Skip to main content
. 2024 Mar 13;12:e16972. doi: 10.7717/peerj.16972

Table 4. Hyperparameter optimisation overview.

Tested and selected hyperparameters for each of the sub-models included in the FAPAR EML meta-estimator.

Model Hyperparameter Lower limit Upper limit Selected
Extremely randomized trees Number of estimators 10 100 44
Maximum tree depth 5 100 92
Maximum number of features 0 1 0.84
Minimum samples for splitting 2 100 16
Minimum samples per leaf 1 10 2
Gradient descended trees Number of estimators 10 100 81
Maximum tree depth 3 100 50
Alpha 0 2 1.19
Reg Alpha 0 0.2 0.007
Eta 0 2 1.999
Reg_Lambda 0 0.2 0.12
Gamma 0 2 0.05
Learning rate 0 0.2 0.06
colsample_bytree 0 1 0.88
colsample_bylevel 0 1 0.66
colsample_bynode 0 1 0.47
Artificial neural network Epochs 10
Batch size 256
Learning rate 0.0005
Number of layers 4
Number of neurons 128
Activation ReLu
Dropout rate 0.15
Output activation Sigmoid