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Abstract

In recent years, there has been a growing trend in the realm of parallel clustering analysis for single-cell RNA-seq (scRNA) and single-
cell Assay of Transposase Accessible Chromatin (scATAC) data. However, prevailing methods often treat these two data modalities as
equals, neglecting the fact that the scRNA mode holds significantly richer information compared to the scATAC. This disregard hinders
the model benefits from the insights derived from multiple modalities, compromising the overall clustering performance. To this end,
we propose an effective multi-modal clustering model scEMC for parallel scRNA and Assay of Transposase Accessible Chromatin data.
Concretely, we have devised a skip aggregation network to simultaneously learn global structural information among cells and integrate
data from diverse modalities. To safeguard the quality of integrated cell representation against the influence stemming from sparse
scATAC data, we connect the scRNA data with the aggregated representation via skip connection. Moreover, to effectively fit the real
distribution of cells, we introduced a Zero Inflated Negative Binomial-based denoising autoencoder that accommodates corrupted data
containing synthetic noise, concurrently integrating a joint optimization module that employs multiple losses. Extensive experiments
serve to underscore the effectiveness of our model. This work contributes significantly to the ongoing exploration of cell subpopulations
and tumor microenvironments, and the code of our work will be public at https://github.com/DayuHuu/scEMC.
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INTRODUCTION
The advancements in single-cell transcriptomic sequencing tech-
nology have revolutionized transcriptome analysis, enabling biol-
ogists to delve into cellular heterogeneity with remarkable res-
olution at the single-cell level [1–3]. Clustering analysis plays a
pivotal role in transcriptome analysis, allowing for the unsuper-
vised identification of cell subpopulations, which is crucial for
downstream analyses.

Over the years, numerous attempts have been made to develop
clustering methods for single-cell data [4, 5]. Initially, the focal
points of research revolved around fundamental clustering mod-
els such as k-means clustering and spectral clustering [6, 7], along
with their enhanced variants. For instance, Chen et al. proposed
a weighted soft k-means clustering model tailored for single-cell
data, replacing the original hard clustering with a soft one [8].
While these methods achieved some success, they often struggled
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to extract nonlinear features from the cell interactions. With the
development of deep learning, researchers began to explore the
realm of deep neural networks for clustering analysis. Notably,
DESC emerged as a representative work, utilizing neural networks
to learn meaningful representations while effectively mitigat-
ing batch effects [9]. Furthermore, scDeepCluster employed an
autoencoder network to concurrently conduct noise reduction
and clustering for single-cell data [10]. These deep clustering
approaches made significant progress but overlooked the topo-
logical information among cells. In response to this limitation,
graph-based deep clustering algorithms were developed, bene-
fiting from the interactions among cells. Chen et al. introduced
scGAC [11], which employed a graph attention network to exe-
cute clustering analysis. Gan et al., recognizing the significance
of both attributes and topological information, proposed a deep
structural clustering model scDSC [12], capable of simultaneously
addressing these aspects. Despite their promising performance,
these single-modal methods encountered limitations when han-
dling multi-modal single-cell data.

Multi-modal single-cell data refers to the data obtained
by sequencing the same batch of cells using different omics
technologies [13–16]. Currently, the parallel analysis of single-cell
RNA-seq (scRNA) and single-cell Assay of Transposase Accessible
Chromatin (scATAC) is a common scenario. With the rapid
development of sequencing technologies, the availability of multi-
modal data is increasing. By leveraging the distinct modalities
of the same cell, we can gain more comprehensive insights into
cellular states. In recent years, several parallel clustering methods
have been developed for scRNA and scATAC data. For instance,
scMVAE presents a Multimodal Variational Autoencoder (MVAE),
imbued with three learning strategies for inferring the distribu-
tion of multi-modal cell data [17]. This field has seen extensive
use of MVAE, Gong et al. utilized datasets of various modalities
as inputs, applying MVAE for joint representation estimation,
and performing clustering and visualization on the derived
representation [18]. Simultaneously, Cao et al. introduced the
SAILERX deep learning framework, which diverges from conven-
tional approaches [19]. This method promotes local structural
similarity between the modalities through paired similarity
assessments, thereby effectively diminishing the impact of noise
signals. Furthermore, Xu et al. developed a transfer learning
method to identify generalizable chromatin interactions in
scATAC-seq data [20]. Moreover, DCCA introduces an ingenious
cycle attention model, designed specifically for the unified
analysis of multi-omic cell data [21]. Inspired by the principles
of subspace clustering, scMCS extends it to the realm of single-
cell clustering [22], enabling the effective clustering of parallel
single-cell data by diligently minimizing redundancy across
subspaces.

