
Review Article
Genetically Engineered Microorganisms and Their Impact on
Human Health

Marzie Mahdizade Ari ,1,2 Leila Dadgar ,1,2 Zahra Elahi ,1,2 Roya Ghanavati ,3

and Behrouz Taheri 4

1Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
3Behbahan Faculty of Medical Sciences, Behbahan, Iran
4Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran

Correspondence should be addressed to Roya Ghanavati; qanavati.r@gmail.com and Behrouz Taheri; taheri.b1980@gmail.com

Received 17 June 2023; Revised 20 November 2023; Accepted 12 February 2024; Published 9 March 2024

Academic Editor: Marta Laranjo

Copyright © 2024MarzieMahdizade Ari et al.Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te emergence of antibiotic-resistant strains, the decreased efectiveness of conventional therapies, and the side efects have led
researchers to seek a safer, more cost-efective, patient-friendly, and efective method that does not develop antibiotic resistance.
With progress in synthetic biology and genetic engineering, genetically engineered microorganisms efective in treatment,
prophylaxis, drug delivery, and diagnosis have been developed. Te present study reviews the types of genetically engineered
bacteria and phages, their impacts on diseases, cancer, and metabolic and infammatory disorders, the biosynthesis of these
modifed strains, the route of administration, and their efects on the environment. We conclude that genetically engineered
microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.

1. Introduction

Since thousands of years ago, humans have turned to make
changes in the characteristics of animals, plants, and mi-
crobes. Te result of the changes is the creation of modifed
strains used in the food industry. Te acquired success
engaged researchers to develop more diverse genetic engi-
neering techniques [1]. Genetic engineering, also known as
genetic modifcation, is the process of using laboratory tools
to change the nucleic acid sequence of an organism by
removing or adding base pairs, inserting or inactivating an
unnecessary virulence gene by creating a new characteristic
in genetically engineered microorganisms (GEMs). For-
merly, humans made changes in microbes to produce foods
such as bread and wine, while nowadays, genetic engineering
of microbes has been used for industry and clinical appli-
cations. Among microbes, yeast and bacteria, lactic acid
bacteria (LAB), and Saccharomyces cerevisiae are most or-
ganisms undergoing chemical changes [2]. As genome

sequencing and genetic techniques are developed and be-
come powerful genomic tools, it is possible to make alter-
ations in the gene sequence of phages and a wide range of
bacterial strains to introduce new strains applied not only for
the prevention or treatment of an infection but also for the
diagnosis of it [3, 4]. Various mutations, transformation,
conjugation, protoplast fusion, electroporation, re-
combination technology, and molecular genetics are com-
monly used in genetic engineering. In the past and before
molecular genetics methods were invented, researchers used
mutations induced by UV radiation and chemicals [5].
Trough a combination of biotechnology and genetic en-
gineering science, there are three gene-editing tools in-
cluding zinc fnger nucleases (ZFNs) technology,
transcription activator-like efector nucleases (TALEN)
technology, and clustered regularly spaced short palin-
dromic repeats-CRISPR associated (CRISPR-Cas) technol-
ogy as frst, second, and third generation technologies in
recent years for gene editing by double-strand breaks in
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desired sequence of genes. Te ZFNs and the TALEN are
restriction endonuclease-based systems that show limita-
tions such as inducing nonspecifc mutations and are time-
consuming, expensive, and nonspecifc methods [6, 7], while
the CRISPR technology is a more efcient and powerful
editing method with more fexibility and simplicity [8].

Te widespread use of antibiotics in medicine, veteri-
nary, and agriculture causes the emergence and spread of
antibiotic-resistant bacteria, so many infections will become
untreatable [9, 10]. TeWorld Health Organization (WHO)
estimates that 10 million people will die from infections
a year by 2050 [11]. One of the applications of GEMs is their
potential activity against resistant to antibiotics bacterial
pathogens. Two biochemists Herbert Boyer and Stanley
Cohen developed the frst GEM in 1973. Tey designed
a new plasmid harboring antibiotic resistance gene and then
transferred it to Escherichia coli (E. coli). Te result showed
that in vitro-produced antibiotic-resistance plasmid is active
biologically and functionally in transformed E. coli [12].Tis
work was followed by Yanish and Mintz’s research by which
this method was applied in animal models [13]. Microbes are
also associated with disorders like diabetes and cancers;
however, there is ambiguity in the role of probiotics or
microbiota in the pathogenesis of disease. Another appli-
cation for GEM is seen in vaccinology. Vaccines are the main
strategy for preventing most infectious diseases. When parts
of the genome of pathogenic microorganisms are under-
changed, the weakened nonpathogen strain is created. In
addition, nonpathogenic bacteria can be changed by genetic
engineering to express antigens on their surface, resulting in
stimulation of the immune system. Such GEMs provide
long-lasting immunity and stable protection in constructed
vaccines such as recombinant vaccinia virus and herpesvirus
of Turkey (HVT) modifed to prevent rabies and Marek’s
diseases by vaccination. Besides, microorganisms can be
subjected to genetic engineering to obtain a high number of
useful substances from the microbes or the host such as
cytokines, enzymes, and bacterial metabolites [14]. Genetic
sensors have also been designed for diagnosis purposes and
the identifcation of specifc markers in diseases [14].
Compared with drugs and antibiotics, genetically modifed
organisms represent fewer side efects and better perme-
ability [15]. Considering the ability of GEMs to overcome
scientifc problems, we will give a brief review of them in-
cluding phages and bacteria and their efect on the treatment
of cancer, disorders, and microbial infections.

2. GEMs Producing Technique and Tools

Tere are diferent methods to modify microorganisms for
their application in medicine, agriculture, and industry
(Figure 1). In microbial genetic engineering, target genes are
frst sheared, spliced, and integrated using genetic operation
tools before being inserted into chassis cells. Recombinant
genes are therefore incorporated into the intended products
or provide the bacterium with new phenotypes. Te present
study discusses novel and widely used methods of genetic
engineering of bacteria and phages. Techniques used for the
genetic manipulation of bacteria include CRISPR-Cas9,

Bacterial artifcial chromosomes (BACs), phasmid trans-
fection, phage infection, protoplast fusion, conjugate
transfer, and transposition recombination [16]. Small gene
fragments (<10 kb) can be modifed using Polymerase chain
reaction (PCR) or restriction enzyme digestion and direct
DNA synthesis [17], while recombination methods such as
CRISPR-Cas9 and Red/ET are used for larger sizes (more
than 50 kb), which replace, remove, or add gene segments in
plasmids or genomes. CRISPR-Cas9 can modify bacteria
DNA pieces of up to 100 kb [16]. “CRISPR or clustered
regularly interspaced short palindromic repeats” are short
and partially palindromic repetitive DNA sequences found
in the genomes of bacteria and other microorganisms used
to perform targeted genome editing using the adaptive
immune system of prokaryotes. CRISPR arrays are inserted
into the genome of microorganisms through a process
known as adaptation. As a critical component of the im-
mune system, they protect the health of organisms. CRISPR-
Cas systems ofer microorganisms RNA-directed adaptive
protection against invading genetic elements by instructing
nucleases to bind and cleave specifc nucleic acid sequences
[1, 18, 19]. CRISPR-Cas consists of a simple two-component
system used for targeted gene editing. Te frst component
of this system is the single-agent Cas9 protein with endo-
nuclease properties, which contains RuvC and HNH do-
mains and is responsible for separating DNA strands. Te
second component of gene editing is a single guide RNA
(sgRNA) carrying a scafold sequence, which allows it to
anchor to Cas9 and place the spacer of 20 complementary
pairs of the target gene in the vicinity of the PAM, thus
directing the Cas9 protein toward the target gene. Finally, by
inserting the CRISPR/Cas9 complex into the cell, double-
strand breaks (DSBs) at the target genomic site are created
[2]. After recognition and cutting, DNA repair and editing
are carried out through cellular mechanisms of the non-
homologous end joining (NHEJ) or homology-directed
repair (HDR) pathway. NHEJ is a common error-prone
method involving the random insertion-deletion of base
pairs (Indel) at the cleavage site. Tis mechanism typically
leads to frameshift mutations, a premature stop codon, and/
or the formation of a nonfunctional polypeptide. Tis
method has potential use in genetic deletion experiments,
gene disruption therapy, and CRISPR genomic functional
screening. HDR is an error-free repair mechanism that uses
the homologous section of the unedited DNA strand as
a template to repair the damaged DNA, resulting in error-
free repair. Tis method is particularly appealing for clinical
applications. In general, this method allows researchers to
examine the function of genes to fnd novel applications in
medicine and biotechnology, in addition to precise and
efcient modifcation of bacterial genome [1, 3]. To in-
corporate foreign DNA segments into the bacterial genome,
homologous recombination and transposition are also ac-
cessible [1]. When selection markers or CRISPR editing
alleles are not available, transposition is the best way to
integrate target genes into the bacterial genome [4, 5]. So far,
the most often employed transposases are Tol2 [6], Tn7 [7],
Tn5 [8], ICEBs1 [9], and sleeping beauty, piggyBac [10],
which can integrate very small or large DNA pieces into the
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genomes of bacteria. However, when the size of the inserted
fragments of DNA increases, the transposition efciency
decreases signifcantly [20].

Te transfer methods are determined by the size of the
DNA and the properties of the bacterial host. Electro-
poration and heat shock transfection are common methods
for plasmid transfer in Salmonella, E. coli, P. aeruginosa,
B. thuringiensis, and other bacteria. Plasmids are often
transferred from donor bacteria to recipient bacteria via
conjugative transfer and protoplast fusion [2]. Te con-
jugative type IV secretion system, for example, works in
combination with DNA-processing machinery known as the
“relaxosome,” and a huge extracellular tube known as the
“pilus” is capable of coordinating directed conjugated
plasmid transport [3]. Furthermore, homologous re-
combination technologies, namely, homologous re-
combination, site-specifc recombination, recombination,
and the CRISPR-Cas9 technology, allow for the direct in-
sertion of desired genes into the host genome in a predict-
able strain. Typical homologous recombination techniques
need more than 1 kb homologous sequences to achieve
target gene recombination into the chromosomal genome
[4]. Nevertheless, the plasmid capacity for carrying and

transposition techniques do not permit the operation of big
DNA fragments, particularly those greater than 100 kb [5].
So, researchers are more likely to use phage recombination
systems, integrase-mediated recombination systems, bac-
terial artifcial chromosomes, and transformation-associated
recombination to enable heterologous expression of big gene
clusters [1].

Filamentous fungi have attracted the interest of scientists
due to their exceptional capabilities as cell factories to
produce essential products for humans. Tere are various
broad techniques of genetic transformation for fungi
available today, such as Agrobacterium-mediated trans-
formation (AMT), protoplast-mediated transformation
(PMT), shock-wave-mediated transformation (SWMT), and
electroporation, biolistic approach [6]. PMT is a popular
fungal transformation approach that involves the use of
commercial enzymes to remove complicated cell wall
components in order to generate protoplasts. PEG and other
chemical reagents enhance the fusing of foreign nucleic acids
with protoplasts [7].

Agrobacterium tumefaciens, a Gram-negative bacte-
rium, may infect wounded plants and introduce the Ti
plasmid, which causes tumors. Te Ti plasmid, which is
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Figure 1: Workfow of phage genome engineering strategies. “Genome assembly and rebooting” is kind of synthetic method and uses phage
genome that assembles by smaller and then does the overlapping of DNA fragments through two ways, Gibson method and transformation
associated recombination (TAR), using yeast. DNA synthetic transformed into the Gram-negative bacterium (e. coli) or Gram-positive bacterium
(L form) to rebooting phage genome. Finally, phages replicate and infect the host and then followed by lysis which, for Gram-negative bacteria,
perform by chloroform lysis while it has not efect on Gram-positive bacteria. Terefore, L form bacteria is using which hypotonic pressure select
for cell lysis occurred andmutated (or engineered phages) release. Recombination-based methods are divided into two in vivo recombination and
BRED and Crisper-Cas based method. Edited templates which were infected in host cell recombine through phage genome replication, and then,
mixture of wild-type and recombinant phages was produced. In contrast to synthetic biology method, in last step of BRED and in vivo re-
combination method, screening is conducted to select certain and appropriate strain by plaque screening method.

International Journal of Clinical Practice 3



more than 200 kb in size, penetrates the plant through the
injury and integrates into the genome of the infected cells.
Tis inserted DNA fragment, often known as transfer
DNA or T-DNA, includes genes that code for plant
hormones that promote tumor development. Te target
gene was inserted between the T-DNA boundaries using
a binary vector, which transformed the recombinant
plasmid into A. tumefaciens. Te target gene was in-
tegrated into the fungal genome using a positive Agro-
bacterium clone [9, 21].

Electroporation provides a simple, quick, and efcient
transformation process. Electroporation involves storing
electric charges in a capacitor to generate a high voltage,
striking the sample with the impulse voltage, and rapidly
transferring foreign nucleic acid into cells. In the trans-
formation of fungus, square waves or exponentially decaying
waves are typically utilized [6, 10].

Particle bombardment, also known as biolistic trans-
formation, includes foreign DNA adsorption on tungsten or
gold particles and is delivered into host cells under extreme
pressure. Tis process can accomplish either steady or
temporary changes, with elements such as cell type, growth
environment, and density infuencing its efectiveness
[22, 23]. Particle bombardment is a very efective genetic
transformation technology that is not restricted by host or
species cell types. It works well for fungi that are problematic
to cultivate or make protoplasts from. However, because
equipment and consumables are costly, it is only explored
when other approaches fail. Aspergillus nidulans and Tri-
choderma reesei have been efectively transformed by particle
bombardment [6, 13, 14].

SWMT, an energy transmission and transformation
technology, causes transitory pressure disturbances and
twisting force between cells, resulting in a cavitation efect. It is
utilized in medical procedures such as kidney stone crushing
and orthopedics. SWMT increases the permeability of cell
membranes, allowing exogenous nucleic acid to get into cells.
In addition to successfully introducing foreign nucleic acid into
E. coli, S. typhimurium, and P. aeruginosa, this approach has
also been applied to fungi such as A. niger, Phanerochaete
chrysosporium, and Fusarium oxysporum [6, 24, 25].

Many viral components are modifed genetically for
utilization in biomedicine, nanotechnology, or bio-
technology. In the majority of cases, the protein engineering
strategies have relied on knowledge-based genetic modif-
cation of the viral particle to give heterologous proteins or
peptides on the capsid surface (or involves them in the
capsid cavity) through integrating the (poly) peptides as
a lengthening of a free terminal end of a capsid protein,
provide heterologous peptides on the capsid surface by
integration in exposed loops, and replace one or a few
unnecessary residues in a capsid protein in order to create
new sites for heterologous inorganic, organic, or biological
components to bind covalently or noncovalently, or less
frequently to alter an intrinsic feature or function of the virus
particle itself [26].

