member of the heat shock protein family, on their ER 

luminal domains. Accumulation of unfolded proteins in the ER lumen beyond a threshold 

dissociates BiP from the luminal side of the ER stress sensors activating them to trigger 

ER stress response.20,21 An alternative mechanism proposed for BiP dissociation involves 

activation of UPR sensors by direct binding of unfolded proteins to their luminal domains 

and dissociating BiP.22,23 UPR activation has significant cellular consequences including 

transcriptional reprogramming, translation inhibition, selective translation of stress response 

genes and depending upon the severity and duration of stress, cell death.10,11,24

1. ATF6

ATF6 is an ER membrane-localized transcription factor bound to BiP under inactive 

conditions.10 ATF6α functions as a transcription activator while ATF6β has not been shown 

to have an effect on the ATF6α-mediated gene expression.25 Accumulation of unfolded 

proteins activates ATF6 by dissociation of BiP from its ER luminal domain translocating 

ATF6 from ER membrane to Golgi.26 Two Golgi proteases S1P and S2P (site-1 and site-2 

proteases) cleave the translocated ATF6 at two sites liberating its N-terminal domain to 

migrate into the nucleus and activating UPR response genes (Fig. 1A).27,28 Golgi proteases 

used in the processing of ATF6 are also used by the liver in lipid metabolism and 

processing of sterol response element binding proteins (SREBPs).28–30 Although important 

in proteotoxic stress response, ATF6 is also activated by sphingolipids which trigger ER 

lipid biosynthetic genes through mechanisms distinct from the proteotoxic stress response.31 

In the liver, ATF6 activation has been seen to play a role in hepatocarcinogenesis and liver 

regeneration.32,33

2. IRE1

IRE1 is a bifunctional transmembrane protein with kinase and endoribonuclease 

activities.34,35 Under inactive conditions, its monomeric form is bound to BiP on its 

ER luminal domain.21 Unfolded protein accumulation in the ER lumen dissociates BiP 

from IRE1’s ER luminal domain allowing the oligomerization of IRE1 followed by 

trans-autophosphorylation which activates the protein.36 The now active IRE1 acts as an 
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endoribonuclease, splicing the UPR specific transcription- factor X-box binding protein 

1 (XBP1) mRNA, which is followed by ligation of 5’ and 3’ ends of spliced mRNA 

(Fig. 1B).37,38 In metazoans, both precursor and spliced XBP1 mRNAs upon translation 

have different functional properties. Precursor mRNAs encode a protein that represses 

the expression of UPR target genes whereas the protein produced from spliced mRNA 

acts as a potent activator of UPR target genes.39 This newly spliced XBP1 mRNA on 

translation acts as a transcription activator for UPR response genes associated with ER 

chaperone and ER secretory genes along with genes for ERAD. In addition to activating 

UPR target genes, IRE1 plays an important role in mediating the death of ER-stressed 

cells by recruiting tumor necrosis factor receptor (TRAF) and activating Jun N-terminal 

kinase (JNK) while also interacting with other components of cell death machinery like 

caspase-12.40 It has been seen that activated IRE1 can degrade nonessential mRNAs in a 

process called regulated IRE1α dependent decay (RIDD).41–43 RIDD has been noted to be 

associated with cell survival and cell death in nonalcoholic fatty liver disease (NAFLD) 

and nonalcoholic steatohepatitis (NASH).44 Transport and Golgi organization (TANGO1) 

is an ER membrane exit site resident protein required for the secretion of collagens and 

expansion of transport vesicles to accommodate large cargo from the ER.45 TANGO1 is one 

of the downstream targets of the spliced XBP1. Under ER stress conditions, spliced XBP1 

upregulates TANGO1 expression in the liver resulting in liver fibrosis. Experiments with the 

abrogation of TANGO1 or chronic unresolved ER stress have resulted in apoptosis46 These 

observations suggest that ER stress plays an active role in liver fibrosis.

3. PERK

PERK is a transmembrane protein kinase which inhibits protein synthesis under stress 

conditions. It is an ER resident transmembrane protein kinase with ER luminal domain 

similar to IRE1 and a cytoplasmic kinase domain.47 Under normal physiological 

conditions the ER luminal domain of PERK is bound to BiP. With the accumulation 

of unfolded proteins in the ER lumen, PERK is activated by oligomerization and trans-

autophosphorylation and acts as a kinase phosphorylating Ser51 residue on the alfa subunit 

of eukaryotic translation initiation factor 2 (eIF2) (Fig. 1C). eIF2 is an important translation 

initiation factor required for the delivery of initiating tRNA (Met-tRNAi) to the translation 

initiation complex. Eukaryotic translation initiation factor 2B (eIF2B) is a guanine exchange 

factor for eIF2. Phosphorylated eIF2α acts as an inhibitor by binding to eIF2B irreversibly 

and not undergoing guanine exchange causing a drop in the available active pools of eIF2 

ultimately resulting in inhibition of translation.48 Such conditions of translation inhibition 

due to phosphorylated eIF2α selectively favor the translation of stress response genes like 

activating transcription factor 4 (ATF4) (Fig. 1C) which activates yet another set of stress 

response genes including inducible eIF2α phosphatase, growth arrest and DNA-damage- 

inducible protein-34 (GADD34) and a transcription factor, C/EBP homologous protein 