However, prevailing parallel clustering methods for scRNA and
scATAC often overlook the fact that scATAC data exhibit lower
information richness compared to scRNA data [23, 24]. They treat
the data from both modalities as equal inputs, disregarding the
inherent differences in data effectiveness and sparsity. Conse-
quently, in many cases, the clustering performance of the fused
data from both modalities is even inferior to using only the scRNA
data. This could be attributed to the low information richness of
the scATAC modality, where the fusion process is challenged by
the sparse information in scATAC data, resulting in poor quality
of the aggregated cell representations for clustering. Existing
methods face challenges in effectively integrating parallel scRNA
and scATAC data, concurrently struggling to adequately fit the
real distribution of single-cell data.

In light of the aforementioned points, we develop an effective
multi-modal clustering model (scEMC), which integrates paral-
lel scRNA and scATAC data while ensuring the quality of the
aggregated cell representations. The proposed skip aggregation
network (SAN) network extracts structural information from mul-
tiple modalities and facilitates cross-modal information fusion,
simultaneously connecting with scRNA modality data via skip
connection to promise that the fused cell representations do
not suffer significant performance degradation. Additionally, to
accurately model the distribution of real single-cell data, we have
devised a Zero-Inflated Negative Binomial (ZINB)-based denois-
ing autoencoder accompanied by a joint optimization module.
Experimental results on five benchmark datasets demonstrate
the stability and superior performance of the scEMC method,
outperforming eight other baseline methods. The contributions
of our work can be summarized as follows:

• We propose an effective parallel clustering framework scEMC,
which mitigates the impact of unbalanced information rich-
ness of scRNA and scATAC data.

• Different from previous methods, we have introduced a pio-
neering SAN module that incorporates transformer structure
to learn the global structural relationships between diverse
feature spaces, facilitating aggregation across different
modalities. Moreover, we create a skip connection between
the aggregated representation and the scRNA modality data
to safeguard the network from degradation.

• By leveraging a denoising autoencoder based on the ZINB
loss, scEMC enables the network to fit the real distribu-
tion of single-cell data. Extensive experiments demonstrate
the excellence of scEMC, surpassing the other benchmark
methods.

MATERIALS AND METHODS
Preliminary
Multi-modal single-cell data refer to data obtained from the
sequencing of the same batch of cells using multiple sequencing
technologies. In this study, our primary focus lies in the parallel
clustering of scRNA and scATAC data. Parallel clustering involves
the simultaneous preprocessing of scRNA and scATAC data, fol-
lowed by feature integration. scRNA and scATAC are interrelated
in the processing phase, rather than being completely indepen-
dent. To facilitate the illustration, we provide a clear mathemat-
ical description for them. The scRNA data is represented as Xr =
{xr

1; ...; xr
N} ∈ R

N×Dr , while scATAC denoted as Xa = {xa
1; ...; xa

N} ∈
R

N×Da , where N signifies the number of cells, Dr andDa denote
the feature dimensions of the scRNA and scATAC modal data,
respectively.

The framework of scEMC
The architecture of scEMC aims to learn effective cell represen-
tations across multiple modalities and mitigate the impact of
imbalanced data richness in diverse modalities, which is crucial
for conducting parallel clustering. As illustrated in Figure 1, it
consists of two main modules: a ZINB-based denoising autoen-
coder for generating cell representations and an SAN module
for aggregating multi-modal information and preventing network
degradation. For clearer understanding, the notations are pre-
sented in Table 1.

The implementation process can be divided into four steps:

• First, the original scRNA and scATAC data, augmented with
simulated noise, are fed into the denoising autoencoder.
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Figure 1. Illustration of the framework of scEMC. The whole process is divided into four stages. Following the introduction of Gaussian noise, the original
numerical matrices of scRNA and scATAC data are input into an autoencoder. Afterward, the cell embeddings Zr and Za from both modalities undergo
effective fusion via an SAN, with a focus on preserving the utmost information from the informative scRNA modality. The final cell representations Z̃
derived from the SAN network are decoded to produce three data distributions. These distributions are employed to calculate the ZINB loss, which is
jointly optimized alongside the clustering loss of the representations.

Subsequently, they are embedded into a lower-dimensional
space, and the resulting embeddings are concatenated to
build a shared embedding Z.