As shown in Figure 1, there are two general strategies for
creating engineered phages. (1) In infected cells, wild-type
genomes can recombine using a DNA-editing template. (2)

Smaller fragments assemble to form a larger synthetic
fragment and then reactivate to generate progeny [12]. A
natural biological process known as homologous re-
combination involves the exchange of nucleotide sequences
between two DNA molecules with similar or identical se-
quences. It was applied in the frst generation of phage
genome engineering techniques. Parental phages with dif-
ferent phenotypes were coinfected with host cells through
the process named phage crosses, and then recombination
occurred between the genomes of two phages. Finally, the
progeny phages were screened for wanted phenotypes.
Recombinants with the right phenotypes were then isolated
for further investigation [13, 14]. Phage crosses can only
combine existing phage genomes and need markers and
phenotypes to determine recombinant phages [24]. To ad-
dress this limitation, donor plasmids were utilized for in-
sertions, deletions, and replacement of nucleotides in the
phage genome. A plasmid with a planned mutation fanked
by homologous phage sequences is developed and in-
troduced into a bacterial host and subsequently infected with
the phage [13]. Notably, the low frequency of recombination
in homologous recombination and the need for processes for
screening phages with the desired phenotype are two lim-
itations of this approach [27]. Recombineering is a technique
for increasing recombination efciency by using temperate
phage native recombination mechanisms that require the
production of phage recombination proteins such as Rac
RecE/RecT and lambda Red within the recombination host,
which protects the editing template from degrading and
facilitates annealing with the injected phage genome [26, 27].
Te bacteriophage recombineering of electroporated DNA
(BRED) method needs coelectroporation of the donor DNA
and phage DNA template into bacterial cells that express
RecE/RecT-like proteins through plasmid or chromosomally
inserted genes [26, 28, 29]. Te donor DNA has the nec-
essary mutations fanked by engineered phage homologous
sequences, which causes the phage genome and donor DNA
to recombine in a homologous manner. So, recombination
only occurs once phage genome replication has started. As
a result, both wild-type and mutant phages would be re-
covered and found in the produced plaques [13, 28]. In
conclusion, recombineering-based approaches have the
potential to be used in a variety of bacterial species and allow
precise mutation of phage genomes at a signifcantly better
rate than standard homologous recombination [30]. An-
other method based on recombination is the “CRISPR-Cas
strategy” which is also harnessed for genome engineering
purposes in phages [13, 31]. Cas9 protein, crRNA, and trans-
activating crRNA (tracrRNA), the three parts of the
CRISPR-Cas system, are often cloned onto a single plasmid.
Te crRNA and tracrRNA can either be expressed in-
dividually or as a single fusion RNA [32–34]. Once these
components are transformed into the host cells, they form
a CRISPR-Cas9 complex which binds specifcally to the
target site in the phage genome during phage infection,
resulting in the creation of a double-strand DNA break. In
bacteria, the lack or low efciency of NHEJ repairing systems
makes the cleavage of the CRISPR-Cas9 complex usually
lethal to the phage. Tis is why it is common for the DNA
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break to be repaired by recombination with the donor to
generate mutants of interest when the homologous donor is
provided. Terefore, the CRISPR-Cas system is a powerful
tool for the precise editing of genomes, as it can target
specifc genes or regions and induce the desired mutations
[13, 34–36]. Te “rebooting method” is another phage en-
gineering strategy. Te acquisition of active virion from the
phage genome is referred to as phage rebooting. Synthetic
approaches for genome assembly outside of natural bacterial
hosts have been developed to address the issue that phage
gene products may be hazardous to their bacterial hosts.
Tese methods depend on the transformation of small to
medium-sized fragments of DNA into complete phage ge-
nomes via transformation-associated recombination (TAR)
or in vitro enzymatic assembly (Gibson assembly)
[27, 37, 38]. Te synthesized phage genome can be reac-
tivated by transforming into suitable host cells, L-forms, and
cell-free expression systems [30]. In the TAR technique,
several large DNA segments recombine in yeast artifcial
chromosomes (YAC) [33]. Researchers have altered and
rebooted several Gram-negative and Gram-positive bacterial
phages, includingKlebsiella phage K11, E. coli phages T3 and
T7, P. aeruginosa phages, and Listeria monocytogenes
(L. monocytogenes) phage P35, based on the assembling and
capturing of synthetic genomes into YAC [37, 39–41].
Gram-positive bacteria often have low transformation ef-
ciency. A recent study found that employing L-form bacteria
efciently reboots phages of Gram-positive bacteria. L-form
bacteria do not have a cell wall and, unlike their parent cells,
can take in enormous amounts of DNA such as phage ge-
nome DNA. It was demonstrated that L-form Listeria may
be used not only to reboot Listeria phages but also to reboot
Staphylococcus and Bacillus phages [13, 40].

New synthetic biology approaches for rebooting phage
genomes outside of host cells remove the necessity for DNA
transformation and allow to produce phages that infect
unfamiliar or undescribed hosts. Using cell-free
transcription-translation (TXTL) methods, high yields of
self-assembling T4, T7, MS2, and FX174 phage particles
were synthesized in a test tube using optimized E. coli ex-
tracts and a modest amount of phage DNA. Although
previous genetic engineering was limited to phages infecting
extensively studied lab hosts, the recent development of cell-
free systems frommore bacteria is expected to expand future
phage engineering to novel bacterial hosts such as Strep-
tomyces, Vibrio, Pseudomonas, and Bacillus species
[27, 42–45].

2.1. Genetically Engineered Viruses. Viruses, microscopic
organisms that live in humans, animals, and plants, can cause
devastating infections and reduce crop output and product
quality in agriculture, threatening population nutrition, fber
production, and medicines [46]. Viruses, such as smallpox,
infuenza, and AIDS, have had a major efect on human
history and are often seen as enemies. On the other hand,
advances in biotechnology and next-generation sequencing
technologies have accelerated their discovery, identifcation,

and manipulation, making them important instruments for
various biotechnological applications [47]. Viruses have ef-
fcient machinery and genetic structures that allow them to be
easily manipulated. Early records of its use date back to the
18th century, when the frst smallpox vaccine was developed
[48]. In the late 1800s, Louis Pasteur created rabies vaccines,
which were later followed by polio, measles, infuenza, and
rubeola vaccines. Vaccines are just one example of how vi-
ruses can be used as benefcial agents [48, 49].

Viruses may be genetically altered for a number of
purposes, including gene therapy for the treatment of ge-
netic illnesses, oncolytic viruses, vaccine production, and
immune cell stimulation [50]. Viruses may also be utilized as
vectors by eliminating their pathogenic components while
preserving their gene-delivery capabilities, making them
very adaptable agents for carrying and delivering genetic
material [48]. In gene therapy, viral vectors such as lenti-
virus, adenovirus, and adeno-associated virus (AAV) are
used to deliver functional genes into human cells. AAV is
used in Luxturna, a European Union (EU) approved
medication, to restore vision in individuals with progressive
visual loss. Another use of viruses in gene therapy is cancer
treatment. Viruses target cancer cells, making tumors more
apparent to the immune system. Viruses have a wide range
of biotechnological applications, such as medicine, phar-
macology, agriculture, and materials industry. Plant viruses
are utilized as vectors for particular protein expression or
virus-induced gene silencing, which inhibits homologous
gene expression and results in function loss [48, 51, 52].
AAV vectors are the most widely used vectors for gene
transfer in the treatment of a wide range of human disorders.
AAV vector-mediated gene transfer was recently licensed for
the treatment of hereditary blindness and spinal muscle
atrophy, and long-term therapeutic outcomes for other
uncommon illnesses such as Duchenne muscular dystrophy
and hemophilia have been established [53].

Baculovirus expression vectors are utilized in eukaryotic
cells to produce complex glycoproteins. Baculovirus biology
studies beneft from genome editing of single-copy bacu-
lovirus infectious clones (bacmids). Bacmids, on the other
hand, are not commonly employed because of the ease with
which genes of interest might be lost. Pijlman et al. dis-
covered that relocating the attTn7 transgenic insertion site
avoids gene deletion, leading in increased levels of protein
expression [54]. Te scientists developed a new bacmid to
successfully generate chikungunya virus-like particles for
commercial vaccinations, indicating substantial advances in
the utilization of bacmids as expression vectors. Hsu et al.
designed a polycistronic baculovirus expression vector to
produce virus-like particles (VLPs) harboring various parts
of Porcine epidemic diarrhea virus (PEDV) in pigs in order
to elicit immunization against PEDV [48, 55]. Maeda et al.
made signifcant advances to the use of viruses to improve
plant breeding. Te authors exploited the Arabidopsis
fowering locus T gene to induce fowering in grapevine
(virus-induced fowering, VIF); this work demonstrates the
potential of ALSV vectors as VIF to decrease the generation
period of grapevine seedlings [56].
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As mentioned, another use of genetically engineered
viruses is in the treatment of cancer. Recently, oncolytic viral
therapy has been identifed as a potentially efective new
therapeutic strategy for the treatment of cancer. A naturally
occurring or genetically modifed virus that may selectively
reproduce in cancer cells and destroy them without en-
dangering healthy tissues is known as an oncolytic virus [57].
JX-594, also known as pexastimogene devacirepvec or Pexa-
Vec, is a genetically modifed vaccinia virus that possesses an
insertion of the human granulocyte-macrophage colony-
stimulating factor (GM-CSF) gene to enhance the antitu-
mor immune response and a mutation in the TK gene that
confers cancer cell-selective replication. A marker LacZ gene
insertion is also present in JX-594 [58–60]. Ramesh et al.
created the oncolytic adenovirus known as CG0070 [16].Te
human GM CSF gene is integrated into the Ad5 adenovirus
by engineering that drives the human E2F-1 promoter to
drive the E1A gene. Te retinoblastoma tumor suppressor
protein (Rb), which is frequently altered in bladder cancer,
regulates E2F-1. A lack of Rb binding causes an E2F-1 that is
transcriptionally active. According to studies, engineered
oncolytic viruses can induce antitumor immune response in
addition to their oncolytic activity [57]. Some oncolytic
viruses can be designed to produce therapeutic genes or to
functionally modify cancer-associated endothelial cells,
allowing T lymphocytes to be recruited into immunological-
excluded or immune abandoned tumor microenvironments
[17]. Additionally, the measles virus has been genetically
modifed to generate a single-chain antibody that detects
carcinoembryonic antigen (CEA), a tumor antigen that is
expressed preferentially on some adenocarcinomas [18].

Also, genetically engineered viruses have been used in the
feld of vaccine production. Parker et al. employed genetically
engineered, conditionally replicating herpes simplex virus
(HSV) vaccine candidates that express either interleukin-12
(IL-12) or GM-CSF to protect against HSV infection and/or
illness.Te result of this study showed that animals previously
immunized with these candidate vaccines demonstrated
dose-dependent protection after intracranial, intraperitoneal,
or intranasal challenge with the highly virulent E377-MB
wild-type HSV-1 and Latent virus was not identifed at
a greater incidence in animals vaccinated and then challenged
with E377-MB than in animals immunized alone. Tese
fndings imply that cytokine-expressing, conditionally
reproducing HSV may induce protective immune responses
and remain safe in an experimental mouse model [19]. In
general, it can be said that by using genetic engineering, even
viruses, which are always thought to be dangerous micro-
organisms, can be used in industry and medicine.

3. Genetically Modified (GM) Phages

Bacteriophages have been efective in the treatment of
bacterial infections [61, 62]. Phages are known by unique
features including specifcity, narrow mode of action, safety
and tolerability, easy administration, selectivity, and less
expense. Tese characteristics make phages to be considered
as alternative therapy for treatment of bacterial infection
[63]. Tere are limitations described for phage therapy such

as specifc target, narrow spectrum action of phages than
antibiotics [64], and issues related to the formulation and
stability of phages as a pharmaceutical agent. Tere is not
enough information about the biology of phages, high-
lighting a need for extensive studies in this regard [65, 66].
One of the strategies to overcome limitations is to create
novel GM phages with therapeutic capabilities by engi-
neering technology like GMPs [64] mediating modifcation
and restoration of the gut microbiome. Te human gut
microbiome comprised of bacteria, viruses, and archaea
plays an important role in both human health and disease
states [63, 67]. Dysbiosis and imbalance in the microbial
composition of the gut microbiota are related to diseases like
irritable bowel syndrome (IBS), infammatory bowel disease
(IBD), coeliac disease, obesity, cardiovascular disease, and
asthma [68]. Using phages to restore this imbalance is
considered a promising therapeutic method. Hu et al. treated
a germ-free mouse with lytic phages to colonization with
commensal gut bacteria. Tey found the phages destroyed
the sensitive strains in the gut, while 68% Enterococcus
faecalis (E. faecalis) became resistant to the phages in follow-
up [69]. In spite of the major therapeutic potential of natural
phages, bacteria can become resistant to phages and the
immune system can trigger against phages. Companies tend
to develop GM phages through specifc techniques like the
CRISPR-Cas system for therapeutic purposes targeting
pathogenic bacterial strains and eukaryotic cells(Table 1),
increasing the susceptibility of resistant bacteria to antibi-
otics, increasing the host range of phages, and establishing
homeostasis in the microbiota [63, 85]. CRISPR-Cas is used
for the development of GM phages by targeting and re-
moving undesirable genes like antibiotic-resistant genes.Te
engineered M13 phage targets bacteria carrying the beta-
lactam-resistant gene, leading to a reduction in the number
of living bacteria cells. Similarly, a reduction in the number
of living bacterial cells was observed when fuoroquinolones-
resistant E. coli strains harboring a gyr A mutation were
treated with CRISPR-GM phage [86]. Te limited host
spectrum of phages results in advantages and disadvantages.
Since treatment with a single phage would not be efective in
multimicrobial diseases [87], preparing a phage cocktail and
phage engineering are considered strategies to increase the
host range of bacteriophages [88]. Te host spectrum of the
phage can be expanded using targeted mutagenesis in the tail
fber regions involved in determining the phage host
[63, 89]. One of the reasons for persistent infections is
bacterial bioflm formation on healthcare devices. Te ex-
tracellular matrix of bioflms acts as a shield to prevent
antibiotic penetration into the bioflm. Some of the GM
phages carry enzymes to destroy this matrix and conse-
quently facilitate the penetration of antibiotics into the
bioflm [90]. Besides, GM phages are used as drug carriers to
treat Alzheimer’s and Parkinson’s diseases and cancer [63].
Bar et al. investigated the impacts of hygromycin-conjugated
GM phages on human breast adenocarcinoma in SKBR3 cell
line. Tey reported that hygromycin had a better efect by
1000-fold, compared with conventional drugs [91]. Te
blood-brain barrier (BBB) acts as a hurdle against access to
therapeutic peptides, antibiotics, and chemotherapy agents.
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Using the “Trojan horse” strategy, phages have successfully
carried drugs across the BBB. In a study conducted by
Anand et al., Salmonella typhimurium (S. typhimurium)
bacteriophage P22 was genetically engineered to express
a peptide on its capsid that enables the phage to pass through
the BBB. Results of this showed that the Ziconotide peptide
is well expressed in snail venom and has analgesic properties
[92]. Shiga-like toxin produced by EHEC causes in-
fammation in the intestine, resulting in an increase in
proinfammatory cytokines such as IL-6 as well as IgG1,
IgG2a, and IgA levels due to the activation of the immune
system. Terefore, following the use of the engineered λ
phase, IL-6, IgG1, IgG2a, and IgA levels in the serum are
signifcantly reduced [93]. Recently, a case report of My-
cobacterium abscessus (M. abscessus) was analyzed in a 15-
year-old cystic fbrosis patient with an engineered cocktail of
three phages. Lytic derivatives efectively killingM. abscessus
were developed in ZoeJ phage through genetic engineering
by the BRED method. Intravenous phage therapy was well
tolerated and linked to clinical symptom improvements such
as sternal wound healing, better liver function, and signif-
icant clearance of infected skin nodules [94]. Moreover,
engineered phages have the ability to degrade bioflm
exopolysaccharide. Trough genetic engineering, T7 and Y2
phages express two genes, dispersin B (dspB) and amylo-
voran depolymerase (dpoL1), encoding exopolysaccharide-
degrading enzymes, thereby increasing cell lysis inside the
bioflm [64]. Clostridium difcile (C. difcile) as one of the
important nosocomial pathogens causes high mortality and
morbidity rates. Te current treatment for C. difcile in-
fection is the use of broad-spectrum antibiotics; although the
treatment is successful, recurrence occurs in 30% of cases.
Since no lytic phage is known for C. difcile, the lysogenic
phage is considered to target Clostridium by using the
bacteria’s own CRISPR system for degradation of the bac-
terial genome. C. difcile CD24-2 phage has been engineered
to deliver the type I-BCRISPR-Cas system of C. difcile. Te
phage can target C. difcile by using the bacteria’s own
CRISPR system to degrade the bacterial genome. Bacterial
death occurs simultaneously through bacterial genome
degradation by CRISPR-Cas system and the expression of
lytic genes of bacteriophage, holin, and endolysin [95].

