
Advances in Radiation Oncology (2024) 9, 101383
Scientific Article
Artificial Intelligence-Based Organ Delineation for
Radiation Treatment Planning of Prostate Cancer
on Computed Tomography

Eirini Polymeri, MD,a,b,* A

�
se A. Johnsson, PhD,a,b Olof Enqvist, PhD,c,d

Johannes Ul�en, PhD,d Niclas Pettersson, PhD,e,f Fredrik Nordstr€om, PhD,e,f

Jon Kindblom, PhD,g Elin Tr€aga
�
rdh, PhD,h Lars Edenbrandt, PhD,i,j and

Henrik Kj€olhede, PhDk,l

aDepartment of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg,
Sweden; bDepartment of Radiology, Region V€astra G€otaland, Sahlgrenska University Hospital, Gothenburg, Sweden;
cDepartment of Electrical Engineering, Region V€astra G€otaland, Chalmers University of Technology, Gothenburg, Sweden;
dEigenvision AB, Malm€o, Sweden; eDepartment of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska
Academy, University of Gothenburg, Gothenburg, Sweden; fDepartment of Medical Physics and Biomedical Engineering,
Region V€astra G€otaland, Sahlgrenska University Hospital, Gothenburg, Sweden; gDepartment of Oncology, Region V€astra
G€otaland, Sahlgrenska University Hospital, Gothenburg, Sweden; hDepartment of Clinical Physiology and Nuclear Medicine,
Lund University and Ska

�
ne University Hospital, Malm€o, Sweden; iDepartment of Molecular and Clinical Medicine, Institute

of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; jDepartment of Clinical Physiology,
Region V€astra G€otaland, Sahlgrenska University Hospital, Gothenburg, Sweden; kDepartment of Urology, Institute of
Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and lDepartment of Urology,
Region V€astra G€otaland, Sahlgrenska University Hospital, Gothenburg, Sweden

Received 19 May 2023; accepted 30 August 2023
Purpose:Meticulous manual delineations of the prostate and the surrounding organs at risk are necessary for prostate cancer radiation
therapy to avoid side effects to the latter. This process is time consuming and hampered by inter- and intraobserver variability, all of
which could be alleviated by artificial intelligence (AI). This study aimed to evaluate the performance of AI compared with manual
organ delineations on computed tomography (CT) scans for radiation treatment planning.
Methods and Materials: Manual delineations of the prostate, urinary bladder, and rectum of 1530 patients with prostate cancer who
received curative radiation therapy from 2006 to 2018 were included. Approximately 50% of those CT scans were used as a training set,
25% as a validation set, and 25% as a test set. Patients with hip prostheses were excluded because of metal artifacts. After training and
fine-tuning with the validation set, automated delineations of the prostate and organs at risk were obtained for the test set. Sørensen-
Dice similarity coefficient, mean surface distance, and Hausdorff distance were used to evaluate the agreement between the manual and
automated delineations.
Sources of support: Funding for this project was provided by grants
from the Swedish state under the agreement between the Swedish gov-
ernment and the county councils, the ALF-agreement (ALFGBG-
873181), and grants from the departments of oncology and radiology,
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Results: The median Sørensen-Dice similarity coefficient between the manual and AI delineations was 0.82, 0.95, and 0.88 for the
prostate, urinary bladder, and rectum, respectively. The median mean surface distance and Hausdorff distance were 1.7 and 9.2 mm for
the prostate, 0.7 and 6.7 mm for the urinary bladder, and 1.1 and 13.5 mm for the rectum, respectively.
Conclusions: Automated CT-based organ delineation for prostate cancer radiation treatment planning is feasible and shows good
agreement with manually performed contouring.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Accurate organ contouring for radiation treatment
planning (RTP) of various forms of cancer, including pros-
tate cancer (PCa), is challenging.1,2 Despite the availability
of international RTP guidelines, practices may vary across
radiation oncologists, treatment centers, and countries,3-5

due in part to inconsistent manual organ delineations.1 It
is well-documented that manual organ contouring is
resource- and time-consuming and subject to interob-
server variability.1,4,6,7 Additionally, it has been shown that
protocol deviations during RTP can result in inefficient
treatment outcomes3,5,8 and decreased overall survival.9