• Inspired by the transformer architecture, Z is mapped into
three independent feature spaces. We retain one of them H3

for learning transformations of the original features, while
the other two H1 and H2 are used to compute global structural
relationships among cells. This process results in the gener-
ation of a global structural enhanced embedding, denoted as
Ẑ. It is subsequently concatenated with the original scRNA
embedding through skip connections, aiming to preserve the
information-rich scRNA modality data. This yields the aggre-
gated skip embedding Z̃.

• The embedding produced by the SAN module then undergoes
an intuitive decoding process, where it is decoded into distinct
modalities using two separate decoders.

• Finally, three distributions, namely Dropout, Dispersion and
Mean, are computed from the decoded embeddings. These
distributions are then utilized to calculate the ZINB loss
for different modalities. It serves as the reconstruction loss,
which, together with the clustering loss, jointly optimizes the
cell representations. By leveraging end-to-end training and
real-time optimization, we obtain high-quality cell represen-
tations capable of achieving unsupervised clustering with
high accuracy.

ZINB-based distribution
To simulate the distribution of real cells and learn effective cell
representations, we employ a denoising autoencoder based on the

ZINB loss. Since real-world single-cell data often contain noise,
we augment the input multi-modal data Xr and Xa with Gaussian
noise. The process is denoted as follows:

X̂
r = Xr + σr ∗ nr; X̂

a = Xa + σa ∗ na, (1)

where nr and na represent the simulated Gaussian signals added
to the scRNA and scATAC data, respectively, with a mean of 0 and
a variance of 1. σr and σa are the weight coefficients that control
the influence of nr and na, respectively.

The perturbed parallel single-cell data X̂
r

and X̂
a

is fed into a
multi-modal autoencoder, wherein it is embedded into a lower-
dimensional feature space, as represented by the following equa-
tion:

Zr = f r
e (X̂

r
); Za = f a

e (X̂
a
), (2)

here f r
e (·) and f a

e (·) correspond to the encoder mappings for scRNA
and scATAC data, respectively. While Zr and Za represent the
resulting low-dimensional embeddings from both modalities.
These embeddings are subsequently transformed by the SAN
module, resulting in the generation of the final shared embedding,
denoted as Z̃.

Upon this basis, we have introduced the ZINB distribution to
estimate the distribution of single-cell data [25–27]. Despite the
ZINB loss not being specifically designed for scATAC-seq data,
its proficiency in addressing over-dispersion and data sparsity
renders it an appropriate selection. Following the approach of Lin
et al., this work models both scRNA and scATAC data using ZINB
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Table 1: Notation summary

Notation Explanation

X̂
r
, X̂

a
Input data for for the scRNA and the scATAC.

F r
e ,Fa

e Encoders for the scRNA and the scATAC.
Zr, Za Embedding for the scRNA and the scATAC.
Z Embedding after concatenation.
F1,F2,F3 Encoders for computing structural relationship.
H1, H2, H3 Embeddings for computing structural relationship.
Ẑ Embedding after aggregation.
Z̃ Embedding after skip connection with Zr.
F r

d,Fa
d Decoders for the scRNA and the scATAC.

loss [24]. Nevertheless, this study does not claim that ZINB distri-
bution is the optimal distribution for scATAC data, researchers are
encouraged to consider a loss function that may be more appro-
priate for scATAC data. Prior to constructing the ZINB distribution,
the Negative Binomial (NB) distribution is initially computed,
which is a type of discrete distribution. Since this work involves
two modalities of data, we will elucidate the equation using an
example from the scRNA modality Xr:

NB(Xr | μ, θ) = �(Xr + θ)

Xr! �(θ)

(
θ

θ + μ

)θ (
μ

θ + μ

)Xr

, (3)

ZINB(Xr | π , μ, θ) = πδ0(Xr) + (1 − π) NB(Xr), (4)

here π , μ, θ denote the dropout rate, dispersion degree, and mean,
respectively. Deviating from a conventional autoencoder, the
ZINB-based denoising autoencoder incorporates three separate
fully connected layers that are connected to the last layer of
the decoding network. This architecture aims to estimate the
parameters π , μ, θ within the shared embedding Z̃, which is
denoted as below:

� = sigmoid
(
Wr

π f r
d(Z̃)

)
;

M = exp
(
Wr

μf r
d(Z̃)

)
;

� = exp
(
Wr

θ f r
d(Z̃)