3.1. Genetically Modifed (GM) Fungi. Because fungi are
a good source of secondary metabolite like isoprenoids,
nonribosomal peptides, alkaloids, and polyketides as natural
products, it found good place among microorganisms. In the
past, fungi were the sources of production of antimicrobial and
anticancer agents for diseases such as tuberculosis and gastritis
and treatment of kidney disorders. Today, it was found that
these properties are due to the presence of secondary me-
tabolites [96]. Tese compounds which have medicinal
properties can undergo modifcation to be substituted with the
desired secondary metabolite by using various laboratory
techniques such as the recombination method [97].

With the development of molecular biocellular science
and biotechnology and the introduction of genetic engi-
neering tools, it is possible to strengthen the efciency and

usefulness of fungi, e.g., by increasing their capacity to
produce useful substances [98]. In short, techniques such as
homologous and heterologous expressions [97], protoplast
fusion technology, electroporation, shock-wave, and biol-
istic approach are involved in genetic transformation for
fungi [6]. Among them, transformation is the frst in-
troduced andmainmethod of genetic alteration in fungi [98]
in which protoplast-mediated transformation (PMT) or
protoplast fusion technology is one of the most important
methods of genetic material transport in fungi by trans-
formation [99]. In this method, following the removal of the
cell wall with the help of enzymes, the membrane-covered
protoplast is released. In the meantime, if calcium ion is
used, the penetration of DNA from the membrane into the
mushroom is facilitated.

Unlike bacteria, transformation has limitations due to
the frmness of the cell wall. Unlike bacteria, transformation
in fungi is limited by the frmness of the cell wall. Fur-
thermore, certain fungi lack cell walls altogether, presenting
challenges to traditional transformation methods. To
overcome these limitations, alternative transformation
techniques such as agrobacterium-mediated transformation
(AMT), polyethylene glycol (PEG)-mediated transformation
(PMT), electroporation (EP), biolistic transformation, and
lithium acetate mediated transformation are utilized. [97]. In
these methods, the mediating agent such as Agrobacterium
tumefaciens is used in AMT as a carrier to transfer the
genetic material from the donor to the host [100]. Geneti-
cally engineered fungi have been investigated in many
studies, such as entomopathogenic fungi, which were pro-
duced as a nature-friendly strain with the aim of replacing
chemical insecticides, and will be very important in the
agricultural feld [101]. Among the fungi, flamentous fungi
were widely welcomed because they are known as cell
factories for the production and secretion of proteins. Te
revelation of the metabolic pathway and physiology of fl-
amentous fungi accelerated the genetic modifcation of these
organisms [6]. For explaining GM fungi, flamentous fungi
are discussed for reasons such as, frst, almost half of the
commercially available proteins were synthesized by fla-
mentous fungi, second, many flamentous fungi classifed as
generally regarded as safe (GRAS) strains are known, and
third, it also has a great capacity to produce and secrete
proteins that can be used in industry and medicine [102].

Choosing a host with high transformation power and
a suitable marker is one of the important items of genetic
engineering, which not only reduces the risk of creating false
transformations but also increases the fnal product [103].
Wild strains are mostly used in genetic engineering due to
understating of their genome sequence being known [99].
Modifed strains such as strains with defects in protease that
are used in protein expression can also be good targets [104].
Auxotrophic marker selection can be a criterion in choosing
a suitable host for genetic engineering such as the
hygromycin gene and the gene encoding orotidine-50
monophosphate decarboxylase pyrG, respectively, as the
most important and common markers of antibiotic re-
sistance gene and auxotrophic gene in flamentous fungi
such as Aspergillus fumigatus (A. fumigatus) and Aspergillus
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terreus (A. terreus) [105]. However, markers related to an-
tibiotic resistance are not always responsive because some
strains can be resistant and cannot be used in transformation
[106]. As much as these markers are limited, auxotrophic
markers which are known as essential metabolic genes of
protein biosynthesis are mostly used in genetic engineering
and production of transformed strains [107].

4. GM Probiotics

Probiotics are live microorganisms that excrete benefcial
efects if administered in insufcient quantities [108]. Tey
have attracted the attention of researchers in the treatment
of diseases since antibiotic resistance among bacteria and no
longer efectiveness of antibiotics became a concern [109].
Probiotics are useful in the prevention and treatment of
human and animal diseases. Considering that the impacts of
probiotics are signifcantly related to the type of species and
its prescribed dose, their performance can be attributed to
their ability to inhibit the colonization of pathogens, es-
tablish homeostasis in the microbial fora, and modulate the
immune response and metabolic pathways [110]. Some
probiotics such as lactic acid producer strains involved in
endocarditis and bacteremia in vulnerable patients or the
enterococcal probiotic strains are too risky due to the
presence of main virulence genes and antibiotic resistance
issues [111, 112]. Te biggest limitation of probiotics is their
possible weakness in survival through passaging and
reaching target tissues by the acidic environment of gas-
trointestinal tract, oxygen levels, and their survival in food
packaging. Te size and number of probiotics required for
efectiveness, source of isolation of probiotics, and their
reaction with the normal microbial fora are also concerning
issues [113, 114]. Genetic engineering can be helpful in the
reduction of probiotic pathogenicity and reinforcement of
their useful properties. In addition, genetic engineering can
make probiotics safe for human applications such as vac-
cination and delivery of target proteins and drugs (Figure 2)
[110]. Bioengineered probiotics would be more useful in the
diagnosis and treatment of specifc diseases (Table 2) [3].
Tere are several engineered probiotics in diferent stages of
clinical trials (Table 3).

4.1. Criteria for Selection and Safety Issues of GM Probiotics.
Four important criteria for the selection of probiotics are
necessary to consider for the development of GM probiotics,
including safety, technological, functional, and physiological
ftness. In relation to the safety of probiotics, selected
probiotics should not only have a good history of safety but
also be isolated from the gastrointestinal system of healthy
people. From the technological view of preparing probiotics,
the ability to grow massively during bacterial cultivation, to
survive probiotics during preparation, and to storage is very
important. Besides, a selected probiotic strain should be
stable and exhibit genetic stability. In terms of functionality,
probiotics should be able to adhere to cells, be in balance
with the normal human fora, and well grow in the target
organs. Finally, probiotics physiologically should be able to

metabolize cholesterol and carbohydrates, modulate the
immune response, and prevent the growth of pathogens
antagonistically [159, 160]. Since GM probiotics have been
subjected to genetic modifcation such as gene addition,
changes in immunogenicity, and metabolic pathways, their
safety and persistency in the surrounding environment
should be examined by safety tests [110, 161].

4.2. Clinical Application of GMProbiotics. GM probiotics by
expressing heat-shock proteins such as GroES and GroEL
are able to tolerate stress in a wide range of temperatures
[162], by delivery of therapeutic antimicrobial peptides
(AMPs) are efective against antibiotic-resistant bacteria
[163], and by targeting tumor cells and replication in the
tumor site are useful to treat cancers exhibiting resistance to
traditional cancer therapy [164]. Moreover, understanding
the gut-brain axis, the connection between the GI and the
brain by the vagus nerve has helped to determine the as-
sociation of microbial fora and stress, behavior, and mental
health. GM probiotics by reducing neurotoxic compounds
such as indole and the production of serotonin are efective
in cognitive health [165]. Finally, GM probiotics were also
used in vaccines by delivering immunogen compounds,
which overcome vaccination-associated problems using
a weakened pathogen [166].

Engineered-modifed Lactobacilli spp. may be involved
in reducing the symptoms of hyperglycemia for diabetes. In
the diabetic animal model designed by Duan et al., GLP-1
(glucagon-like peptide-1) was expressed in Lactobacillus
gasseri (L. gasseri). In diabetic rats receiving orally engi-
neered L. gasseri,insulin-producing cells were produced in
sufcient quantity and the normal function of insulin-
producing cells was no longer disturbed [167]. Other Lac-
tobacilli spp. were also subjected to genetic modifcations
including Lactobacillus lactis (L. lactis) and Lactobacillus
casei (L. casei). In vitro studies of L. lactis were designed to
deliver therapeutic proteins like antienterococcal peptides,
hiracin JM79, enterocin A and enterocin P, SCI-59, and
fagellin, which showed to be efective in the treatment of
E. faecalis infection, diabetes, and enteropathogen infection,
respectively [168–170]. Enterococci were not able to grow
and survive in the presence of engineered L. lactis producing
antienterococcal peptides [168]. IBD is infuenced by
engineered L. lactis and L. casei genetically modifed to
deliver Elafn. Elafn is a type of protease inhibitor involved
in protecting gastrointestinal surfaces against any damage.
According to the result of the examination of the cell line
and mouse model, both probiotics colonize in the intestine
and successfully produce Elafn [171]. Rosberg et al. designed
a recombinant Lactobacillus paracasei (L. paracasei) to
produce linoleic acid isomerase which has a role in fatty acid
accumulation. Histological examination of liver tissue in
mice model showed higher levels of cis-12 and trans-12
which are directly associated with successful expression of
linoleic acid isomerase encoding gene in engineered
L. paracasei [172]. In the same study by Koo et al.,
L. paracasei underwent genetic manipulation against
L. monocytogenes infection. Recombinant L. paracasei which
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expressed Listeria’s adhesion protein showed signifcant
decreases in invasion and attachment of L. monocytogenes in
cell line experiment [173]. In another report, Lactobacillus
jensenii (L. jensenii) showed an in vitro anti-human im-
munodefciency virus (HIV) efect following genetic mod-
ifcation to secret CV-N, a HIV-1 entry inhibitor cyanovirin-
N. L. jensenii expressing antiviral peptide reduces the in-
fection in further examination on animal model [174], and
there are no infammation and potential adverse efects
following colonization of recombinant L. jensenii. Also,
modifed L. casei expressing Listeria’s adhesins was able to
colonize the intestine and compete with Listeria to reduce
infection caused by Listeria. Tey mediate the immune
system by increasing regulatory and natural killer cells [175].
Bifdobacterium spp. are Gram-positive bacillus of obligate
anaerobes resident in the gastrointestinal system such as the
intestines of mammals. So far, ten types of Bifdobacterium
spp. have been introduced in humans. Tese bacteria well
colonize the tumor region and survive, suggesting Bifdo-
bacterium spp. as a promising candidate in cancer therapy
[176]. Several studies highlighted the gene delivery by
bifdobacteria in the treatment of cancer. Wang et al.
designed an engineered Bifdobacterium breve (B. breve)
strain by electrotransformation of IL-24 gene which was
expressed on the probiotic surface. Inhibitory efects on
tumor progression were observed by analyzing tumor
growth and apoptosis induction, which indicates recombi-
nant B. breve-IL24 is a promising strategy in cancer therapy
[177]. Wei et al. performed an experiment on the mouse
model with colitis by transfer of Bifdobacterium longum
(B. longum) delivering rhMnSOD (recombinant human

manganese superoxide dismutase) to colitis mouse model
[178]. Te reduced efects on the symptoms of colitis as well
as histological fndings showed that B. longum can be a good
delivery candidate for the treatment of colitis. Genetically
engineered E. coli Nissle (EcN) has shown its benefcial
efects in both infections and diseases. Duan et al. used
engineered E. coliNissle expressing CAI-1 in a mouse model
sufering from Vibrio cholerae (V. cholerae) infection. Tey
found that the binding rate of toxin to the intestine of mice
and the number of V. cholerae decreased by 80% and 69%,
respectively [134]. In the same study by Hwang et al.,
modifed E. coli Nissle was used producing S5 pyocin, E7
lysis protein, and DspB to protect the mice model against
Pseudomonas aeruginosa (P. aeruginosa) infection [85].Tey
successfully reported that engineered E. coli Nissle is
a suitable probiotic candidate for treatment and prophylaxis
against bacterial infection induced by photogenic Pseudo-
monas. Genetically engineered E. coliNissle harboring HIV-
gp41-hemolysin was examined for HIV infection [145].
Colon histological examination and the immunocyto-
chemistry (ICC) analysis indicate successful colonization of
colorectum by modifed E. coli Nissle in a murine model for
months while expressing antiviral peptides. Tis result
makes E. coli Nissle the frst promising live antiviral pro-
biotic against HIV infection. In addition to microbial in-
fection, disorders can also be alleviated by genetically
engineered probiotics. Engineered E. coli Nissle was in-
vestigated for delivery of fructose dehydrogenase and
mannitol-2-dehydrogenase enzymes to examine hepatic
steatosis disorder in rats [179]. Following administration of
engineered E. coli Nissle, lipid peroxidation reduced