Automated organ contouring could help alleviate these
problems, as it would require less manual input and time
and could provide a more standardized template for RTP
of both the target organ and the surrounding organs at
risk (OAR). Artificial intelligence (AI)-based algorithms
have emerged as useful tools in oncological imaging and
radiation oncology for localization, staging, and particu-
larly for delineation of various forms of cancer, including
malignancies in the pelvic region.10-12 It has been shown
that AI can perform organ contouring faster and with
greater accuracy than conventional methods.13-15

The application of AI for RTP of prostatic malignan-
cies has primarily been focused on magnetic resonance
imaging (MRI).14,15 This is mainly because of the higher
soft-tissue contrast of MRI compared with computed
tomography (CT), which enables easier differentiation of
the tumor from the surrounding normal tissues, including
OAR.2,16-19 On the other hand, the use of CT for RTP
could be more cost-effective and more globally accessible
than MRI. To date, studies on automated delineations of
the prostate and OAR on CT have been limited. We previ-
ously developed an AI-based algorithm for automated
delineation of the prostate in high-risk patients with PCa
using CT images of positron emission tomography/CT
examinations. The findings showed a Sørensen-Dice simi-
larity coefficient (DSC) of 0.78 to 0.79, which was compa-
rable to the interobserver variability of manual
delineations by participating radiologists in the study.20

The aim of the current study was to further develop
our existing AI algorithm to achieve fully automated
organ contouring of the prostate and the surrounding
OAR using CT scans obtained before RTP. The accuracy
of the AI algorithm was evaluated by comparing the
output of the algorithm with manual delineations per-
formed by radiation oncologists.
Methods and Materials
Patients and study design

The single-center patient cohort included 1530 conse-
cutive patients with PCa from the local oncological
department at Sahlgrenska University Hospital, Gothen-
burg, Sweden, who received curative external beam radia-
tion therapy during the period 2006 to 2018. Patients
previously treated with radical prostatectomy and those
who received palliative radiation therapy were not
included in the study. The study was approved by the
Swedish Ethical Review Authority (registry no. 2019-
03205).
Collection and analysis of data

All available RTP CT imaging together with manually
delineated target volumes and OARs of all included sub-
jects were pseudonymized and uploaded to the research
platform www.recomia.org.21 The platform automatically
strips the image data of all identifying information during
the upload process, except for the study code. The plat-
form thereby hosts and processes fully deidentified image
data only.

The first step of the study entailed a visual control of
the existing manually delineated prostate and the sur-
rounding OAR, that is, urinary bladder and rectum. This
was done independently by 3 observers, including 1 urol-
ogist and 2 radiologists. Before the visual quality control,
criteria of acceptance regarding organ delineations were
developed in consensus during multidisciplinary meetings
between the observers and experienced radiation oncol-
ogy specialists. Acceptance criteria specified that the
organ delineations should not overlap with a nearby
structure and should cover the whole organ of interest.
Delineations that did not meet the specified criteria were
excluded from the study. Decisions were made on a per
organ basis; for example, the delineation of the prostate of
a patient could be excluded, whereas the urinary bladder
of the same patient could be included in the study data
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set. In addition, the presence of contrast in the urinary
bladder and the presence or absence of delineation of the
seminal vesicles were noted. The seminal vesicles were
delineated as part of the radiation target (prostate) for
some of the patients, depending on the clinical stage of
the PCa. Finally, the level of rectum contouring was
noted, classifying the delineations as either below, at, or
above the rectosigmoid junction. Patients with hip pros-
theses were excluded from the study because of streak
artifacts.