(CHOP).48 Experiments with overexpression of CHOP have been shown to arrest the cell 

cycle and increase cellular apoptosis while CHOP deletion has been shown to reduce 

apoptosis under conditions of ER stress. Furthermore, an inverse apoptotic relationship is 

observed between CHOP and antiapoptotic factor Bcl-2 expression. taken together, these 

and many other observations highlight the prominent role of CHOP in apoptosis.49 To cope 

with the translation inhibition conditions, a constitutively expressed eIF2α phosphatase, a 
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constitutive repressor of eIF2α phosphorylation (CReP) continues to dephosphorylate eIF2α 
to restore protein synthesis independent of stress.50–53 The retention of phosphorylated 

eIF2α and inhibition of translation protect the cell by reducing the damaging effects 

of ER stress. Pharmacological modulators like GSK2606414, and GSK2656157 inhibit 

PERK, eIF2B inhibitor ISRIB, and eIF2α phosphatase inhibitors: Salubrinal, Guanabenz, 

and Sephin1, protect cells from the adverse effects of ER stress.54 Mouse models of 

hepatic steatosis- and obesity-induced NAFLD have shown that consumption of a high-fat 

diet can trigger ER stress response through PERK-mediated phosphorylation of eIF2α.55 

Administration of Salubrinal showed attenuation of obesity and hepatic steatosis by reducing 

the severity of ER stress through increased levels of phosphorylated eIF2α. Rise in ATF4 

levels due to phosphorylated eIF2α promoted autophagy.55 On similar lines, the PERK- 

eIF2α-ATF4 branch of ER stress response has also been shown to play a hepatoprotective 

role in alcohol-induced liver damage.56 This suggests that the PERK- eIF2α-ATF4 branch of 

ER stress response is important in protecting the liver from damage caused by ER stress.

Overall, in a cell under ER stress, the three branches of UPR (ATF6, IRE1, and PERK) 

work in a complex interconnected manner and together contribute to cell survival against ER 

stress.57–60 More research is needed to elucidate the complex interrelationship between the 

three UPR branches and their role in cell survival under stress conditions.

C. The role of ER stress during liver pathogenesis and regeneration after 

chemical induced liver injury

Toxicant-mediated tissue injury and tissue’s response to the inflicted injury are key aspects 

in determining the progression or regression of the toxicant-induced liver damage. The 

physiological effect of pharmacological agents and toxicants is determined mainly by 

their dose. Once toxicant exposure occurs, the toxic effects depend on the absorption, 

distribution, metabolism, and excretion of the chemical. It is probable that the majority 

of toxins at some level can disrupt the cellular ER homeostasis and activate UPR. More 

investigation into the involvement of the ER stress response due to chemical exposure is 

therefore necessary. Since reviewing the involvement of ER stress in liver injury induced 

by every chemical is beyond the scope of this review, we have chosen to review ER 

stress modulation by chemicals that have either clinical (acetaminophen and alcohol) or 

experimental (thapsigargin, tunicamycin, and carbon tetrachloride) significance (Fig. 2).

1. Thapsigargin and Tunicamycin induced ER stress

The Product of the Mediterranean plant Thapsia garganica, thapsigargin is a potent inducer 

of ER stress. Thapsigargin induces ER stress by inhibiting sarcoplasmic/endoplasmic 

reticulum calcium ATPase (SERCA) which causes depletion in ER calcium pools affecting 

ER homeostasis and triggering ER stress response while also initiating downstream ER-

mediated apoptotic signaling (Fig. 2A). Inhibition of SERCA increases the cytosolic calcium 

deposition, which in turn triggers apoptotic signaling.61 Detailed insights into the role of 

thapsigargin in inducing ER stress in liver hepatocytes are limited and will require further 

investigation. Product of Streptomyces lysosuperificus, tunicamycin is a potent antibiotic 

against many gram-positive bacteria, fungi, yeast, and viruses. Tunicamycin interferes with 
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the first ER step in the synthesis of N-glycoproteins causing impaired protein glycosylation 

in the ER and resulting in misfolded proteins, triggering unfolded protein response in the 