Genetically engineered bacterium

Vaccination:
Clostridium tetani
Bacillus anthracis

Cancer:
Colorectal cancer

Breast cancer

Metabolic disorders:
Hyperammonemia

Phenylketonuria
Diabetes
Obesity

Infectious disease:
Pseudomonas aeruginosa
Salmonella typhimurium

Clostridium difficile
Vibrio Cholerae

Rotavirus

Figure 2: Medical applications for genetically engineered bacteria (GEB). Infectious disease: GEB can combat bacterial infections by (1) the
release of toxins and toxins neutralization and (2) the production of QS components that lead to the expression of surface adhesion
preventing pathogenic colonization and production of antimicrobial factors mediating bacterial killing. Also, GEB can be designed to secret
antibody-like fragments to prevent pathogenic bacterial adhesion to host cells. Metabolic disorders: GEB can release antibody fragments
against pro-infammatory cytokines, anti-infammatory cytokines, antioxidants, or certain enzymes. Cancer: GEB (1) can accumulate and
replicate in cancerous cells and subsequently express certain bacterial toxins, the converting enzymes, pro-cytokines, and apoptosis inducer
molecules. (2) GEB can harbor plasmid encoding shRNA for silencing genes after transformation into cancerous cells. Vaccination: GEB (1)
can promote immune cell recognition and uptake of antigens through the expression of intracellular/ surface antigens via bacteria chassis as
an adjuvant, (2) designing and engineering an antigen by dendritic cells-targeting peptides, and (3) packaging antigen into the outer
membrane vesicles for enhancing immune cell recognition and uptake of recombinant antigen.
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signifcantly while the serum and hepatic antioxidant en-
zyme levels were increased. Terefore, engineered E. coli
Nissle also confer a good probiotic strain in the treatment of
metabolic disorders. Saccharomyces boulardii (S. boulardii)
undergoing genetic modifcation by Chen et al. to prevent
Clostridium difcile (C. difcile) infection (CDI) can suc-
cessfully neutralize C. difcile toxins by secreting a protein
called ABAB. Tis probiotic showed benefcial and pre-
ventive efects on animal death in mouse models [180].

5. Genetically Modified Other Bacteria

Probiotics and bacteriophages with a long history of safe use
for consumers as therapeutic agents and their role in the
prevention and treatment of many diseases have already been
mentioned. In addition, other engineered bacterial strains
have been designed to respond to environmental signals,
especially bacterial strains previously displaying no suscep-
tibility to genetic changes have increased. For example, design
of Clostridium spp. with the ability to produce an anti-
infammatory metabolite, β-hydroxybutyrate, overcomes
challenges of oral delivery including survival in exposed to
stomach acids, enzymes, and bile salts [137, 181–184]. Design
of engineered E. coliwith the potential to treat solid tumors in
preclinical models has been reported in several studies.
Chowdhury et al. engineered an E. coli strain to release an
anti-CD47 antagonist nanobody inducing tumor regression
and abscopal efects and exhibiting long-term survival in
a syngeneic tumor mouse model [185–188]. In addition to
E. coli bacteria, which have a long history in cancer treatment,
anaerobicmicroorganisms such as Bifdobacterium strains are
used in preclinical cancer treatment through converting the
nontoxic compound 5-fuorocytosine into the cytotoxic
compound 5-fuorouracil [189]. Administration of CD-
expressing Bifdobacterium infantis with the nontoxic com-
pound 5-fuorocytosine signifcantly inhibited tumor growth
in mice [190]. In a study by Yujie Sun and colleagues, it was
shown that S. typhimurium engineered usingVibrio vulnifcus
(V. vulnifcus) fagellin B (FlaB), which is a natural ligand of
Toll-like receptor 5 (TLR5), strongly inhibits tumor growth
and is an excellent aid for cancer immunotherapy [191].

6. GEMs for Diagnosis and Delivery Purposes

Tere are diferent therapeutic molecules such as antibodies,
proteins, and biochemical compounds delivered by genet-
ically engineered microorganisms which will be discussed in
therapeutic applications section of each genetically engi-
neered organism. In this part, only diagnosis and production
of various proteins are discussed [192]. One of the strategies
for changing organisms is the use of synthetic biology and
various genetic platforms by using which we can genetically
engineer organisms [193]. Microorganisms can be geneti-
cally modifed to be considered as biosensors which can
identify specifc markers such as chemical substances and
molecules, gases, and ions present in various diseases. For
instance, E. coli has been genetically engineered to identify
biomarkers such as glucose and nitric oxide in infammatory
conditions and diabetes [151]. Engineered E. coli Nissle,

which belongs to probiotic strains, plays major role in the
diagnosis of gut infammation, colitis, and gastrointestinal
bleeding through identifying Nitrate [194],Tiosulfate [136],
and Heme [195], respectively. In addition, metastasis in liver
cancer was diagnosed by E. coli Nissle in mice [196]. Other
probiotic bacteria such as Lactococcus lactis (L. lactis) and
Lactobacillus reuteri (L. reuteri) can serve similar function
for diagnosis of cholera and Staphylococcus aureus
(S. aureus) infection via sensing CAI-1 (cholera auto-
inducer-1) [115] and AIP-I (autoinducer peptide I) [116],
respectively. Wu et al. developed a new whole-cell biosensor
that responds to Quorum sensing (QS) signal molecules to
detect bacterial infections (P. aeruginosa and Burkholderia
pseudomallei (B. pseudomallei)). Te results indicated that
designed whole-cell biosensors can detect waterborne in-
fections rapidly and cheaply [135]. Another study used
L. lactis to detect E. faecalis. L. lactis can generate and secrete
peptides that prevent enterococcal growth and reduce its
vitality in the surrounding area of this probiotic. Te ef-
fectiveness of this modifed system against multidrug-
resistant Enterococcus faecium (E. faecium) strains was
demonstrated [168]. Lubkowicz and colleagues created
L. reuteri that detects AIP-I, a QS protein generated by
Staphylococcus spp., during pathogenesis. Teir results
showed that the engineered biological sensor could detect
AIP-I levels in S. aureus under various harsh conditions, and
these created sensors for staphylococcal contamination
detection in hospitals and drug screening will be
helpful [197].

Genetically engineered microbes can be designed to
transfer host proteins such as enzymes, cytokines, and
important bioactive molecules efective in treatment [198],
while the other transfer methods were not safe because most
of these molecules were degraded. Considering that some
microbes have the ability to pass through the rough con-
dition of the body without decomposing, genetically engi-
neered microbes are resistant to barriers, e.g., the
gastrointestinal and digestive enzymes, and do not stimulate
the host immune system. Terefore, these microorganisms
protect the molecules under harmful conditions of the body
[199]. Keratinocyte growth factor-2 (KGF-2), trefoil factor
(TFF), and interleukin-10 (IL-10) can play an important role
in treatment of disease and can be delivered by genetically
engineered microorganisms including Bacteroides ovatus
(B. ovatus) and L. lactis, respectively [192]. By phase I re-
search on Crohn’s patients in humans [200] and colitis in
animal model [201], researchers found that L. lactis can be
a good carrier for delivering IL-10 [200]. Also, L. lactis was
successful in transferring IL-17A in cancer mouse model
[202], Heme oxygenase-1 in mice with colitis [203], and
hTFF1 in hamster with oral mucositis [204]. Lactococcus
casei (La. casei) was designed to express human lactoferrin
(hLF) as an antibacterial agent which showed signifcant
clearance of E. coli by enhancement in phagocytosis and iron
depletion in murine model with bacterial infection [205].

Engineeredmicrobes can also be considered as carriers for
vaccine components. Te recombinant bacteria secrete spe-
cifc antigens or antibodies to host cells. Sometimes, transport
of autoantigens may be associated with tolerance pheromone,
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resulting in prevention of autoimmune disease [206]. Pro-
biotic strains especially L. lactis have been often investigated
in studies on infectious and metabolic diseases. Recombinant
L. lactis strains designed to deliver and secret low-calcium
response V (LcrV) antigen were observed to reduce in their
bacterial number and survival in vaccinated mice against
Yersinia pseudotuberculosis (Y. pseudotuberculosis) infection
[207]. Also, orally administered recombinant L. lactis
expressing hemagglutinin can confer protection against in-
fuenza virus challenge in mice [208]. Moreover, genetically
engineered L. lactis strains harboring and delivering anti-TNF
nanobody, ovalbumin, DQ8 gliadin epitope, and GAD65 and
IL-10 were used as vaccine against colitis [209], autoimmune
diseases [206], celiac disease (30), and type 1 diabetes, re-
spectively [210].

7. Genetic Engineering of Antibiotic Producers

With the increase in bacterial infections caused by pathogens
that are resistant to one or more antibiotics, the world has
entered another challenge; according to the statement of the
WHO, these challenging pathogens include E. coli, S. aureus,
P. aeruginosa, Acinetobacter baumannii (A. baumannii),
Klebsiella pneumoniae (K. pneumonia), and E. faecium [211].
In addition to being resistant to antibiotics, these mentioned
bacteria are able to spread this resistance to other antibiotic-
sensitive strains. Tis is a worrying issue and should be
replaced by newer treatment methods. One of these new
methods is genetic engineering and synthetic biological
sciences, which with the conceptualization and protein
engineering and in silico design will ultimately lead to the
development of new treatment methods that combat anti-
biotic resistance [140]. So far, more than 30,000 synthetic
antibiotics and 7,000 natural antibiotics have been in-
troduced. Mutation and genetic engineering technology
with recombinant DNA tools are widely used to genetically
manipulate antibiotic-producing microorganisms to pro-
duce more antimicrobial compounds [28]. Te main goal of
genetic engineering in antibiotic-producingmicroorganisms
is the synthesis of new strains of microorganisms that
produce the desired antibiotic in larger quantities by
changing antibiotic biosynthesize pathways to improve the
quantity rate of antibiotic production and synthesis of hy-
brid and new modifed antibiotics [28]. In this part, how to
use synthetic biology to achieve this goal is discussed. In this
regard, there are two general paths: using genetic engi-
neering to (1) enhance antibiotic production and (2) modify
existing antibiotics, which will be discussed further.

7.1. Genetic Engineering and Enhancing Antibiotics
Production. If access to the encoding genes of metabolites
produced by antibiotic-producing bacteria was possible
using genetic tools such as mutation, we could increase the
production of the desired antibiotics [160]. For example,
genetic modifcations were applied to the gene encoding
amphotericin by deleting the amphDIII and amphL genes in
Marinactinospora thermotolerans (M. thermotolerans).
Additionally, the cellular function of the genes involved in

the production of the nucleoside antibiotic A201A in
Streptomyces nodosus (S. nodosus) were studied. Tese
modifcations resulted in improved production of both
antimicrobial substances. [30, 212]. Genetic alteration leads
to an increase in the biosynthesis of antimicrobial substances
by improving precursors and fux of metabolites. Likewise,
studies showed a 60-fold increase in precursors from car-
bapenem antibiotic synthesis pathway in E. coli producing
carbapenems [31] or an increase in the glycolysis pathway
that produces antimicrobial compounds in Streptomyces
lividans (S. lividans) following modifying in the metabolic
pathway of carbon fux [213]. Also, the transfer of desired
genes to the host or their transfer from one host to another is
an example of the achievements of synthetic biology in
biofactors, where the host benefts from the production of
products expressed from the incorporated genes. Tis is well
shown in a study in which the cyp gene was transferred from
Ganoderma lucidum to Saccharomyces cerevisiae. Tere was
an 8% increase in the production of a derivative of 3,28-
dihydroxy-lanosta-8,24-dien-26-oic acid as a novel gano-
deric acid with antimicrobial activity [33]. Also, the transfer
of the bacitracin-encoding gene from Bacillus subtilis
(B. subtilis) to Bacillus licheniformis (B. licheniformis) was
shown in Eppelman et al.’s study [34]. Trough the gene
replacement of the srfA gene cluster encoding the surfactin
synthetases by integrating the bacitracin biosynthetic gene
using a homologous recombination approach, Eppelman
et al. showed increased expression of bacitracin bio-
synthetase in engineered B. subtilis and their self-resistance
to bacitracin more than B. licheniformis.

7.2. Genetic Engineering and Modifying Existing Antibiotics.
Microorganisms are intrinsically capable of producing an-
timicrobial compounds, which are also known as secondary
metabolites. Te great challenge for these antibiotic-
producing species is the low production of these metabo-
lites. Synthetic biology has provided more production of the
same antibiotics with more diversity by antibiotic synthesis
mechanism. Multimodal enzymatic complexes in bio-
synthetic cluster genes (BCG) and metabolic engineering
confer strategies for overexpressing antibiotics [35].

Te multimodal enzymatic complex consists of several
enzymes including polyketide synthases (PKS), non-
ribosomal peptide synthetases (NRPS), and a combination of
both NRPS and PKS, which these enzymes give the chemical
characteristic to the peptide. Synthetic biology with engi-
neering modifcations on these enzymes solves the problem
of low production of antibiotics [36]. Considering the wide
distribution of vancomycin-resistant Enterococcus (VRE),
attention has been focused on the biosynthetic pathway of
glycopeptide antibiotics (GPAs) to deal with resistance using
synthetic biology. Yim et al. conducted scafolded assemblies
of multienzymatic complexes from seven glycopeptide an-
tibiotic (GPA) gene clusters of BCGs. Tese assemblies were
then transferred to Streptomyces coelicolor (S. coelicolor) to
enhance the diversity of glycopeptide products. Following
this addition to S. coelicolor, nine new compounds were
reported from which eight showed antimicrobial properties
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against E. faecalis [214]. Another glycopeptide naturally
produced by Streptomyces spp. in a small amount is called
corbomicyn. Under one of the synthetic biology platforms
called the glycopeptide antibiotic heterologous expression
system (GPAHex), an increase in the expression of genes
encoding corbomicyn was reported 19 times compared with
its normal level [38]. Ji et al. utilized a combination of NRPS
and PKS, by another platform of synthetic biology, top-
down method, to increase daptomycin level by more than
40% [33]. Daptomycin produced by Streptomyces rose-
osporus (S. roseosporus) at inadequate levels is clinically used
for combat against methicillin-resistant S. aureus (MRSA)
[39]. Metabolic engineering is also used to increase the
production and diversity of antibiotics. Tis method re-
programs cellular metabolism to enhance the production of
metabolites and metabolically engineers enzymes and me-
tabolite fux that is important in the passage of a metabolite
[40]. Sometimes, fnding the relationship between the bio-
synthesis of antibiotics and the intermediate compound
helps to enhance antibiotic production. For example, the
production of bacitracin from B. licheniformis was enhanced
in a study. Tis study showed an increase in the production
of bacitracin by using synthetic biology tools such as
recombinant base techniques. In this work, the production
of bacitracin was investigated in relation to a secondary
metabolite called S-adenosyl methionine (SAM) [41].

