Skip to main content
. 2024 Mar 6;10(5):e27411. doi: 10.1016/j.heliyon.2024.e27411

Table 3.

Comparison of the proposed methods' performance study.

Method Classifiers Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Miss Rate (%)
PCA LR 75.75 68.44 80.16 73.84 82.82 24.20
RF 92.31 89.50 94.84 92.09 97.79 7.69
KNN 88.75 80.65 96.23 87.76 93.95 11.20
SVM 87.31 81.06 92.63 86.45 91.06 12.60
GB 86.35 82.03 89.78 85.73 90.45 13.60
XGB 91.52 87.58 95.08 91.18 96.07 8.48
FA LR 78.80 73.52 82.20 77.62 86.96 21.20
RF 91.70 89.84 93.43 91.60 97.71 8.30
KNN 89.43 82.37 95.92 88.63 94.20 10.50
SVM 83.88 77.64 88.71 82.80 91.80 16.10
GB 84.80 79.83 88.65 84.01 91.61 15.20
XGB 90.50 86.69 93.83 90.12 95.84 9.50
PCA-FA LR 80.48 75.51 83.85 79.46 88.46 19.50
RF 92.55 90.53 94.35 92.40 98.15 7.45
KNN 89.54 82.16 96.37 88.70 94.16 10.40
SVM 86.38 80.72 91.02 85.56 93.35 13.60
GB 86.38 82.03 89.85 85.76 92.75 13.60
XGB 91.52 87.58 95.08 91.18 97.37 8.48
FPCA SVM 83.26 77.09 87.94 82.16 91.06 16.70
RF 91.90 89.50 94.02 91.70 97.78 8.10
XGB 90.02 87.01 93.44 89.61 96.07 9.98
Stacking 92.28 91.29 93.48 92.37 97.76 7.72
Ensemble SVM 90.36 85.18 95.02 89.83 95.21 9.64
Feature RF 92.42 92.18 92.62 92.40 96.50 7.58
XGB 94.78 94.37 95.15 94.76 98.78 5.58
Stacking 94.89 94.43 95.40 94.91 98.88 5.11