Skip to main content
. 2024 Mar 17;14:6404. doi: 10.1038/s41598-024-57234-4

Table 2.

Accuracies of genomic prediction and root mean square error (RMSE) assessed for feed efficiency-related traits in testing animals using a forward validation scheme obtained with different parametric and machine learning methods.

Trait1 Model fit Genomic prediction approaches2
STGBLUP BayesA BayesB BayesC BL BRR MTGBLUP MLNN SVR
ADG (kg/day) r—training 0.88 0.96 0.89 0.93 0.95 0.91 0.87 0.88 0.86
Accuracy 0.58 0.53* 0.59 0.53* 0.54* 0.59 0.66*** 0.62** 0.67***
RMSE 0.061 0.063 0.061 0.062 0.071 0.061 0.048 0.054 0.047
DMI (kg/day) r—training 0.86 0.94 0.92 0.92 0.9 0.87 0.83 0.85 0.83
Accuracy 0.56 0.54* 0.57 0.55 0.56 0.57 0.62*** 0.60*** 0.62***
RMSE 0.365 0.371 0.366 0.373 0.444 0.365 0.276 0.327 0.271
FE r—training 0.95 0.97 0.94 0.9 0.89 0.88 0.84 0.86 0.83
Accuracy 0.53 0.54 0.56 0.54 0.57* 0.56* 0.64*** 0.61*** 0.64***
RMSE 0.007 0.007 0.007 0.006 0.008 0.006 0.0051 0.006 0.0049
RFI (kg/day) r—training 0.89 0.91 0.93 0.9 0.92 0.89 0.86 0.89 0.86
Accuracy 0.62 0.63 0.64 0.62 0.63 0.63 0.68*** 0.66* 0.69***
RMSE 0.231 0.235 0.23 0.235 0.284 0.233 0.174 0.209 0.167

1ADG: average daily gain, DMI: dry matter intake, FE: feed efficiency, and RFI: residual feed intake, r: trainingcor(y,y^i) in training population, Accuracy—c or(y,y^i).

2STGBLUP: single trait GBLUP, BayesA: Bayesian A, BayesB: Bayesian B, BayesC: Bayesian C, BL: Bayesian Lasso, BRR: Bayesian ridge regression, MTGBLUP: multi-trait GBLUP, MLNN: Multi-layer neural networks, and SVR: support vector machine regression using a radial basis kernel. Statistically significant differences between the predictive ability of each method across the herds compared to the standard model (STGBLUP) were *p-value < 0.05, ** p-value < 0.01 and ***p-value < 0.005.