7.3. GM Phages against Antibiotic-Resistant Pathogens.
Although phages without genetic changes are capable of
fghting antibiotic-resistant microbial infections [42], using
genetic engineering to modify phage can develop phages
with specifc abilities, for instance, usually, the phage is
designed to target a wider range of bacterial strains. Te
advantage of this strategy is to use fewer phages in the
cocktails, reduce the preparation and purifcation pro-
ceeding of a large amount of phage, and reduce the rate of
development of bacterial resistance following synthetic bi-
ology [35]. By high-throughput screening, Yeh et al. found
host-range-determining regions (HRDRs) in the T3 phage
tail. Using site-directed mutagenesis, they genetically
modifed the HRDRs to produce synthetic phagebodies. Te
results from phagebodies showed that they turn out to have
a wide range of bacterial hosts that can inhibit bacterial
growth for a longer period of time [207].

8. The Design, Build, Test, and Learn Cycle of
Metabolic Engineering

Te design, build, test, and learn cycle (DBTL) as one of the
engineering principles is a loop consisting of diferent stages
(Figure 3) and each of them follows a goal to design and
introduce a new biological system [43]. Researchers use
DBTL to overcome antibiotic resistance problems by pro-
ducing new antimicrobial agents [35]. In the frst stage,
Design, problems and challenges were raised and the
pathways were determined using high-throughput screening
(HTS). In the Build step, all required components related to
the host are built. Te Test step is for examining all

genetically modifed constructs toward the target for which
they were designed, for example, if it was for partial targeting
or the production of a specifc protein. Finally, by the Learn
stage, researchers learn from the results of the previous step
to make a hypothesis [215].

9. GEMs for Disease

9.1. Engineered Microorganisms for the Treatment of Cancer.
Te current manner for cancer treatment includes surgery,
chemotherapy, and radiation therapy. However, the limi-
tations like the lack of efect on whole region of tumor with
anaerobic conditions have led to developing novel treat-
ments based on the transfer of cancer and anticancer an-
tigens or drugs through vectors. As the science of genetic
engineering advances, researchers have turned their atten-
tion to target tumors using genetically engineered bacteria.
Tere are several types of anaerobic bacteria such as Sal-
monella typhimurium (S. typhimurium), Clostridium, E. coli,
and Bifdobacterium known as live biotherapeutic products
(LBPs) that are able to survive in the tumor site due to their
anaerobic nature and adaption to hypoxic condition. Tey
would have many benefts for cancer treatment by their
ability to spread and carry the drug, anticancer compounds,
proteins, and pre-enzymes to the anaerobic space of the
cancer mass [122]. Tey have many potential benefts for
cancer treatment related to their ability to spread and to
transfer and release drug or anticancer compounds to an-
aerobic space of the cancer mass [122, 216]. Following ge-
netic modifcation of the bacteria to harbor genes and
proteins, colonization in tumor site occurred, resulting in
not only transfer of antigens or cancer-fghting compounds
but also stimulation of the immune response
[109, 110, 217, 218]. Moreover, E. coli Nissle 1917 can be
designed as a targeted transporter to deliver cancer antigens
or efective proteins such as p53 and nano-antibodies to the
anaerobic areas of the tumor [113]. Selection of an antitumor
substance mostly depends on the biogenesis of tumor. For
instance, given that amino acid L-arginine is considered as
an efective factor in the development of the immune re-
sponse against tumors, genetic engineering of strains to
produce more L-arginine would have a signifcant efect in
preventing cancer. Bacteria-based cancer therapy is the
matter that has risen for years [114]. Moreover, probiotics
have been considered for their anticancer efects excreting
through inducing apoptosis and preventing oxidative stress
[159, 160]. As shown in Table 1, it became possible to design
new probiotics to fght cancer by genetic technology [109]
from which only two genetically engineered probiotics
entered clinical phases for treatment of cancers. First, E. coli
Nissle 1917 was engineered to produce cyclic di-AMP which
activates the immune response and the antigen presenting
cells (APCs) by afecting on the sequence of interferon [161].
Tis engineered strain known as SYNB1891 (NCT04167137)
currently is under investigation in phase 1 clinical trial.
Another antitumor candidate probiotic known as bacTRL-
IL-12 (NCT04025307) had been studied in phase 1 clinical
trial. Actually, this strain is a genetically modifed Bifdo-
bacterium longum (B. longum) which was designed to
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combat against refractory solid tumor by delivering gene
encoding the infammatory factor interleukin-12 (IL-12).
Tere is hope that bacTRL-IL-12 will be able to stimulate
antitumor immune response. Te size and volume of the
tumor usually calculated after every cancer therapy were
reduced after the use of the genetically engineered strains.
Tis new way in the cancer therapy leads to both the targeted
treatment of cancers and the development of antitumor
compounds. Te criteria in the designing of GEMs for
cancer therapy include the ability to escape recognition by
the host’s immune system, invade the tumor, multiply in
tumor cell, produce and release toxins or anticancer sub-
stances designed to carry into the tumor cell, and activate
apoptotic genes in cancer cells [162].

9.2. Engineered Microorganisms for Infammatory Disease.
Infammation is defned as complex biological processes and
protective responses in the beginning of the innate immune
response to antigens or microbes. However, infammation is
sometimes involved in the development of various diseases,
e.g., neurodegenerative diseases, autoimmune diseases, and
cardiovascular diseases [163, 219]. Infammatory bowel
disease (IBD) as a chronic infammatory disease is char-
acterized by recurrent and severe infammatory responses
including ulcerative colitis (UC), pouchitis, and Crohn’s
disease (CD) [165]. Leading cause of IBD has not yet been
determined, but it is known that cytokines play an important
role in the progression of the disease [167, 220]. Te
common treatment for IBD is a combination of anti-
infammatory and immunosuppressive therapies such as
methotrexate, 5-aminosalicylic acid, corticosteroids, anti-
tumor necrosis factor TNF-α, and surgical resection which
in few cases may be inefective or show side efects

[165, 168, 170, 221]. In addition, current therapies for in-
fammatory diseases do not treat the origin of infammation
but relieve the symptoms; therefore, these treatments are not
very efective, necessitating development of promising
therapies [219].

Recently introduced treatments, such as fecal microbiota
transplantation (FMT), probiotics, and prebiotics were re-
ported as safe and more efective [171, 172]. Also, GEM is
used as a new method in the treatment of many diseases
especially infammatory diseases [222]. Engineered L. lactis
strains were designed by Steidler et al. to produce IL-10 as an
anti-infammatory cytokine. Results of their study showed
50% reduction in colitis symptoms in murine chronic colitis
model induced by dextran sulfate sodium (DSS). In addition
to being cost-efective, this treatment method also causes
localized delivery and an active synthesis in situ. Besides, the
dose required in this condition is lower than the dose re-
quired for systemic treatment. So, this strategy might rep-
resent a better way for the long-term and cost-efective
management of IBD in patients [174, 175]. In a placebo-
uncontrolled study, the thymidylate synthase gene of L. lactis
was replaced by the IL-10 gene to treat Crohn’s disease
patients. Treatment with this modifed bacterium
(LL-Ty12) alleviated the disease with the minimum side
efects. It was demonstrated that employing genetically
engineered bacteria for protein delivery to the mucosa is an
appropriate approach in humans. As a result, it could be
useful as a maintenance therapy for chronic intestinal illness
[200]. Engineered Bifdobacterium spp., B. longum, also have
been developed for the treatment of IBD to deliver α-me-
lanocyte-stimulating hormone (α-MSH) exhibiting an anti-
infammatory efect on the intestine. Well intestinal colo-
nization with engineered B. longum and signifcant anti-
infammatory efects by high α-MSH expression were

Design Build Test and Learn

Figure 3: Novel biological systems which composed of four main steps; the Design, build, test and learn (or application) (DBTL) cycle.
Following the selection of a certain organism, and determination of the purpose of biosynthesis of GEM, the specifc technique was applied
to produce a modifed organism.Te modifed organism is being investigated in diferent clinical trial phases. Tere are diferent laboratory
and genetic techniques for producing engineered phages (A) and engineered bacteria (B). BRED: bacteriophage recombineering of
electroporated DNA, CRISPR-Cas: clustered regularly spaced short palindromic repeats CRISPR associated, BAC: bacterial artifcial
chromosome.
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observed in rat model of ulcerative colitis. Actually, this
engineered bacterium reduces IL-6, TNF-α, nitric oxide
(NO), and myeloperoxidase enzyme from which all are
proinfammatory factors in ulcerative colitis and also in-
creases IL-10 as an anti-infammatory cytokine [174, 223].
Another strategy used in the treatment of colitis is the ex-
pression of enzymes with antioxidant properties. For in-
stance, Streptococcus thermophilus (S. thermophilus) strains
genetically modifed by a plasmid to express catalase and
superoxide dismutase were able to reduce colitis in a mouse
model by reducing reactive oxygen species (ROS) pro-
duction. So, these fndings suggest that genetically altering
a bacterium candidate with inherent immunomodulatory
capabilities (e.g., S. thermophilus CRL 807) by inserting
a gene encoding an antioxidant enzyme improves its anti-
infammatory efects to express catalase and superoxide
dismutase and is able to reduce colitis in a murine model
[177]. Neutralization of IL-6, as another important cytokine
in the pathology of IBD, can be found as an efective
treatment method. According to this statement, L. lactis
strains expressing anti-IL-6 afbody has been engineered by
fusion and expression of IL-6 on the surface of the probiotic
with Usp45 (secretion peptide) and AcmA (anchoring
protein). Findings of the investigation showed that this anti-
IL-6 afbody can strongly remove human IL-6. Te elimi-
nation was highly selective for IL-6, with no cross-reactivity
for other proinfammatory cytokines linked to IBD patho-
genesis. Because lactic acid bacteria survive in the gastro-
intestinal tract, they are appropriate for oral administration,
enabling them for local delivery of cytokine blockers to the
gut. Oral administration allows for direct contact with ir-
ritated mucosa, allowing medications to be delivered close to
reactive cells. In IBD patients, structural abnormalities
enhance bacterial buildup and medication transfer to the
underlying lamina propria [224].

In addition to bacteria, bacteriophages can also be used in
genetic engineering technology to express anti-infammatory
peptides on the surface of phages for the treatment of various
diseases, e.g., infammatory diseases [61]. Te study showed
that using genetic engineering to target the tumor necrosis
factor-α receptor (TNFR1) can be a suitable option for the
treatment of Crohn’s disease induced by an increase in the
expression of the infammatory cytokine (TNF-α).
Hydrostatin-SN1 (H-SN1) peptide in the T7 phage library
obtained from the venom of the snake Hydrophis cyano-
cinctus (H. cyanocinctus) by cloning system exhibits its anti-
infammatory efects through targeting TNFR and preventing
the binding of TNF-α to TNFR in a murine model, resulting
in alleviation of colitis symptoms. It has been shown that
in vitro, H-SN1 decreases TNF-α toxicity as well as the ac-
tivation of TNFR-related signaling pathways such asmitogen-
activated protein kinase (MAPK) and nuclear factor kappa
light chain enhancer of activated B cells (NF-lB) [62].
Psoriasis is another example of infammatory disease in which
proliferation of skin cells and production of infammatory
mediators such as IL-1b, -6, -8, -17, -18, -23, and -36, CCL5,
TNF-α, and interferon (IFN) α/β take place; the use of anti-
infammatory drugs and prevention of proliferation of ker-
atinocytes are the current treatments for psoriasis [225–227].

Vazquez-Sanchez et al. investigated the anti-infammatory
activity of the heptapeptide HP3 expressed on the surface of
phage in psoriasis animal models via phage display tech-
nology. Results of their study showed that HP3 inhibits the
binding of peripheral blood mononuclear cells (PBMCs) to
endothelial cells, leading to a reduction in PBMC migration
and consequently a reduction in infammation. Peptides
represent a type of therapy with the advantages of low im-
munogenicity and high activity, and the phage display ap-
proach is a useful way for screening a wide range of
therapeutic peptides with high selectivity and afnity, in-
cluding anti-infammation peptides [61, 226].

9.3.EngineeredMicroorganisms forDisorders. Metabolism of
substances in the healthy person is relatively stable in
a normal state but sometimes chemical processes due to
abnormalities in the host’s metabolism enzymes can lead to
accumulation or even defciency in these metabolites and
consequently induction of disease [85, 134, 228, 229]. Tese
diseases include autoimmune disorders such as arterio-
sclerosis, encephalitis, and metabolic disorders. Diabetes,
cardiovascular disease, and obesity induced by changes in
lifestyle, consuming unhealthy foods, etc. are the most
common metabolic disorders [179, 180]. Tese diseases are
difcult to treat and need long-term changes in diet and
lifestyle patterns which impose a signifcant economic
burden on patients [109]. Given that altered composition of
the gut microbiome is another leading cause of these dis-
orders, microbiome restoration is a helpful factor in their
treatment. A new strategy for the modifcation of the gut
microbiota could be use of modifed microorganisms
expressing and/or secreting therapeutic compounds [180].
In addition to targeted drug delivery, engineered bacteria as
therapeutic agents can also help to restore homeostasis
within a disturbed microbial population [230].

One of the applications of modifed bacteria is in
treatment of obesity which unfortunately has been increased
signifcantly in the last 25 years. Tis chronic metabolic
disorder considerably increases the risk of cardiovascular
diseases and diabetes. In addition, since obesity is associated
with infammation, it may lead to autoimmune diseases such
as IBD [230–232]. Surgery and drugs commonly are used for
treatment of obesity, but due to the long-term impacts of the
current diets and lifestyles, these treatments are not re-
sponsive [180, 233–236]. Transformation of E. coli by the
N-acyltransferase gene obtained from Arabidopsis thaliana
(A. thaliana) resulted in development of a new strain called
At1g78690 to prevent the absorption of fats through dif-
ferent mechanisms such as oxidation of fatty acids and
reduction of food consumption by expressing
N-acylphosphatidylethanolamines (NAPEs) as precursors of
N-acylethanolamide (NAE), leading to obesity control [180].