ER (Fig. 2B).62–64 Due to their physiological toxicity, thapsigargin and tunicamycin are not 

of pathophysiological relevance, however, they have been widely used experimentally as a 

model compounds to induce ER stress in liver and in cultured hepatocytes to study the role 

of ER stress response signaling.65,66

Due to their ability to induce ER stress, thapsigargin and tunicamycin have been explored 

as potential candidates against cancer.67–69 However, given their physiological toxicity, 

there still needs to be a deeper understanding of their effects on human physiology and 

their concentration-dependent effects on the biological system. For example, it has been 

seen that sub-toxic concentrations of thapsigargin have a cytoprotective role against the 

influenza virus.70 It is therefore necessary to develop temporal dose-response studies to 

address irreversible slow changes in cellular functioning in response to low-concentration 

doses of thapsigargin and tunicamycin. Such studies also need to be developed for other 

toxins discussed later in this section.

2. Acetaminophen induced ER stress

Acetaminophen (APAP) is the most widely used analgesic and antipyretic agent in the 

world. Overdose of APAP is the most common cause of acute liver failure in the 

Western world leading to thousands of hospitalizations and hundreds of deaths.71 APAP 

is metabolized by the drug-metabolizing enzyme Cytochrome P450 2E1 (CYP2E1) into 

a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) (Fig. 2C) which under 

normal conditions is detoxified by cellular processes through conjugation with glutathione 

(GSH).71 Under overdose conditions NAPQI accumulates at toxic levels due to rapid 

GSH depletion and alters cellular redox balance. The distorted redox balance results 

in imbalanced mitochondrial membrane potential, increasing reactive oxygen species 

(ROS) and peroxynitrite species concentration while disrupting Ca2+ homeostasis, and 

cellular proteostasis, causing DNA damage, impairing mitochondrial function, and finally 

culminating into hepatocyte necrosis.71–73 Studies have indicated that ER stress response 

signaling is active in APAP-induced hepatotoxicity.74 Spliced XBP1 activates the expression 

of CYP1A2 and CYP2E1 which convert APAP to its reactive intermediate NAPQI (Fig. 

2C).75 XBP1-deficient mouse models have shown constitutively active IRE1α signaling 

which had hepatoprotective effects by suppressing the expression of CYP1A2 and CYP2E1 

and cleavage of existing CYP1A2 and CYP2E1 mRNA through RIDD.75 Acetaminophen 

overdose resulted in increased expression of CHOP. Whole-body CHOP knockout mice 

showed decreased APAP toxicity and had a better regenerative response.76

A common observation in these studies is the latent activation of ER stress response against 

acetaminophen toxicity. Multiple factors can underly this latent activation. One possible 

explanation can be that the ER stress response is a result of the cellular damage happening 

immediately after acetaminophen exposure. Another aspect of latent ER stress activation 

can be the unspecific binding of accumulated NAPQI to ER proteins interfering with ER 

homeostasis.77–79 Mechanistic insights into ER stress response activation and downstream 

consequences of ER stress signaling on hepatocyte recovery or death or recovery from 
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acetaminophen and other toxin exposure will be an important and interesting area for further 

investigation.

3. Carbon tetrachloride induced ER stress

Carbon tetrachloride (CCl4) is an organic solvent heavily used in industry for degreasing and 

is a well-studied hepatotoxicant. Treatment of CCl4 is also used as an experimental model to 

study acute and chronic liver injury. CCl4 toxicity is associated with centrilobular hepatocyte 

necrosis, which results in subsequent dose-dependent induction of liver regeneration.80 

However, repeat dosing of CCl4 can induce liver fibrosis and scar formation which can 

develop into liver cirrhosis. The progression of scar tissue results in cessation of liver 

regeneration, whereas cessation of CCl4 administration is associated with reactivation of 

liver parenchyma regeneration.81 CCl4 exposure leads to activation of ER stress signaling 

but mechanisms are not completely known (Fig. 2D). Following CCl4 exposure, cytoplasmic 

interferon regulatory factor 3 (IRF3) and BAX (a proapoptotic factor) complex formation 

is detected which is seen to migrate to the mitochondria and activate caspase-mediated 

hepatocyte apoptosis and subsequent liver fibrosis.82

4. Alcohol induced ER stress

a. Metabolism of alcohol in the liver—Uncontrolled consumption of alcohol is 

recognized as a global issue of public health. Hepatocyte resident alcohol dehydrogenase 

(ADH) and CYP2E1 are the main enzymes involved in metabolism of alcohol. ADH 

catalyzes alcohol oxidation through NAD+ reduction converting alcohol to acetaldehyde. 