The included data set was then divided into a training
set (approximately 50%), an internal validation set
(approximately 25%), and a separate test set (approxi-
mately 25%). The internal validation set was used to fine
tune the algorithm after training. The test data set was
only used in the final validation after the AI algorithm
had been finalized. The described procedure is shown in
the flow chart of Fig. 1. Examples of the criteria for accep-
tance of delineations are shown in Fig. 2.
Imaging
CT acquisition
All CT scans were obtained using a helical multidetec-

tor CT scanner (Toshiba Aquilion/LB or GE Medical Sys-
tems), using a scan field of view 400 to 700 mm, 120 kV,
500 to 1500 ms exposure time, and 55 to 500 mAs tube
current modulation. The pelvic region was examined with
the patients in the supine position. Administration of
contrast media varied over time, depending on the local
routines. The CT scans were reconstructed in the trans-
verse plane with 1- to 5-mm slice thickness using filtered
back projection. The convolution kernels used were FC07,
FC13, FC17, and STD+.
Figure 1 Flow chart showing the sele
AI algorithm
The algorithm was trained to automatically segment

the prostate gland and the surrounding OAR of included
patient CT images. The algorithm consisted of the fully
convolutional neural network Unet-3D.22 The input
images were rescaled to a pixel size of 1.0 £ 1.0 £ 3.0 mm
(Digital Imaging and Communications in Medicine,
DICOM, reference coordinate system) and clamped to (‒
800, 800) Hounsfield units (HU).

Training protocol
Each epoch consisted of 20,000 training and 10,000

validation examples. Random background and fore-
ground examples were selected such that each category
was equally likely to be sampled. The input patches were
augmented using rotations (‒0.15-0.15 radians), scaling
(‒10% to 10%), and intensity shifts (‒100 to +100 HU).
The Adam method23 with Nesterov momentum was used
with an initial learning rate of 0.001. If there was no
decrease in validation loss after 2 epochs, the learning rate
was halved until a minimum of 0.00001 was reached.
When there was no decrease in validation loss after 4
epochs, the training was stopped. After the initial training,
the resulting algorithm was applied to all training images,
and the sampling was updated with 20% of randomly
selected misclassified pixels at least 3 mm from the fore-
ground boundary (at most 20,000 pixels per image). This
last step was repeated 4 times.

Loss
The algorithm was trained to classify each CT pixel

as either background, prostate, seminal vesicle, urinary
bladder, or rectum. Unfortunately, all of these struc-
tures were not annotated in all images, and sometimes
the rectum was only partially annotated (stopping at a
ction process of the study cohort.



Figure 2 Pretreatment computed tomography scans of 3 representative patients with prostate cancer who did not meet
the criteria of acceptance and were excluded from the training process. The colored delineations in yellow, pink, and
orange correspond to manual contouring of the urinary bladder, prostate, and rectum, respectively. (A) and (B) Transverse
plane of 2 patients from the initial cohort. The prostate delineation of patient A overlapped with nearby structures, espe-
cially anteriorly. The manual delineation of the prostate in patient B did not cover the whole organ. (C) Sagittal plane of a
patient from the initial cohort. This case was excluded because large parts of the urinary bladder and rectum contouring
were missing.
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certain slice). To handle the partial labeling, a general-
ization of the categorical cross-entropy was used as a
loss function. The algorithm was then trained to mini-
mize this loss function. The loss function is described
in the Appendix E1.
Agreement between manual and AI-based
measurements

All statistical analyses were done on the test data set,
which was not used to train or design the algorithm. The
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agreement between the AI-generated image segmenta-
tions and manual delineations was evaluated with the
DSC, mean surface distance (MSD), and Hausdorff dis-
tance (HD). DSC is a statistical tool commonly used in
medical image segmentation to assess the agreement
between 2 segmented volumes.24 The DSC ranges
between 0 and 1, where 1 indicates perfect agreement.
MSD and HD indicate the mean and the longest distance
between 2 measurements, respectively.25

The segmentations of each organ were analyzed sepa-
rately. For the prostate segmentations, those that included
the seminal vesicles were analyzed separately from those
that did not include the seminal vesicles. In cases where
radiation oncologists did not differentiate between the
prostate and seminal vesicles in manual segmentations,
the AI analyzed the prostate and seminal vesicles together
to generate a single segmentation. For the rectum segmen-
tations, only those with an upper limit at the rectosigmoid
junction were included in the analysis because that was
the limit at which the AI was trained.