Another important disorder is uremia, which occurs fol-
lowing increase in uric acid levels resulting from the decrease in
the excretion rate and subsequent accumulation in the kidney
[237]. Uremia mostly is caused by renal failure, diabetes, and
excessive consumption of alcohol. One approach for main-
taining normal uric acid levels is oral administration of
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genetically engineered E. coli DH5 cells [238]. Te urease gene
isolated fromKlebsiella aerogenes (K. aerogenes) was inserted to
the E. coli DH5 strain. Te E. coli strain was genetically
modifed to form a sodium alginate-encapsulated semi-
permeable membrane to persist throughout the gastrointes-
tinal tract. Ten, urea molecules quickly spread inside the
microcapsules containing bacteria, resulting in reduction of
urea amount.Tesemodifed bacteria orally were administered
and completely excreted through the feces, indicating the safe
use of this strain [239, 240].

Hyperglycemia is a typical symptom of diabetes which
could be treated with live bacteria due to stimulation of in-
testinal epithelial cells to make insulin in response to glucose.
Te treatment of type I and type II diabetes became possible
through the genetic modifcation of bacteria to improve
production of insulin from host cells. Bacterial species were
genetically engineered to generate insulinotropic proteins
such as glucagon-like peptide-1 (GLP-1) and pancreatic
β-cells-specifc transcription factor pancreatic and duodenal
homeobox 1 (PDX-1) [240]. Various species of genetically
engineered bacteria including E. coli species and some pro-
biotics showed promising results in reducing hyperglycemia
and improving diabetes. For example, genetically engineered
E. coli species can produce insulinotropic proteins including
GLP-1 or pancreatic β-cells-specifc transcription factor
PDX-1 from pancreatic β-cells and intestinal cells. Similar
studies used an engineered Lactobacillus to reduce hyper-
glycemia in mice through secreting GLP-1. Also, some
bacteria especially E. coli Nissle strain increased glucose
uptake by pancreatic endocrine cells with upregulation of
Notch associated with the ngn3 gene by using expression
GLP-1 or PDX-1 [132, 241–243].

Te phenylalanine lyase gene was genetically heteroex-
pressed in L. reuteri 100-23C which was able to reduce the
phenylalanine in murine model. Although oral adminis-
tration of genetically modifed probiotics was expected to be
a good method for treatment of phenylketonuria (PKU),
long host colonization by the probiotic was considered as
a problem [244]. A similar study showed that insertion of the
L-amino acid deaminase and phenylalanine lyase genes into
the genome of E. coli Nissle 1917 to develop a novel engi-
neered strain, SYNB1618, can solve the problem in treat-
ment of PKU. PKU is an autosomal recessive disease in
which a genetic defect in the phenylalanine hydroxylase
leads to an increase in the blood phenylalanine, resulting in
severe neurological complications including severe and ir-
reversible mental disability, behavioral disorders of acquired
epilepsy and microcephaly, seizures, psychological distress,
and general hypopigmentation of the skin [120, 245]. An-
other study showed that the administration of E. coli Nissle
1917 in a murine model reduces the blood phenylalanine
concentration by 38% through the expression of enzymes
involved in degradation of this amino acid in mice [197].

Hyperammonemia as a kind of metabolic disorder occurs
when there are extremely high levels of ammonia in the blood
and requires immediate treatment. If untreated, hyper-
ammonemia could be toxic and lead to coma or death. Tis
complication can be the result of liver cell disorders or lack of
urea cycle enzymes induced by the disturbance in ammonia

clearance as a neurotoxic metabolite [85]. Kurtz et al. ob-
served that oral administration of an engineered E. coliNissle
1917 (SYNB1002), which can convert ammonia into L-
arginine, leads to reduction of the ammonia amount and
the survival of mice [135]. One of the main causes of death
worldwide is alcoholic liver disease, which can be improved
through genetically engineered bacteria such as L. lactis and
B. subtilis. Tis innovative technique causes alcohol de-
toxifcation and reduces alcoholic liver damage through the
expression of the alcohol dehydrogenase and aldehyde de-
hydrogenase genes in the genetically modifed bacteria [246].

9.4. GEMs for Infections. Bacteria are undergoing genetically
modifying technology based on their special characteristics.
Tey can be designed to express specifc biomacromolecules
on their surface and are able to be used for the treatment of
microbial infections [140, 240, 247]. Moreover, bacterial
antibiotic resistance is increasing through excessive misuse of
antibiotics which is directly related to an increase in death
rate. Terefore, fnding more efective alternative ways for
treating infection and overcoming resistance is important
[248, 249]. One of the strategies to combat infections using
modifed microorganisms is identifying internal and external
QS signals secreted by pathogenic organisms and responding
to them by the production of antimicrobial compounds and
interference of QS mechanisms followed by suppression of
virulence genes through alternative QS signals. QS refers to
the bacterial interaction with one another or between species
to coordinate cellular function [197, 250]. Tis process entails
the identifcation of signaling molecules known as auto-
inducers (AIs). Spore formation, invasion of pathogens,
bioluminescence, and population control are examples of QS-
based phenotypic characteristics in bacteria [251]. Numerous
studies were conducted to control the expression of patho-
genic virulence genes and the production of antimicrobial
compounds by analyzing biological systems and guiding their
design based on QS. Commensal E. coli strains were genet-
ically modifed to recognize the signals of wild-type of
P. aeruginosa (PAO1) and produce bacteriocin. Tis
bacteriocin-producing probiotic expressing LasR was modi-
fed under the control of luxR promoter and E7 protein lysis
to enhance the release of bacteriocin. P. aeruginosa growth
and bioflm formation were reduced by 99% and 90%, re-
spectively, when P. aeruginosa and recombinant E. coli were
cultured [252, 253]. Mao et al. engineered L. lactis limiting the
development of cholera in a mouse model. V. cholera pro-
duces two quorum sensing molecules including autoinducer-
2 (AI-2) and cholera autoinducer 1 (CAI-1) in which CAI-1 is
a signal for the expression of virulence genes; meanwhile, in
low density of bacteria, the expression of virulence genes was
increased. Trough genetic engineering modifcation to ex-
press the receptor of CAI-1 on L. lactis, a high number of
V. cholerae and a reduction in expression of virulence genes
occurred, conferring protection in mice intestine from the
progression of V. cholera [254, 255].

Another strategy can be destroying the membrane of
bacteria. Helicobacter pylori (H. pylori) as Gram-negative
bacteria cause gastrointestinal diseases and antibiotics are
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the only current therapy, while excessive use of antibiotics
leads to an increase in antibiotics-resistantH. pylori strains.
Xu et al. designed an engineered E. coli strain to express an
artilysin which is composed of holin and endolysin. Holin
as a protein that can make holes in the bacterial membrane
in combination with endolysin which destroys the pepti-
doglycan amide bonds is produced by phages. Te results
indicate bacteriostatic impacts of artilysin on Helicobacter
by perforation and destroying membrane [256]. Secretion
of antibodies and adhesive subunits to prevent pathogen
colonization can be useful in preventing infections. Toxins,
secretion systems, and expression of pathogen adhesins
may be promising targets for developing new anti-infective
therapies for improving GEMs’ ability to compete with
pathogens [150]. L. casei was modifed to express ETEC
adhesion K99 (or K8872). Oral vaccination of modifed
L. casei resulted in high amounts of mucosal IgA in lung
and gut fuids, high systemic IgG response in animal model
study, and protection of more than 80% of mice against
lethal dosage of the ETEC [257]. Finally, toxin neutrali-
zation through the modifcation of surface components, the
generation of antibodies that neutralize these toxins, and
the modifcation of genes encoding proteins or enzymes
capable of neutralizing or breaking down toxins is one of
the GEM antimicrobial strategies. For example, heat-
sensitive receptors of ETEC and cholera toxin of host
cells were cloned on the surface of the nonpathogenic
probiotic E. coli by transferring glycosyltransferase genes
from Campylobacter jejuni or Neisseria meningitidis to the
E. coli. Te results showed that engineered E. coli protects
the host against diarrhea through the isolation of entero-
toxins [258–260]. Te engineered E. coli Nissle 1917 has
been used against vancomycin-resistant Enterococcus
(VRE) and its colonization in the intestine. Tree peptides
including Hiracin JM79, Enterocin A, and Enterocin B have
been designed in E. coli to express and kill Enterococcus spp.
Tese peptides are sufciently produced and signifcantly
prevent the growth of Enterococcus in vitro. Ten, the efect
of the modifed probiotic was assessed in mice model
colonized with Enterococcus. Te results showed that the
levels of both E. faecium and E. faecalis in the feces of mice
have decreased signifcantly [261]. Since phages are
promising therapeutic options due to their special features,
such as the ability to be self-replicating and self-limiting,
the usage of phage cocktails, and the possibility of modi-
fcation of phages [262], phage engineering was introduced
in genetic engineering by mutation, genetic replacement,
and the integration of a foreign gene to increase the an-
tibacterial spectrum efect of phage [249, 263]. Engineered
λ phage inhibited the growth of Enterohemorrhagic E. coli
(EHEC) both in vivo and in vitro. A CRISPR-Cas-3 system
and several CRISPR spacers targeting EHEC are embedded
in the wild-type λ phage. In fact, this CRISPR-Cas-3 system
has been engineered to increase the specifcity of this phage
so that its lytic gene, cro, has been knocked out. Te results
of studying in mice model showed that GM λ phage reduces
the number of bacteria to an undetectable level and not
only rescues the mice but also restores the gut microbiota of
the mice [264].

10. Routes of Administration for
Engineered Microorganisms

Te administration of genetically engineered microorgan-
isms depends on factors such as the type of disease, the
involved target tissue, and especially the pathogenic po-
tential of the selected microorganism. Subcutaneous in-
jection, intravenous, intratumoral, nasal, and oral
administration methods have been defned for the transfer
and administration of genetically engineered microorgan-
isms [265]. Intravenous administration is exclusively utilized
for transferring genetically engineered microorganisms in
cancer treatment due to its high potential for systemic
circulation [266]. In addition, intratumoral administration is
also suggested for cancer therapy. In this method, the
toxicity caused by the transfer of genetically engineered
microorganisms is greatly reduced. Tese microorganisms
multiply locally in the tumor site, so they stimulate the
immune response, and the process of cell apoptosis is also
started. However, this method faces probable complications
such as inciting infammation, cytokine storm, and the
dangers of rapid cell death for other organs [267–269]. Nasal
administration has been more successful in the adminis-
tration of intranasal vaccines due to the induction of hu-
moral and cellular immune responses both in the area of
entry and the surrounding related areas [270]. In bacter-
iotherapy, oral administration is the most widely used ad-
ministration method due to the fact that it is easier to
perform and noninvasive, which leads to more acceptance
by patients. However, the passage of genetically engineered
microbes through the gastrointestinal system has always
been criticized because the gastrointestinal system faces
many challenges, such as diversity and diferences in the
microbial fora, the level of acidity (range of pH 1.0–7.4), and
the percentage of oxygen (stomach, small intestine, and
colon) [271–273]. During oral administration, approxi-
mately half of the genetically engineered microbes are lost
due to the challenges mentioned earlier. Considering that
these modifed microbes need to be transferred intact and
alive to the target tissue or organ in order to exert their
optimal efects, loading them into carriers and covering
them with lipid, polysaccharide, cationic nano-liposomes,
and alginate helps protect them during the oral route of
administration [27]. By comparison of these methods, blood
and nasal administration of genetically engineered microbes
may be more efective than oral due to their fast reaching to
the target sites [269]. On the other hand, oral administration
is much better than intranasal administration because it
induces a wide immune response [274]. Te diference in
these results originates from the examination of diferent
diseases, for example, allergic disease is more afected by oral
administration than intravenous administration [275].

11. Influencing Parameters for the
Effectiveness of GEMs

Based on the studies, the efectiveness of genetic engineering
microbes both in the treatment and prevention of diseases as
well as in the diagnosis of diseases depends on their dose of
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administration, the ability of colonization in the target area,
and how much pathogenic potential they have (safety) [27].
Te verifcation of colonization of genetically engineered
microbes following administration to the body shows their
survival during transit and reaching the target organ. Re-
searchers use tools and techniques such as 16S sequencing,
labeling with fuorescent dyes, molecular tests, and tissue
sectioning. Genetically engineered microbes labeled with
fuorescence can be discovered under fuorescence micro-
scope in the feces of patients, or compared to the patient’s
feces before and after administration in terms of microbial
fora [276]. Following the administration of modifed mi-
crobes to the host body, the prescribed dose is considered the
second crucial factor for efectiveness against diseases. For
example, Whorwell et al. showed that Bifdobacterium was
much more efective only in the number of 108 cfu/ml for
treatment of the irritable bowel syndrome (IBS) [277].
Terefore, in bacteriotherapy, the number of prescribed
bacteria has a direct relationship with the signifcant efect
that is expected. It seems that the more prescriptions of
bacteria result in more efectiveness, but this is a mis-
conception since an undetermined number of bacteria may
cause side efects such as a cytokine storm [161]. For the
purpose of reducing any possible toxic efects of genetically
engineered microbes, before clinical application, they are
subjected to chemical changes. Genetically engineered
bacteria are more prone to induce complications; therefore,
expression of main virulence genes was prevented or re-
moved, like removing the gene encoding lipopolysaccharide
in Gram-negative bacteria [278].

12. Safety Assessment

12.1.Assessmentof Safety forHumans. According to research
studies, various microorganisms including bacteria, viruses,
and fungi have a high potential to treat diseases such as HIV
infection, colitis, and cancer trough applying genetic
changes to them. Engineered viruses can be used in treat-
ment of cancer and hereditary vision loss due to retinal
dystrophy and in prevention of alcoholism [279–281].
Various applications of engineered bacteria in diferent
felds include combating specifc pathogens, solving the
emerging of antibiotic resistance, electrical conductivity, and
maintenance of uric acid levels in treatment of obesity, as
well as removal of pollutants in nature. Also, engineered
bacteria undergo an apoptosis without remains [282].
Prevention of malaria transmission through restraining
sporozoites from sticking to salivary glands is one of the
applications of bioengineered fungi in the medical feld
[222, 283, 284].

One of the goals of modern medicine is targeted de-
livery of the maximum amount of drug in the target area to
minimize of-target efects. To achieve this goal, four key
components including delivery vehicle, sufcient stability
in the target site, retention, and timely release of the
medicine are needed. Since systemic administration of
drugs does not have some of these features, they cause
many challenges in treatment. Considering GMOs’ positive
efects, interest in using new techniques such as genetic

engineering, nanoparticles, and biopolymers recently has
increased [179, 285, 286]. Although this novel treatment
method overcomes obstacles of traditional drug treatment
such as side efects, efective delivery, cost, and dosage,
several technical hurdles described for them should be
considered before their use [179, 287]. One of these ob-
stacles is the adverse efect on competition with normal
fora for niches in the intestinal environment, which is
induced by the metabolic burden of recombinant genes in
engineered microbes. Also, genetically modifed bacteria
carrying antibiotic resistance genes and plasmids and
causing horizontal transfer of genes are not clinically ideal.
Another obstacle is about integration tools, which are not
available for all strains and species, while the chromosomal
integration usually provides a safer and more stable
method for engineering. Furthermore, GM bacteria con-
tain plasmids carrying antibiotic-resistance genes that al-
low them to horizontal gene transfer, resulting in
subsequent genetic modifcations in bacteria through the
spread of antibiotic-resistance genes that are not ideal.
Another obstacle is the lack of available integration tools
for all strains and species. However, chromosomal in-
tegration of the expression cassette without antibiotic se-
lection markers usually provides a safer and more stable
method of engineering [288, 289].