This reaction results in the production of acetaldehyde and NADH which are heavily 

reactive and toxic (Fig. 2E). Acetaldehyde is further oxidized to relatively safer acetate 

by mitochondria resident aldehyde dehydrogenase 2 (ALDH2) through the reduction 

of NAD+.83 Excess consumption of alcohol can result in increased activity of ADH 

and ALDH2 which is associated with increased concentration of NADH resulting in 

imbalanced cellular redox potential (NAD+/NADH ratio). This is followed by a metabolic 

shift from oxidative to reductive and increased fatty acid synthesis which contributes to 

fatty liver disease.83 CYP2E1 follows a similar oxidative reaction converting alcohol to 

acetaldehyde.84 Besides ADH and CYP2E1, cellular catalase has also been noted to oxidize 

alcohol to acetaldehyde.85

b. Acute alcohol consumption and its effect on the liver—Acute alcohol 

consumption is a major cause of alcoholic liver damage, however, the damage is reversible. 

Acute alcohol consumption can impact liver function by overwhelming liver’s capacity to 

process alcohol efficiently. This can result in oxidative stress, inflammation, and damage 

to liver cells.86 Acute alcohol consumption can disrupt the balance of lipid metabolism in 

the liver, leading to the accumulation of fat droplets and the development of alcoholic fatty 

liver disease (AFLD).87 Moreover, the breakdown of alcohol by the liver enzyme alcohol 

dehydrogenase generates toxic byproducts, such as acetaldehyde, which can cause DNA 

and protein damage and impair liver function.83,88,89 Another consequence of acute alcohol 

consumption is the activation of immune cells in the liver, triggering an inflammatory 

response. This chronic inflammation can lead to the development of alcoholic hepatitis, 

characterized by liver cell injury and inflammation.86,90 If left untreated, alcoholic hepatitis 
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can progress to more severe conditions such as liver fibrosis and cirrhosis. Interestingly, 

variations in genes involved in alcohol metabolism and antioxidant defense systems 

can influence an individual’s risk of developing liver diseases associated with alcohol 

consumption.91 Understanding these genetic and other host-associated factors can help 

identify individuals who may be more vulnerable to the harmful effects of acute alcohol 

consumption. An interesting gut-liver axis is seen to function in alcohol-induced liver 

damage where consumed alcohol coupled with lipopolysaccharide (LPS) from the gut 

microbiome translocates to the liver and activates Kupffer cells inducing liver inflammation. 

Furthermore, the LPS-alcohol combination can activate ROS formation which results in the 

worsening of hepatocellular damage.92

c. Chronic alcohol consumption and its effect on the liver—Chronic alcohol 

consumption has profound and detrimental effects on the liver and has been associated 

with the development of alcoholic liver disease (ALD). ALD encompasses a spectrum 

of conditions, ranging from alcoholic fatty liver to alcoholic hepatitis and ultimately, 

liver cirrhosis.93 Chronic alcohol consumption disrupts lipid metabolism, resulting in 

the accumulation of fat within liver cells, a characteristic feature of alcoholic fatty 

liver disease.94 Oxidative stress induction has been seen as one of the consequences of 

chronic alcohol consumption, leading to the production of ROS and lipid peroxidation, 

contributing to liver cell injury and inflammation.95 Additionally, chronic alcohol exposure 

activates hepatic stellate cells, promoting collagen deposition and fibrosis, which are key 

mechanisms underlying the development of liver cirrhosis.93,95,96 Furthermore, chronic 

alcohol consumption and subsequent ALD are also associated with impaired liver 

regenerative potential through disruption of the balance between liver cell proliferation 

and cell death.95 This impaired regenerative process contributes to the development of 

liver fibrosis, cirrhosis, and ultimately, liver failure.93,95 Excessive alcohol consumption 

is initially followed by liver steatosis which can progress to steatohepatitis. Continued 

consumption of alcohol can lead to liver fibrosis which can progress to liver cirrhosis and 

hepatocellular carcinoma (HCC).97

d. Role of the ER stress response—Acute and chronic alcohol consumption 

triggers ER stress response in the liver and can contribute to ALD. Alcohol disrupts ER 

homeostasis, leading to the accumulation of unfolded or misfolded proteins within the ER 

lumen, activating ER stress.98 It has been suggested that ER stress can contribute to the 

development of liver steatosis or fatty liver disease, an early manifestation of ALD.93,98 

ER, stress-induced activation of the transcription factor SREBP-1c promotes lipid synthesis 

and accumulation, contributing to the development of hepatic steatosis.83 Additionally, ER 

stress-mediated dysregulation of lipid metabolism pathways, such as lipolysis and fatty acid 

oxidation, further exacerbates liver lipid accumulation.11,99 Prolonged and excessive ER 

stress can overwhelm the UPR, resulting in sustained activation of inflammatory pathways 

and cell death. It has been seen that alcohol-induced oxidative stress and lipid accumulation 

can trigger ER stress by disrupting calcium homeostasis and impairing protein folding 

machinery resulting in the development of hepatic steatosis and ALD.100
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Multiple ER stress response genes have been identified to be up-regulated during alcohol-

induced liver toxicity indicating ER stress response signaling as an active contributor to 

alcohol-mediated liver injury.101 Alcohol toxicity causes hepatocyte apoptosis102 which is 

driven by the PERK-eIF2-ATF4 branch of ER stress signaling leading to CHOP activation 

followed by hepatocyte apoptosis.103 Furthermore, studies in primary cultured human 

hepatocytes exposed to alcohol showed activation of the integrated stress response (ISR).104 