All image processing and the evaluation of AI perfor-
mance were computed on the www.recomia.org research
platform using Python programming language (version
3.9), and all statistical analysis was performed using SPSS
Statistics 25 (IBM). The AI tool developed in this project
is available upon reasonable request for research purposes
at www.recomia.org.
Results
In total, 1530 patients with RTP for PCa were included
in the study. Out of the 1530 delineations, 152 prostate
(10%), 130 urinary bladder (8.5%), and 113 rectum
(7.4%) cases did not fulfil the criteria of acceptance and
were excluded (Fig. 1). Further, all patients with uni- or
bilateral hip prostheses were excluded. Examples of delin-
eations that were excluded are shown in Fig. 2A,B. There
Table 1 Comparison between the manual and AI-based organ

Prostate all
n = 329

Parameters
Prostate
n = 184

Prostate and v
n = 145

DSC

median (IQR) 0.82 (0.77-0.86) 0.83 (0.79-0.86

MSD (mm)

median (IQR) 1.7 (1.3-2.3) 1.6 (1.4-2.2)

HD (mm)

median (IQR) 9.2 (6.9-13) 11.4 (8.3-15.6)

Abbreviations: AI = artificial intelligence; DSC = Sørensen-Dice similarit
MSD = mean surface distance.
was contrast in 861 urinary bladder cases, which did not
cause any difficulties in the training of the algorithm and
were all consequently included in the process.

The results of the agreement between the manual and
AI-generated segmentations in the test set are summa-
rized in Table 1. The median DSC was 0.82 (IQR, 0.77-
0.86) and 0.83 (IQR, 0.79-0.86) for the segmentations of
184 scans that were prostate only (56%) and of 145 scans
of prostate with the seminal vesicles (44%), respectively.
The corresponding median MSD was 1.7 (IQR, 1.3-2.3)
and 1.6 mm (IQR, 1.4-2.2), respectively, and the median
HD was 9.2 (IQR, 6.9-13) and 11.4 mm (IQR, 8.3-15.6),
respectively. An example of a patient with segmentation
agreements close to the median DSC is shown in Fig. 3.

For all bladder delineations, there was good agreement
between the 335 manual and AI-based segmentations, with
a median DSC of 0.95 (IQR, 0.92-0.96); the median MSD
was 0.7 mm (IQR, 0.6-0.9), and the median HD was
6.7 mm (IQR, 5.6-9.3). Out of these 335 cases, there were
174 CT scans with contrast and 161 CT scans without con-
trast in the urinary bladder. For the cases with contrast, the
median DSC, MSD, and HD were 0.95 (IQR, 0.93-0.96),
0.7 mm (IQR, 0.6-0.9), and 6.9 mm (IQR, 5.6-9.6), respec-
tively. For the cases without contrast, the corresponding
values were 0.94 (IQR, 0.92-0.96), 0.7 mm (IQR, 0.6-0.9),
and 6.6 mm (IQR, 5.6-8.9), respectively (Table 2).

There were 175 rectum segmentations with an upper limit
at the rectosigmoid junction that were analyzed, and the
median DSC, MSD, and HD were 0.88 (IQR, 0.86-0.90), 1.1
(IQR, 0.8-1.5), and 13.5 mm (IQR, 9.8-20.1), respectively.