In contrast to other small molecules, live bacteria and
bacterial spores cannot be sterilized using heating and fl-
tering methods, which is considered an important challenge
in their production, so the fnal products must be examined
for pathogenic agents or pathological conditions before
consumption [278]. Te efective dose is not necessarily
associated to the administered dose; mostly it depends on the
target tissue, which is challengeable. Since live bacteria (both
harmful and therapeutic) have diferent tendency for col-
onization of target tissue and subsequent multiplication,
their dose may not be efective especially in tumor tissues
[211, 290]. In addition to toxicity, control of bacterial col-
onization, potential biosafety and biocompatibility, bacterial
viability during delivery, long-term safety, and living bi-
ological agents in a clinical environment are serious con-
cerns due to their potential impact on the environment and
public health, introducing new challenges for using this
technique [140, 179, 230].

12.2.Assessmentof Safety for theEnvironment. Teusage and
release of GEMs into the environment, typically agriculture,
is expanding exponentially. GEMs’ potential uses include
mining and mineral recovery, crop production, and insect
management [28]. Tis technique can also favor other
components of agricultural emissions, such as lowering the
use of energy and fossil fuels and permitting decreased tillage
and no-tillage farming methods, in addition to decreasing
emissions from changing land cover and early pesticide
usage [291]. Furthermore, it might be a powerful tool for the
broader conservation of biodiversity. According to pro-
jections, between 15 and 40 percent of species might become
extinct by 2050, mostly due to habitat loss and altered
conditions brought on by climate change, so it requires more
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attention in this feld [30]. In the recent era, the increased
persistence of hazardous contaminants is having a negative
impact on the world in a variety of ways [31]. Compared to
other physicochemical approaches, utilizing microbial
metabolic abilities for the degradation/removal of envi-
ronmental contaminants provides an economical and safe
alternative [32]. Despite the many advantages of GEMs in
bioremediation and despite many regulations to prevent
them from harming the environment, environmental con-
cerns and legal issues related to the release/use of GEMs have
limited their use [33–35]. It is very challenging to defne the
environmental risk associated with the intentional release of
GEMs in a clear and concise manner. Several defnitions
have been put forth; the term “ecosystem perturbation” may
be the most nebulous since it can refer to almost any possible
outcome (e.g., disturbance of ecological processes such as
soil respiration, nitrifcation, or denitrifcation) [36]. One of
the environmental concerns with GMOs is the potential
spread of introduced traits to wild populations. Tis could
occur through cross-pollination of genetically engineered
(GE) crops with wild relatives, or through horizontal gene
transfer (HGT) mechanisms. Te former is very unlikely in
most cases because commercially grown crops are usually
genetically distant from their wild neighbors, but it has been
observed. Some current regulations and practices aim to
reduce the frequency of these occurrences [292]. Te latter
appears to be extremely rare in eukaryotes, according to
Keese [38]. It is shown in this regard that many species of
microalgae studied for biofuel production can invade eco-
systems due to their small size, rapid growth, and large
numbers, causing environmental concerns such as compe-
tition, habitat alteration, horizontal gene transfer, and
toxicity. Among other major concerns about the spread of
GEMs use are the risks related to the persistence of un-
wanted genes, the transfer of GEMs to native species, and
uncontrolled propagation, especially when they are to be
widely distributed [39, 293]. Te serious consequences of
vertical gene transfer between GMOs and their wild-type
counterparts were shown in studies involving transgenic fsh
released into natural populations of the same species. Te
genetically altered fsh’s enhanced capacity for reproduction
led to a reduction in the survivability of their ofspring [40].
Furthermore, to prevent the introduction of unwanted ge-
netic features and make the behavior of a GEM more
predictable, the capacity of GEMs to disseminate new ge-
netic information to potential recipients must be restricted.
Also, in order to prevent GEMs from spreading and having
an adverse efect on the native population of organisms, their
survival must be restricted in both time and space, or
through the establishment of a controlled life cycle (bi-
ological confnement) [39]. For instance, during a study, it
was stated that the growth of monarch butterfies by con-
suming pollinated leaves from genetically modifed corn is
slowed down and the chance of their death increases because
GM crops reduce the number of insects that provide food for
birds and other wildlife, and from this it harms biodiversity
[41]. Genetically modifed foods and the spread of antibiotic-
resistant genes to gut fora can expose people to new allergies
[40]. For example, Seralini et al.’s study revealed that rats fed

transgenic NK-603 Roundup Ready maize had higher tumor
incidence, chronic kidney disease, liver congestion, necrosis,
and higher female mortality [42]. In addition to putting
human health at risk, horizontal gene transfer of pesticide,
herbicide, or antibiotic resistance to other species will upset
ecological balances by enabling previously innocuous plants
to proliferate unrestrained and so boosting the spread of
pathogens between plants and animals [43]. Additionally,
recent research has demonstrated that probiotics can evolve
undesirable traits during treatment or diagnosis including
acquiring harmful functions such as competitive elimination
of native microbes, pathogenic potential against host or
environment, or loss of benefcial functions of the engi-
neered system; therefore, biocontrol strategies preventing or
minimizing the entry or any penetration of GMOs into the
environment are needed [44, 45, 260, 294–296]. Although
we may not be able to accurately predict the interaction of
each genetically engineered microorganism with the envi-
ronment, several biocontainment strategies of various de-
grees of efciency and stability have been developed such as
the use of auxotrophy and synthetic amino acids. Auxot-
rophy is the elimination of the ability of an organism to
synthesize a vital compound that it must receive from its
growth medium or its environment and can help to inhibit
microorganism in the laboratory environment. Tese vital
compounds include somethings essential for cell survival or
those needed in high concentrations which cause the
maximum efectiveness of this method [250, 297–299].
Notably, inducible systems or auxotrophy does not address
the potential risk of genetic information escape, i.e., hori-
zontal gene transfer. Moreover, the limitation of this method
is that they may require additional survival factors and
supplemental probiotic media [197, 251]. Cellular circuits
contain lethal switches, as well as addiction modules, all of
which achieve inhibition by binding cells to a specifc
compound (or lack thereof) or genetic information, and
thus lethal components are expressed in response to envi-
ronmental signals and fnally cause cell death in response to
an inducing chemical. Control of cell survival is done
through expression of lysis proteins and destruction of es-
sential proteins and toxins. For example, in E. coli, the
“bioretention circuits” included temperature sensors to
diferentiate between physiological and environmental
temperatures [150, 251–253, 300, 301]. Another solution for
intoxicating GMOs in environment is toxin-antitoxin sys-
tems consisting of stable and unstable toxins. To prevent the
transfer of genetic information in the horizontal gene
transfer, toxin and antitoxin systems can be placed in dif-
ferent parts of the cell’s genetic repository. For example, the
toxin is placed on the plasmid and the antitoxin on the
chromosome; therefore, during horizontal gene transfer, the
plasmid that does not carry the antitoxin will kill the new
host [257]. Understanding how to evaluate the impact on
biodiversity is necessary for this technology to be accepted
despite its many positive efects on the environment and
economy. Te assessment of future genetically modifed
organisms’ efects on biodiversity requires ongoing updates
to this knowledge (https://www.government.nl/topics/
biotechnology/consequences-of-gmos-for-biodiversity).
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Due to their inherent properties in degradability, they are
eliminated by themselves in the body and will not have
side efects or will be less. However, their safety and
control still need to be studied (2).

13. Assessment of Stability of Genetic Construct

Te delivery of drugs using genetically modifed organisms
(GMOs) and their utilization in treatment ofer several ad-
vantages over traditional treatments. Tese advantages include
a signifcant reduction in costs through the production of a large
number of engineered bacteria compared to biological mole-
cules. Furthermore, treatment with GMOs can result in limited
side efects due to their nonaggressive nature during adminis-
tration. Also, less dosage than biological compounds is another
advantage of GMOs, but before using these strains for clinical
trials and recommending them to humans, considerations such
as genetic stability, avoiding antibiotic-resistant genes, and
maintaining genetic integrity are necessary to produce them in
high concentrations [197, 258, 259]. Use of regulators and
adding sensors, kill switches, delivery tools, andmemory circuits
have paved the way for genetic engineering. To increase genetic
stability, most GMOs carry recombinant DNA in their chro-
mosomes because plasmids are not genetically stable due to
unequal distribution between daughter cells during cell division;
also, they are lost in the absence of selective pressure
[109, 120, 196, 302]. In addition, by removing an essential gene
and using a single copy of plasmid from the same gene in the
host, the induction and suppression systems can be used for
long-termmaintenance of plasmids and to overcome the genetic
stability challenge. E. coli strain Nissle 1917 designed in Danino
et al.’s study to harbor the toxin and the alp7AR cassette encoded
in the short-lived plasmid provides equal separation during cell
division by producing alp protein strands and the antitoxin
encoded in the host chromosome, which ultimately causes cell
death when this plasmid is transferred [109, 196].

13.1. Te Efectiveness and Safety of GEMs in Targeted
Drug Delivery. Genetically modifed bacteria purposefully
have properties such as destroying bioflm and reducing
resistance to antibiotics and being degradable. As recent
studies have pointed to the efective role of target delivery of
GEMs [303] and carrying the drug, GEMs can directly
deliver the drug to the desired area [304]. In addition to
nanoparticles (NPs), synthetic biology has provided the
possibility of changing bacteria for specifc applications such
as vectors for inoculating nucleic acids into cells. Te ge-
netics of these microorganisms are modifed by genetic
engineering so that they have the least toxicity and have the
greatest efect in the targeted transfer to the desired
tissue [303].

When bacteria reach the body, depending on what
purpose and for what disease they are designed, they must
access the target tissue or cells and then multiply quickly in
the target area. Tumor cells produce compounds that act as
chemotaxis for bacteria and direct them to the target cell.
Areas with low oxygen concentration are suitable places for
inherently anaerobic bacteria such as Clostridium and

Bifdobacterium, which were designed to be efective in
these areas [305]. Efective transmission to the target in the
case of Listeria is mediated by exploiting the immune
system.With this ability, they can infect antigen-presenting
cells and myeloid-derived suppressor cells (MDSCs) and
reach the target tissue using them like taxicab. In this way,
these bacteria survive against the immune system
[306, 307]. In addition, motility of mobile bacteria with
fagella enables them to easily penetrate deeper points and
swim to the desired points and spread [308, 309]. For
enhancement of tumor targeting, genetically engineered
strains are designed in ways that, in addition to antitumor
properties, target accurately and have safety. An example of
this is the ppGpp-defcient strain SHJ2037, which is
designed by using genetic engineering to express tumor-
specifc ligand, an Arg-Gly-Asp peptide, which has high
specifcity to αvβ3 integrin and can exert its anticancer
efects on breast. Apply cancer cells and melanoma xe-
nografts overexpressingαvβ3 integrin [306].

In order to reduce possible of-targeting efects, the
strains are designed to target only specifc genes expressed
on the cell or tissue, thus preventing the accumulation of
modifed strains in other organs and the occurrence of
nonspecifc complications [310, 311]. Expression of syn-
thetically designed adhesins contributes to selectivity and
increased afnity and specifcity [152]. In addition, coating
the cells with plasmid-loaded nanoparticles that can express
a gene called bioluminescence helps to detect the engineered
strain by bioluminescence when it reaches the target organ
[106, 312].

Of-target efects are the unwanted side efects of the
target sequence. Since CRISPR-Cas9 is known as one of the
most common techniques in genetic engineering, it can be
considered as one of the most important goals of reducing
of-target efects to synthesize less dangerous strains.
Unwanted genetic modifcation is a biosafety issue asso-
ciated with the use of CRISPR-Cas9. In order to reduce of-
target efects caused by CRISPR-Cas9, strategies such as
Strategic gRNA Design that identifes only a special se-
quence, Truncated gRNAs, Cas9 Paired Nickases and
“Enhanced specifcity” SpCas9, or eSpCas9 can be con-
sidered [303].

When the bacterium enters the body, due to the complexity
of the human body, the entry of the modifed organismmay be
disrupted, and that is why it is very necessary to design a ge-
netically modifed strain that can adjust to release the drug at
the right time. It actually goes back to studying the feld of gene
expression regulation. Following the identifcation and de-
tection of a series of signals, the bacteria activate the down-
stream genes and start releasing the desired drug. Computing
processes were designed based on temporal logic or linear time,
which explains the timeline in any feld. Tis is the link to the
input signal. Scientists tried to introduce this at the genetic
level, so by using synthetic biology and introducing the
Feynman gate idea, they inserted a network into the bacteria
and examined it. Tey defned isopropyl β-d-1-thio-
galactopyranoside (IPTG) and anhydrotetracycline (aTc) as the
input signal and fuorescence proteins EGFP and E2Crimson as
themain output [304].Te obtained results fully confrmed the
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idea of Feynman gate. Terefore, when the genetic circuits are
designed correctly, it leads to the genetically engineered strains
playing a more consistent role in carrying the drug and re-
leasing it, having less toxicity and leading to greater efcacy. In
another example, Escherichia coli Nissle 1917 researchers
designed synthetic gene circuits that regulate its encapsulation
[305]. Terefore, this system that controls the level of bacteria
leads to the regulation of immunogenicity, vitality, and drug
load in bacteria, which is not only efective in improving ef-
fectiveness but also plays a role in improving safety. Depending
on the concentration of IPTG inducer, this capsular poly-
saccharide (CAP) expression system regulates the biosynthesis
of CAP genes. Additional studies showed that this system helps
tomaintain the life of the bacteria so that it is not cleared by the
immune system and the desired area in the tissue will be re-
moved after the completion of the treatment without leaving
any side efects, and in synergy with other drugs that are usually
used for treatment, they will lead to the reduction and clearing
of tumors.