ISR is a cellular stress response system in which various extracellular and intracellular 

stresses are identified by four kinases; PERK, PKR, HRI, and GCN2, which give a common 

output of eIF2 phosphorylation and inhibition of cellular protein synthesis.105 It will be 

interesting to see how active ISR can have detrimental effects on liver regeneration.

5. Role of ER stress in liver regeneration after chemical induced liver injury

The liver responds to chemical-induced injury by compensatory proliferative activation 

of hepatocytes and nonparenchymal cells through complex signaling networks.106,107 

These newly formed cells make up for the lost liver tissue and restore normal liver 

function.71,108,109 Multiple studies discussed in this section highlight the role of ER stress 

response signaling in liver regeneration after chemical-induced liver injury.

Studies conducted using chemical-induced hepatotoxicity models suggest that abrogating 

ER stress response results in impaired liver regeneration. CCl4-induced liver toxicity models 

on the background of IRE1α deletion showed poor regenerative response and diminished 

STAT3 phosphorylation. Whereas, when IRE1α expression was restored, sustained STAT3 

phosphorylation levels were detected.110 STAT3 is an important signal transducer in 

hepatocyte proliferative signaling111 and therefore, these results suggest that ER stress 

signals interact with other cellular signaling pathways and plays an important role in 

activating cell proliferation following chemical-induced liver injury. Mechanistic insights 

into why IRE1α signaling is important come from studies on downstream promotion of 

genes due to IRE1α spliced XBP1 signaling. Interleukin-24 (IL-24) is a known negative 

regulator of cell proliferation and has a hepatoprotective effect.112 Spliced XBP1 is 

seen to promote the expression of IL-24 which accumulates on the ER membrane and 

inhibits PERK-eIF2-ATF4 branch of ER stress.113 This PERK-eIF2-ATF4 inhibition has 

two consequences; first, it allows for continued protein synthesis necessary for hepatocyte 

adaptation to the incurred chemical injury and liver regeneration; second, it downregulates 

the CHOP expression and subsequent apoptosis-protecting remnant hepatocytes and 

allowing liver regeneration.113

D. The role of ER stress in regeneration after partial hepatectomy

1. Liver injury and regeneration dynamics after partial hepatectomy

Due to the lobular structure of the liver, surgical resection of one of its lobes provides a 

clean model to study liver regeneration. Seminal experiments demonstrated the potential 

of the liver to regenerate to normal physiological size after 2/3rd PH making it the most 

widely used model to study liver regeneration.114 Although 2/3rd PH is widely used, 

studies exceeding this limit have shown to have lethality due to inefficiency and lack 

of functionality of the remnant liver to sustain normal physiological functioning and 
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regenerative potential.115 PH is followed by recalibration of hepatic blood flow with the 

blood now circulating through the remnant liver. This can increase the blood pressure in the 

remnant liver causing portal hyperperfusion and focal hemorrhage which can progress in 

the adjacent parenchyma. Progression of poor hepatic circulation and associated damage can 

cause functional dearterialization, overall, drastically damaging the liver and impairing liver 

regeneration.116

The liver undertakes multiple regenerative processes to modulate its size corresponding to 

the host’s physiological conditions. For example, liver size increases during pregnancy while 

decreases in cases of cachexia. Furthermore, liver size is seen to be modulated by the host 

physiology through yet unexplored factors.117–119 This phenomenon of regulated liver size 

during regeneration in correspondence to the host physiology suggests a “hepatostat” like 

regulatory function.120 The restored liver after PH does not involve the regrowth of its lost 

liver lobe, but instead is associated with the expansion of existing liver lobes to the critical 

mass before hepatectomy.121 Multiple signaling pathways have been identified initiating and 

regulating liver regeneration after PH.106,107,122

In a healthy liver, majority of cells are in a quiescent state with a minimal population 

in an active state of proliferation, dividing with long intervals.123 However, upon injury 

compensatory regeneration is stimulated and a significant number of cells, both hepatocytes 

and nonparenchymal cells, enter the cell cycle and undergo cell proliferation to replace the 

dead cells. Liver regeneration is a complex process relying on internal and external signals 

that control the nature and extent of regeneration.109,124 The purpose of liver regeneration is 

to retain the lost stability of liver functioning which is critical for maintaining physiological 

homeostasis. Interestingly, under conditions of excessive liver parenchymal cell damage, 