There were no cases where the AI completely failed to
generate a segmentation for the target or OAR.
Discussion
This study showed that automated delineations of the
prostate and OAR can be successfully performed by our
delineations of the test set

esicles Urinary bladder
n = 335

Rectum
n = 175

) 0.95 (0.92-0.96) 0.88 (0.86-0.9)

0.7 (0.6-0.9) 1.1 (0.8-1.5)

6.7 (5.6-9.3) 13.5 (9.8-20.1)

y coefficient; HD = Hausdorff distance; IQR = interquartile range;



Figure 3 Example of organ delineations generated by the artificial intelligence algorithm in a computed tomography scan
in axial, sagittal, and coronal planes in 1 of the patients of the final test group. The delineation of the prostate and seminal
vesicles is shown in green and blue, and that of the urinary bladder and rectum is shown in yellow and orange, respec-
tively. The Sørensen-Dice similarity coefficient between the artificial intelligence-based and the manual annotation of the
prostate was 0.83, which is close to the median result of the study (0.77-0.86).
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optimized algorithm for all analyzed pretreatment CT
scans of patients with PCa. As expected, the performance
of the algorithm was highly dependent on the reference
standards. The AI-based contouring performed best on
the urinary bladder, showing a DSC close to 1 and small
differences in contour distance between automated and
manual delineations. This is mainly because the bound-
aries of this structure are clearer than the prostate, despite
the use of CT scans. The presence or absence of contrast
in the bladder did not pose an obstacle to the automated
segmentation.

The agreement between the algorithm and manual
delineations of the prostate was good (DSC, 0.82). We
previously reported the successful application of our algo-
rithm on prostate positron emission tomography/CT
imaging and obtained comparable measurements (DSC,
0.78) to those performed by experienced observers.20 In
the current study, the improved training of the algorithm
Table 2 Results of the delineations in the test set
according to contrast content in the urinary bladder

Urinary bladder all
n = 335

Parameters
With contrast
n = 174

Without contrast
n = 161

DSC

median (IQR) 0.95 (0.93-0.96) 0.94 (0.92-0.96)

MSD (mm)

median (IQR) 0.7 (0.6-0.9) 0.7 (0.6-0.9)

HD (mm)

median (IQR) 6.9 (5.6-9.6) 6.6 (5.6-8.9)

Abbreviations: DSC = Sørensen-Dice similarity coefficient;
HD = Hausdorff distance; IQR = interquartile range; MSD = mean
surface distance.
on a larger patient cohort provided more consistent delin-
eations, with better agreement between the algorithm and
the manual delineations of the prostate. Nevertheless,
using manual delineations as ground truth did present
some inherent challenges. Variations in manual delinea-
tions exist and appear to be multifactorial, with inter- and
intraobserver variability as 2 of the prominent examples.1

Indeed, it has been shown that there is only 30% agree-
ment among observers for the assessment of the prostatic
base on CT scans.26 This was reflected in our cohort,
where heterogeneity within the manual contouring of the
prostate and seminal vesicles likely resulted in poorer
agreement compared with the OAR. Anatomic variability
across patients remains a challenge.27

The effect of heterogeneity among reference standards,
and thus ground truth cases, was evident in the delinea-
tions of the rectum as well as the prostate. The pretreat-
ment CT examinations were performed over a period of
12 years, during which the international guidelines con-
cerning the delineation of seminal vesicles and the defini-
tion of an upper limit for rectum delineation changed.
Collectively, these factors led to variability in manual
organ contouring and consequently affected the training
and performance of the AI algorithm. We included only
cases with manual contouring of the rectum with an
upper limit at the rectosigmoid junction to permit a direct
comparison. The automated delineations of the rectum
still performed well (DSC, 0.88), but the difference in HD
was greater between the manual and AI-based delinea-
tions compared with the other organs of interest.

As CT remains one of the main imaging modalities in
radiation therapy of PCa,28,29 studies on AI-based delin-
eations on CT have direct applicability for clinical prac-
tice. Recently, Duan et al30 evaluated AI-based organ
delineations on CT, reporting a DSC for the prostate
(0.83) that was similar to that in our study. For the uri-
nary bladder and rectum, the DSC values (0.93 and 0.85,
respectively) were slightly lower than those in our study.
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However, this study comprised only 107 patients (84 as a
training and validation set and 23 as a test set). Our study
included a larger image data set, enabling better training
of the algorithm.

