Skip to main content
. 2024 Mar 6;10(5):e27411. doi: 10.1016/j.heliyon.2024.e27411

Table 4.

Comparison of the proposed method with the most relevant works.

Author & References Classifiers Accuracy (%) Precision (%) AUC (%) Limitations
G. Sailasya et al. [18] LR 78.00 77.50 a) Used limited ML algorithms that were not robust for accurate stroke prediction.
DT 66.00 77.50
RF 73.00 72.00
K-NN 80.00 77.40
SVM 80.00 78.60
NB 82.00 79.20
Krishna et al. [13] RF 90.36 88.00 b) Lower accuracy and AUC score which is not enough for stroke prediction.
LR 80.18 79.00
SVM 80.18 79.00
KNN 86.74 83.00
NB 76.03 74.00
XGB 89.02 88.00
Kokkotis et al. [20] LR 73.52 83.30 c) Focused on specific ages, removed prevailing missing dataset values.
RF 71.19 81.24
XGboost 72.58 82.50
KNN 69.16 79.35
SVM 71.28 82.85
MLP 70.85 82.14
PCA-FA LR 80.48 75.51 88.46
RF 92.55 90.53 98.15
KNN 89.54 82.16 94.16
SVM 86.38 80.72 93.35
GB 86.38 82.03 92.75
XGB 91.52 87.58 97.37