nonparenchymal cells are seen to undergo active regeneration and transdifferentiate into 

hepatocytes through genome-wide alterations (epigenetic and transcriptomic) and signaling 

pathway rewiring.125–129

2. Role of ER stress in liver regeneration after PH

PH is associated with an increased risk of hepatic steatosis and inflammatory liver 

failure due to the generation of ROS, and excessive apoptosis and disturbed hepatic 

circulation. Chemicals that modulate ER stress such as 4-phenyl butyric acid (PBA) and 

tauroursodeoxycholic acid (TUDCA) have noted hepatoprotective effects against PH and 

ischemia-reperfusion injury.130–132 Experiments investigating the roles of PBA and TUDCA 

on ER stress response and liver regeneration post-PH suggested that all three branches 

of ER stress response and their associated downstream signaling are activated in livers 

post-PH and ischemia reperfusion.133,134 Steatotic livers exhibit a reduced response to ER 

stress signaling than non-steatotics livers. PBA and TUDCA resulted in suppression of 

IRE1 and PERK branches of ER stress response subsequently inhibiting apoptosis and 

inflammation and improving liver regeneration.133 Although these experiments highlight a 

correlation between ER stress inhibition and improved liver regeneration, it is important 

to note that the mechanism of action of PBA and TUDCA is not completely elucidated 

and a deeper investigation into their mechanism will help in uncovering how they 

modulate ER stress in hepatocytes and affect the liver regeneration post PH. Phenyl butyric 
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acid (PBA) has emerged as a promising therapeutic agent with diverse applications in 

neurodegenerative diseases, cancer, and metabolic disorders. As a chemical chaperone 

and modulator of cellular stress response pathways, PBA exhibits multiple beneficial 

effects. It has the ability to reduce protein aggregation in neurological conditions, alleviate 

endoplasmic reticulum (ER) stress, induce cellular differentiation and apoptosis, and 

enhance metabolic function. These findings highlight the potential of PBA as a targeted 

intervention for improved patient outcomes.135 Tauroursodeoxycholic acid (TUDCA) has 

been extensively studied for its hepatoprotective effects in liver diseases such as non-

alcoholic fatty liver disease (NAFLD), cholestasis, and liver fibrosis. Moreover, TUDCA 

has demonstrated promising neuroprotective properties, making it a potential therapeutic 

intervention for neurodegenerative disorders like Parkinson’s and Alzheimer’s disease. 

Additionally, TUDCA’s anti-inflammatory and anti-apoptotic characteristics offer potential 

therapeutic avenues for various inflammatory and apoptotic-related conditions. The diverse 

therapeutic applications of TUDCA underscore its significance as a candidate for further 

research and clinical exploration in different disease contexts.136

Mouse models with 90% hepatectomy followed by co-administration of prostaglandin and 

somatostatin combination showed their combinatorial hepatoprotective effect to be more 

pronounced than their individual administration. This protective effect was seen to be 

through inhibition of ER stress response which inhibited cellular apoptosis and promoted 

liver regeneration.137 It is important to note that prostaglandins and somatostatins carry out 

a vast spectrum of functions in the body and their hepatoprotective effects seen in these 

experiments through suppression of ER stress response can be a part of a multifaceted 

cell-wide action, the effect of which is reduced hepatic damage after PH. We lack detailed 

mechanistic insights into the action of prostaglandins and somatostatins on the hepatocyte 

ER and liver and more investigations are warranted.

Overall, these observations suggest that activation of ER stress response following PH 

is associated with increased hepatic damage and poor liver regeneration while drugs 

suppressing the ER stress-induced hepatocyte damage are hepatoprotective. The potential 

clinical applications of such drug interventions would require a deeper understanding of 

their mechanisms of action, their clinical efficiency and safety, and fundamentally, how the 

ER stress response affects liver regeneration after PH.

3. UFMylation, cell death and regeneration

A recently identified cyclin-dependent kinase 5 activator, CDK5RAP3, is especially 

expressed in the liver along with other organs of the body, contributes to a multitude 

of cellular processes and interestingly also is a component of the UFMylation system. 

UFMylation, also known as ubiquitin-fold modifier 1 (UFM1) conjugation, is a post-

translational modification pathway involving the attachment of UFM1 protein to the target 

proteins.138 UFMylation has been shown to play a role in regulating ER homeostasis 

and the cellular response to ER stress. Studies have demonstrated that UFM1 and its 

conjugating enzymes are involved in the maintenance of ER protein folding capacity and the 

unfolded protein response (UPR), a cellular mechanism activated during ER stress.138,139 

Since UFMylation is a part of post-translational modification in the ER, CDK5RAP3 is 
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seen to play an important role in ER homeostasis.140 CDK5RAP3 during liver injury 

due to PH has been shown to have a hepatoprotective role by preventing the activation 

of ER stress response and maintaining ER homeostasis along with maintaining normal 

lipid metabolism.141 CDK5RAP3 deletion has been shown to disrupt ER homeostasis 

through an impaired post-translation modification altogether contributing to the activation 

of UPR.140,141 However, it must be noted that the complete understanding of the cell 

wide functions of CDK5RAP3 and the ramifications of its deletion in relation to ER stress 

induction and liver regeneration need to be further investigated.