13.2. Limitation and Strength. Te present study has not
investigated GM fungi and other nonphage GM viruses, as
well as the impact of GEMs on climate and animals. Tere
are two reasons for this. First, the most widely investigated
natural microorganisms that have been extensively studied
in the past and their efcacy were recorded and discussed.
Second, in the search to determine the efect of genetically
engineered microorganisms (GEMs) on animals, no relevant
studies were found. Tis review is comprehensive due to the
complete study on types of genetically engineered bacteria
and phages, therapeutic and diagnostic application of GEMs
on disease, cancer, and metabolic and infammatory dis-
orders, and how manufacturing of GEMs, route of ad-
ministration, and GEMs afect the environment. In future
studies, it is suggested to investigate the efects of GEMs on
climates and animals.

14. Conclusion and Future Perspective

Tere is progress in sequencing, synthetic biology ap-
proaches, genetic engineering, and understanding pathways
such as the gut-brain axis aimed to clarify the relationship
between microbes and humans and the development of
genetically engineered bacteria and phages. Te in vitro and
in vivo studies investigated the efect of GEMs as thera-
peutic, prophylaxis, diagnostic, and delivery strategies for
diseases, disorders, and cancer and indicated GEMs have low
cost, high efcacy, and no side efects, even more efective
than conventional therapies in cases. GEMs are efective by
competing for adhesion to main receptors, targeting tumor
cells and replication in them, and carrying antimicrobial
proteins in antibiotic-resistant diseases. However, GEMs are
still in their infancy and face limitations. Tere is a need to
investigate the impacts of GEM on the environment and
climate, genetic stability, and safety usage of them. In the
future, GEMs are expected as promising complementary and
adjunctive therapy to improve human health.
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analysis of Aspergillus nidulans unstable transformants
obtained by the biolistic process,” Canadian Journal of
Microbiology, vol. 44, no. 12, pp. 1137–1141, 1998.

[14] R. Herzog, H. Daniell, N. Singh, and P. Lemke, “A com-
parative study on the transformation of Aspergillus nidulans
by microprojectile bombardment of conidia and a more
conventional procedure using protoplasts treated with
polyethyleneglycol,” Applied Microbiology and Bio-
technology, vol. 45, no. 3, pp. 333–337, 1996.

[15] N. Coconi-Linares, D. Magaña-Ort́ız, D. A. Guzmán-Ortiz,
F. Fernández, A. M. Loske, and M. A. Gómez-Lim, “High-
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[173] B. Álvarez and L. Fernández, “Sustainable therapies by
engineered bacteria,” Microbial Biotechnology, vol. 10, no. 5,
pp. 1057–1061, 2017.

[174] N. S. Dosoky, L. S. May-Zhang, and S. S. Davies, “Engi-
neering the gut microbiota to treat chronic diseases,”Applied
Microbiology and Biotechnology, vol. 104, no. 18, pp. 7657–
7671, 2020.

[175] L. Steidler, W. Hans, L. Schotte et al., “Treatment of murine
colitis by Lactococcus lactis secreting interleukin-10,” Sci-
ence, vol. 289, no. 5483, pp. 1352–1355, 2000.

[176] P. Wei, Y. Yang, Q. Ding et al., “Oral delivery of Bifdo-
bacterium longum expressing α-melanocyte-stimulating
hormone to combat ulcerative colitis,” Journal of Medical
Microbiology, vol. 65, no. 2, pp. 160–168, 2016.

[177] S. Del Carmen, A. De Moreno De LeBlanc, R. Martin et al.,
“Genetically engineered immunomodulatory Streptococcus
thermophilus strains producing antioxidant enzymes exhibit
enhanced anti-infammatory activities,” Applied and Envi-
ronmental Microbiology, vol. 80, no. 3, pp. 869–877, 2014.

[178] A. Hillert, Y. Anikster, A. Belanger-Quintana et al., “Te
genetic landscape and epidemiology of phenylketonuria,”
Te American Journal of Human Genetics, vol. 107, no. 2,
pp. 234–250, 2020.

[179] V. Basarkar, S. Govardhane, and P. Shende, “Multifaceted
applications of genetically modifed micro-organisms:
a biotechnological revolution,” Current Pharmaceutical
Design, vol. 28, no. 22, pp. 1833–1842, 2022.

[180] Z. Chen, L. Guo, Y. Zhang et al., “Incorporation of thera-
peutically modifed bacteria into gut microbiota inhibits
obesity,” Journal of Clinical Investigation, vol. 124, no. 8,
pp. 3391–3406, 2014.

[181] J. Stritzker, S. Weibel, P. J. Hill, T. A. Oelschlaeger,
W. Goebel, and A. A. Szalay, “Tumor-specifc colonization,
tissue distribution, and gene induction by probiotic
Escherichia coli Nissle 1917 in live mice,” International
Journal of Medical Microbiology, vol. 297, no. 3, pp. 151–162,
2007.

[182] U. Sonnenborn, “Escherichia coli strain Nissle 1917-from
bench to bedside and back: history of a special Escherichia
coli strain with probiotic properties,” FEMS Microbiology
Letters, vol. 363, no. 19, p. fnw212, 2016.

[183] M. Schultz, “Clinical use of E. coli Nissle 1917 in in-
fammatory bowel disease,” Infammatory Bowel Diseases,
vol. 14, no. 7, pp. 1012–1018, 2008.

[184] M. Mimee, A. C. Tucker, C. A. Voigt, and T. K. Lu, “Pro-
gramming a human commensal bacterium, Bacteroides
thetaiotaomicron, to sense and respond to stimuli in the
murine gut microbiota,” Cell Systems, vol. 1, no. 1, pp. 62–71,
2015.

[185] T. Yamada, Y. Hiraoka, M. Ikehata et al., “Apoptosis or
growth arrest: modulation of tumor suppressor p53’s
specifcity by bacterial redox protein azurin,” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 101, no. 14, pp. 4770–4775, 2004.

[186] Y. Zhang, Y. Zhang, L. Xia et al., “Escherichia coliNissle 1917
targets and restrains mouse B16 melanoma and 4T1 breast
tumors through expression of azurin protein,” Applied and
Environmental Microbiology, vol. 78, no. 21, pp. 7603–7610,
2012.

[187] R. Li, L. Helbig, J. Fu et al., “Expressing cytotoxic compounds
in Escherichia coli Nissle 1917 for tumor-targeting therapy,”
Research in Microbiology, vol. 170, no. 2, pp. 74–79, 2019.

[188] S. Chowdhury, S. Castro, C. Coker, T. E. Hinchlife,
N. Arpaia, and T. Danino, “Programmable bacteria induce
durable tumor regression and systemic antitumor immu-
nity,” Nature Medicine, vol. 25, no. 7, pp. 1057–1063, 2019.

[189] T. Nakamura, T. Sasaki, M. Fujimori et al., “Cloned cytosine
deaminase gene expression of Bifdobacterium longum and
application to enzyme/pro-drug therapy of hypoxic solid
tumors,” Bioscience, Biotechnology, and Biochemistry, vol. 66,
no. 11, pp. 2362–2366, 2002.

[190] C. Yi, Y. Huang, Z. Y. Guo, and S. R. Wang, “Antitumor
efect of cytosine deaminase/5-fuorocytosine suicide gene
therapy system mediated by Bifdobacterium infantis on
melanoma,” Acta Pharmacologica Sinica, vol. 26, no. 5,
pp. 629–634, 2005.

[191] Y. Sun and J. H. Zheng, “Visualized cancer immunotherapy
with engineered Salmonella typhimurium,” Methods in
Molecular Biology, vol. 2521, pp. 283–294, 2022.

[192] M. Kang, D. Choe, K. Kim, B. K. Cho, and S. Cho, “Synthetic
biology approaches in the development of engineered
therapeutic microbes,” International Journal of Molecular
Sciences, vol. 21, no. 22, p. 8744, 2020.

[193] W. C. Ruder, T. Lu, and J. J. Collins, “Synthetic biology
moving into the clinic,” Science (New York, NY), vol. 333,
no. 6047, pp. 1248–1252, 2011.

[194] S. G. Woo, S. J. Moon, S. K. Kim et al., “A designed whole-
cell biosensor for live diagnosis of gut infammation through
nitrate sensing,” Biosensors and Bioelectronics, vol. 168,
Article ID 112523, 2020.

[195] M. Mimee, P. Nadeau, A. Hayward et al., “An ingestible
bacterial-electronic system to monitor gastrointestinal
health,” Science, vol. 360, no. 6391, pp. 915–918, 2018.

[196] T. Danino, A. Prindle, G. A. Kwong et al., “Programmable
probiotics for detection of cancer in urine,” Science Trans-
lational Medicine, vol. 7, no. 289, p. 289ra84, 2015.

[197] V. M. Isabella, B. N. Ha, M. J. Castillo et al., “Development of
a synthetic live bacterial therapeutic for the humanmetabolic
disease phenylketonuria,” Nature Biotechnology, vol. 36,
no. 9, pp. 857–864, 2018.

[198] D. C. Baumgart and W. J. Sandborn, “Infammatory bowel
disease: clinical aspects and established and evolving ther-
apies,” Te Lancet, vol. 369, no. 9573, pp. 1641–1657, 2007.

[199] X. Wang, A. Sherman, G. Liao et al., “Mechanism of oral
tolerance induction to therapeutic proteins,” Advanced Drug
Delivery Reviews, vol. 65, no. 6, pp. 759–773, 2013.

[200] H. Braat, P. Rottiers, D. W. Hommes et al., “A phase I trial
with transgenic bacteria expressing interleukin-10 in
Crohn’s disease,” Clinical Gastroenterology and Hepatology,
vol. 4, no. 6, pp. 754–759, 2006.

[201] P. Mancha-Agresti, M. M. Drumond, F. L. Carmo et al., “A
new broad range plasmid for DNA delivery in eukaryotic
cells using lactic acid bacteria: in vitro and in vivo assays,”
Molecular Terapy- Methods and Clinical Development,
vol. 4, pp. 83–91, 2017.

[202] E. Jacouton, E. Torres Maravilla, A. S. Boucard et al., “Anti-
tumoral efects of recombinant Lactococcus lactis strain
secreting IL-17a cytokine,” Frontiers in Microbiology, vol. 9,
p. 3355, 2018.

[203] S. Shigemori, T. Watanabe, K. Kudoh et al., “Oral delivery of
Lactococcus lactis that secretes bioactive heme oxygenase-1
alleviates development of acute colitis in mice,” Microbial
Cell Factories, vol. 14, no. 1, p. 189, 2015.

[204] S. Caluwaerts, K. Vandenbroucke, L. Steidler et al., “AG013,
a mouth rinse formulation of Lactococcus lactis secreting
human Trefoil Factor 1, provides a safe and efcacious

34 International Journal of Clinical Practice



therapeutic tool for treating oral mucositis,” Oral Oncology,
vol. 46, no. 7, pp. 564–570, 2010.

[205] H. L. Chen, Y. W. Lai, C. S. Chen et al., “Probiotic Lacto-
bacillus casei expressing human lactoferrin elevates anti-
bacterial activity in the gastrointestinal tract,” Biometals,
vol. 23, no. 3, pp. 543–554, 2010.

[206] I. L. Huibregtse, V. Snoeck, A. de Creus et al., “Induction of
ovalbumin-specifc tolerance by oral administration of
Lactococcus lactis secreting ovalbumin,” Gastroenterology,
vol. 133, no. 2, pp. 517–528, 2007.

[207] C. Daniel, F. Sebbane, S. Poiret et al., “Protection against
Yersinia pseudotuberculosis infection conferred by a Lacto-
coccus lactis mucosal delivery vector secreting LcrV,”
Vaccine, vol. 27, no. 8, pp. 1141–1144, 2009.

[208] H. Lei, X. Peng, H. Jiao, D. Zhao, and J. Ouyang, “Broadly
protective immunity against divergent infuenza viruses by
oral co-administration of Lactococcus lactis expressing
nucleoprotein adjuvanted with cholera toxin B subunit in
mice,” Microbial Cell Factories, vol. 14, no. 1, p. 111, 2015.

[209] K. Vandenbroucke, H. de Haard, E. Beirnaert et al., “Orally
administered L. lactis secreting an anti-TNF Nanobody
demonstrate efcacy in chronic colitis,” Mucosal Immu-
nology, vol. 3, no. 1, pp. 49–56, 2010.

[210] S. Robert, C. Gysemans, T. Takiishi et al., “Oral delivery of
glutamic acid decarboxylase (GAD)-65 and IL10 by Lacto-
coccus lactis reverses diabetes in recent-onset NOD mice,”
Diabetes, vol. 63, no. 8, pp. 2876–2887, 2014.

[211] T. A. Egeland, J. V. Gaustad, K. Galappathi, and
E. K. Rofstad, “Magnetic resonance imaging of tumor ne-
crosis,” Acta Oncologica, vol. 50, no. 3, pp. 427–434, 2011.

[212] S. J. Smyth, M. L. Gusta, K. Belcher, P. Phillips, and D. Castle,
“Changes in herbicide use after adoption of hr canola in
western canada,” Weed Technology, vol. 25, 2011.

[213] E. Perpetuo, C. Barbieri, and C. Nascimento, “Engineering
bacteria for bioremediation,” Progress in Molecular and
Environmental Bioengineering- From Analysis and Modeling
to Technology Applications, Intech Open, London, UK, 2010,
https://www.intechopen.com/chapters/17260.

[214] CNIoGECoFSitUWDNAP, 2010.
[215] C. J. Robinson, P. Carbonell, A. J. Jervis et al., “Rapid

prototyping of microbial production strains for the bio-
manufacture of potential materials monomers,” Metabolic
Engineering, vol. 60, pp. 168–182, 2020.

[216] R. Ghanavati, A. Akbari, F. Mohammadi et al., “Lactobacillus
species inhibitory efect on colorectal cancer progression
through modulating the Wnt/β-catenin signaling pathway,”
Molecular and Cellular Biochemistry, vol. 470, no. 1-2,
pp. 1–13, 2020.

[217] B. J. Biller and S. Dow, “Chapter 13- immunotherapy of
cancer,” in Withrow & MacEwen’s Small Animal Clinical
Oncology, S. J. Withrow and D. M. Vail, Eds., pp. 211–235,
W.B. Saunders, Saint Louis, MO, USA, 4th edition, 2007.

[218] A. Parisa, G. Roya, R. Mahdi, R. Shabnam, E. Maryam, and
T. Malihe, “Anti-cancer efects of Bifdobacterium species in
colon cancer cells and a mouse model of carcinogenesis,”
PLoS One, vol. 15, no. 5, Article ID e0232930, 2020.

[219] A. Tahamtan, M. Teymoori-Rad, B. Nakstad, and V. Salimi,
“Anti-infammatory MicroRNAs and their potential for
infammatory diseases treatment,” Frontiers in Immunology,
vol. 9, p. 1377, 2018.

[220] S. Ferenczi, N. Solymosi, I. Horváth et al., “Efcient treat-
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