The majority of reports to date have focused on AI
algorithms for RTP on MRI.14,31,32 The advantages of
MRI over CT for PCa RTP, mainly in the differentiation
of the tumor inside the gland as well as in better soft-tis-
sue contrast, are well known.18,33 Several recent studies
have successfully applied AI algorithms on prostate MRI
scans to achieve organ delineation with high degrees of
agreement with manual approaches.14,15,34 However,
interobserver variability still exists in MRI,35 and there is
a particular concern near prostatic boundaries and semi-
nal vesicles or surrounding organs, regardless of the
choice of modality.28,35 Despite using CT scans only, our
AI algorithm performed well and showed similar prostate
contouring between manual and automated segmenta-
tions as well as successful delineations of the surrounding
OAR with high DSC scores. This study demonstrated a
DSC of 0.82 for prostate-only images, while Wang et al14

and Ushinsky et al15 used MRI for 90 and 299 patients
and reported DSC values of 0.86 and 0.90, respectively.
This small difference is expected, considering the better
differentiation of the pelvic organs on MRI compared
with CT.36

The main strengths of the study were the large data set
used for training and testing and that the reference stand-
ards were segmented by experienced radiation oncologists
with clinically relevant borders. To the best of our knowl-
edge, there are few studies describing automated delinea-
tions of all relevant organs on pretreatment CT scans of
patients with PCa. Other recent studies have shown satis-
factory results after applying different algorithms on CT
scans, including the pelvis.37,38 However, the study by
Astaraki et al37 described the application of a semiauto-
mated algorithm, whereas that by Chen et al38 included
only 125 scans of the pelvis. Both studies were applied on
different OARs, but not on the prostate. The algorithm of
the current study was completely automated and applied
to both the prostate and OAR. Additionally, a large
patient cohort of 1530 patients with PCa was included,
resulting in better training of the algorithm with good
results.

One limitation of the current study was that it was car-
ried out using CT scans only. This was partly because of
the large number of CT scans available to enable sufficient
training of the algorithm. For some patients included in
the current study, MRI scans had been obtained for more
detailed anatomic imaging, thus providing additional data
to radiation oncologists. Reference standards with manual
contouring using both CT and MRI data were accordingly
more accurately delineated and could have positively
affected the training of the algorithm. Future studies using
a combination of CT and MRI could potentially increase
the accuracy of the algorithm.
Another limitation was that the patient cohort of the
study was rather heterogeneous. This reflects the real-
world clinical setting upon which the manual delineation
set was based. As noted, there were variations in manual
delineations because patients were examined over a 12-
year period during which the guidelines for RTP changed.
In the manual delineations of the rectum, the upper limit
for contouring varied over time. Further, the seminal
vesicles of the cohort were manually delineated depending
on the stage of PCa, as traditionally, seminal vesicles were
included in the RTP in patients with high-risk PCa but
not in those with low or intermediate risk. This had an
effect on the performance of the algorithm because its
training was highly dependent on manual contouring.
Patients with hip prostheses were excluded from the anal-
ysis because of major artifacts in the pelvic region; how-
ever, these hampered the manual annotations as well.
Finally, the agreement measures (DSC, MSD, and HD) of
this study are purely mathematical in nature, which may
ignore segmentation errors that would be clinically unac-
ceptable.

Qualitative evaluations of the algorithm’s performance
are needed before clinical applications can be made avail-
able. An upcoming visual grading study is planned.
Conclusion
Fully automated AI-based delineations of the treat-
ment target organ and OAR in PCa RTP based on CT
scans are feasible and were comparable to manual seg-
mentation in the majority of cases in the study. This could
lead to large resource savings, greater standardization, and
improved outcomes for patients with PCa.
Disclosures
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