Overall, such experiments suggest that hepatocytes have upstream regulatory factors, the 

loss of which triggers ER stress-mediated hepatocyte apoptosis to perhaps avoid errors that 

might result in unregulated hepatocyte proliferation and hepatocellular carcinoma.

Actively proliferating hepatocytes in response to PH-induced liver damage require continued 

synthesis of proliferation dependent proteins. Studies in fibroblast cell lines showed that 

activation of the PERK-eIF2-ATF4 branch of ER stress response results in a drop in cellular 

protein synthesis and cause cell cycle arrest at the G2/M phase.142,143 ER stress response is 

also associated with proliferation-promoting and inhibitory signaling. Liver regeneration is 

associated with active cell proliferation through oncogenic Ras signaling. It has been seen 

that IRE1a-mediated ER stress response signaling is activated by Ras-mediated proliferative 

signaling. This observation comes from experiments that showed that abrogating ER stress 

through the reduction of IRE1a-mediated Xbp1 splicing resulted in growth arrest and 

premature senescence.144 Corresponding to this, it has been seen that ER stress is associated 

with ubiquitin proteasomal degradation of p53 and further supporting cell proliferation.145

Canopy homolog 2 (CNYP2) is a recently identified mediator of PERK signaling. Under 

stress conditions CNYP2 bind to the ER luminal domain of PERK by dissociating BiP 

and activates the PERK-eIF2-ATF4 branch of ER stress response. CNYP2 expression is 

activated by CHOP which is activated by ATF4 signaling. The expressed CNYP2 then 

gets localized in the ER lumen.146 Recently, mechanistic insights into CNPY2-mediated 

cell cycle enhancement were revealed which suggest the activation of PERK by CNPY2, 

activates multiple signaling pathways that inhibit p53, alleviating its proliferation inhibitory 

effect and promoting rapid cell proliferation in the liver.147

It is important to note that impaired liver regeneration in response to toxicant-induced 

injury or PH or error-prone cell proliferation is associated with the development of 

hepatocellular carcinoma. These studies highlight the importance of maintaining a fine 

balance of proliferative and proliferation inhibitory signaling in liver regeneration and the 

important role played by ER stress response signaling in this process.

E. Future lines of investigation on the role of ER stress in liver 

regeneration

ER plays a central role in cellular homeostasis and different environmental conditions 

like toxicant exposure and physical injury have been associated with distorting cellular 

homeostasis. Recent studies have begun to elucidate the role of ER stress response in 
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modulating cellular processes in response to stress conditions. Many observations in the 

past decade have suggested that ER plays an important role in regulating liver regeneration. 

Based on the limited literature on the topic, we highlight the following as important areas of 

investigation.

i. Previously discussed studies have largely applied single dose or repeat dosing 

to induce liver injury following which the process of liver regeneration is 

monitored. Future studies need to focus on dose-dependent ER stress response 

prior to associated damage. Furthermore, continued monitoring of ER stress 

response through liver regeneration can help elucidate the liver regeneration 

regulatory role of ER stress response.

ii. As previously discussed, a complete understanding of how different toxins affect 

hepatocytes and directly or indirectly result in activating ER stress response 

followed by its implications on liver regeneration is necessary. Furthermore, 

how toxicants targeting cellular locations other than ER can trigger a cascade 

of response upstream of ER eventually activating ER stress needs to be further 

resolved.

iii. Multiple studies have highlighted context dependent PERK-eIF2-ATF4 signaling 

associated cellular changes in response to oncogene and tumor suppressor gene 

signaling.144,145,148,149 Since oncogene and tumor suppressor gene signaling is 

active during liver regeneration and considering their links with the PERK-eIF2-

ATF4 branch of ER stress response, this signaling crosstalk needs to be further 

explored.

iv. Our discussion highlights that inhibition of ER stress response in PH support 

liver regeneration while, inhibition in chemical-induced liver injury results in 

impaired regeneration. The three arms of UPR act in a sequential fashion with 

PERK-eIF2-ATF4 acting last.150,151,38,60 It would be interesting to explore how 

sequential activation of the three branches of ER stress response and associated 

downstream effects in PH and chemical-induced liver injury contribute to the 

contextual nature of ER stress in liver regeneration. This apparently contextual 

nature demands further elucidation of differential mechanisms involved in PH 

and toxicant damage hepatocyte response. Furthermore, we need to understand 

how the remnant injured or uninjured cells perceive the damage and in turn 

modulate their ER stress response and initiate liver regeneration.

v. Mitochondria mediated metabolism and energy production is important in 

regulating liver regeneration. Important links in ER-mitochondria crosstalk have 

been observed at different levels from physical contact, mitochondria associated 

membranes (MAMs) between the two organelles to signaling crosstalk.152–

154 ER-mitochondria calcium crosstalk is important in maintaining cellular 

calcium homeostasis. ER release of calcium signals to mitochondria is crucial 

to regulate mitochondrial functions like metabolism, energy production and 

apoptosis.155 ER stress response signalling proteins like PERK are seen to 

interact with mitochondria under stress. this is seen to regulate mitochondrial 
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protein homeostasis, ER mitochondria calcium signaling, and apoptosis.10,156–

158 Recently it has been seen that mitochondria to ER crosstalk can be 

mediated by NADPH production and redox regulation of GSH. Mechanistic 

insights suggest active redox cycling of GSH is associated with the inhibition 

of ER stress.159 This highlights the potential importance of investigating the 

processes involved in ER-mitochondria crosstalk and their broader implications 

on regulating liver regeneration.

vi. Finally, we believe that it is important to elucidate the mechanistic role of ER 

stress response in liver regeneration under different liver insults.

F. Conclusion

Over time, we have gained good insights into the role of ER stress response in PH and drug-

induced liver toxicity.109 We believe that in the future, an even clearer picture of ER stress 

in various other liver diseases will emerge.160 ER plays a central role in cellular homeostasis 

and different environmental conditions like toxicant exposure and physical injury have been 

associated with distorting cellular homeostasis. Recent studies have begun to elucidate the 

role of ER stress response in modulating cellular processes in response to stress conditions. 

Multiple observations in the past decade have suggested that ER plays an important role in 

regulating liver regeneration. Based on the limited literature on this topic, multiple studies 

suggest that inhibiting the ER stress response after PH-induced liver damage promotes liver 

regeneration, whereas chemical-induced hepatotoxicity demonstrated that inhibiting the ER 

stress response impairs liver regeneration. Therefore, we see an apparent contextual nature 

to the role of ER stress response signaling in liver regeneration. Finally, we would like to 

highlight that while extensive mechanistic data are available in rodent models, more research 

on role of UPR is needed human liver diseases.
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Fig. 1: 
Summary of three branches of ER stress response signaling pathways. On accumulation of 

unfolded proteins in the ER lumen, BiP dissociates from the ER luminal domain of three 

ER membrane localized sensors; ATF6, IRE1 and PERK resulting in their activation. A) BiP 

dissociated ATF6 translocate to the Golgi where it is activated by proteolytic cleavage and 

the activated ATF6 travels to the nucleus and induces expression of downstream ER stress 

response genes. B) PERK is activated by oligomerization and trans autophosphorylation 

upon BiP dissociation. Active PERK phosphorylates eIF2α resulting in inhibition of 

protein synthesis and selective translation of ATF4 which induces ER stress response 

genes. Phosphorylated eIF2α and ATF4 selectively translate CHOP. Phosphorylated eIF2α 
is dephosphorylated by CReP and GADD34 phosphatases. C) IRE1 is activated by 

oligomerization and trans autophosphorylation which selectively affect mRNA splicing. 

IRE1 mediated splicing activates XBP1 which induces the expression of ER stress response 
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genes. Both spliced and precursor mRNAs are expressed in cells, spliced XBP1 acts as an 

activator of UPR target genes while its unspliced precursor represses UPR gene expression. 

Figure generated using BioRender.com.
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Fig. 2: 
ER stress response signal flow in chemical induced liver injury. Subthreshold level 

concentrations of hepatotoxicants like acetaminophen, alcohol, CCl4 are metabolized by 

the ER resident enzymes. Buildup of these toxins beyond the threshold levels is associated 

with induction of ER stress. A) Thapsigargin inhibit SERCA pump on ER membrane and 

unbalance the ER calcium homeostasis and induce ER stress. B) Tunicamycin inhibits 

protein glycosylation and protein assembly causing accumulation of unfolded proteins 

resulting in activation of ER stress. C) Toxic levels of acetaminophen result in accumulation 

of reactive intermediate NAPQI triggering ER stress through IRE1 and PERK branches. D) 

The mechanism of ER stress induction by CCl4 is still not completely understood but is 

seen to activate apoptosis through IRF3 and BAX. E) Alcohol imbalances ER redox balance 

and trigger ER stress through PERK which induces ISR and subsequent CHOP expression. 

Downstream signaling from UPR activate mitochondria mediated apoptosis in hepatocytes 

which can progress to liver fibrosis and cirrhosis. Figure generated using BioRender.com.
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