)
,

(5)

f r
d represents a fully connected decoding neural network. Wr

π , Wr
μ

and Wr
θ are three learnable weight matrices corresponding to

three parameters in the ZINB distribution. �, M, � are parameter
matrices representing the dropout rate, mean and dispersion,
respectively. It is worth noting that the dropout rate typically
ranges between 0 and 1, which accounts for why we employ
the sigmoid function sigmoid(·) for �. Similarly, we apply the
exponential function exp(·) to the other two parameters because
of their non-negativity. Finally, the negative log-likelihood of the
ZINB distribution is defined as the reconstruction loss for the
input data Xr, and its mathematical form is as follows:

Lr
z = − log(ZINB(Xr | π , μ, θ)), (6)

the computational process for scATAC is similar to that of scRNA
and can be represented as follows:

La
z = − log(ZINB(Xa | π , μ, θ)), (7)

ultimately, for parallel scRNA and scATAC data, the overall recon-
struction loss of ZINB-based denoising autoencoder is defined as

follows:

Lrec = Lr
z + La

z . (8)

Skip aggregation network
Given the disparity in data richness between the scRNA and
scATAC modalities, parallel analysis necessitates an effective
aggregation method to handle the multi-modal data. Therefore,
we introduce the SAN module that begins with the concatenation
of the embeddings from both modalities, as depicted below:

Z = [Zr, Za]. (9)

Inspired by the transformer architecture [28–30], we have
designed a similar structure to map the concatenated embeddings
Z into three separate feature spaces. The mapping process is as
follows:

H1 = ZWt
1; H2 = ZWt

2; H3 = ZWt
3, (10)

here, Wt
1, Wt

2 and Wt
3 represent three weight matrices used for

the mapping transformation, while H1, H2 and H3 denote three
obtained embeddings via the mapping process. Subsequently, H1

and H2 are utilized to compute a global relationship matrix Hs:

Hs = softmax
(

H1HT
2√

d

)
, (11)

d represents the dimension of the embedding Z. Afterward, the
preserved embedding H3 is enhanced by global relationship
matrix Hs, simultaneously combined with Z through skip
connections to prevent network degradation. The mathematical
process is as follows:

Ẑ = Wh (Z + HsH3) + b, (12)

where Wh denotes weight matrix for the skip transformation, b
represents the corresponding bias. Then we obtained the aggre-
gated embedding Ẑ. To preserve the rich information of scRNA
and prevent degradation of the aggregated representation, we
concatenate the aggregated representation Ẑ with the original
scRNA embedding Zr, this forms the basis of the proposed skip
module. Such an adjustment effectively transforms the aggre-
gation module into a fine-tuning mechanism tailored for scRNA
data. Consequently, this approach not only utilizes information
from multiple modalities but also ensures that the final cellular
representation is robust against the sparse data characteristic of
a single modality. The formula is as follows:

Z̃ = [Zr, Ẑ]. (13)

Joint optimizing module
During the training process, reconstruction and clustering loss
are employed for joint optimization. We minimize the following
overall objective function:

Lf = λ1Lrec + λ2Lclu (14)

where Lrec and Lclu represent the clustering loss and reconstruc-
tion loss, respectively, while λ1 and λ2 are two hyperparameters
that balance their contributions. The reconstruction loss Lrec has
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been previously described in detail. On the other hand, the cluster-
ing loss,Lclu, can be further decomposed into two components: the
Kullback–Leibler (KL) divergence loss and the deep k-means loss.

KL divergence on the cell representations
During the clustering process, cells with similar features are
assigned to the same cluster. In this work, we employ the KL
divergence loss to further enhance the correlation among similar
cells. Following the previous approach [31–33], we utilize the
Student’s t-distribution to depict the pairwise similarity between
cell i and cell j, as presented below:

qij =

(
1 +

∥∥∥Z̃i − Z̃j

∥∥∥2
)−1

∑
l�=i

(
1 +

∥∥∥Z̃i − Z̃l

∥∥∥2
)−1 , (15)

here, Z̃i and Z̃j denote the emdedding of cell i and j, qij represents
the soft assignment, measuring the pairwise similarity between
two cells, i and j. Additionally, pij is the target distribution, con-
structed based on qij. This construction is designed to enhance
or diminish the affinities between cells with higher and lower
similarities, respectively. The computational process is as follows:

pij =
q2

ij/
∑n

i=1 qij∑
l�=i

(
q2

il/
∑

l�=i qil

) . (16)

Upon acquiring two distributions, we formulate the KL diver-
gence loss as a means to converge Q towards P. The expression
for the KL loss function is as follows:

Lkl = KL(P||Q) =
∑

i

∑
j

pij log
pij

qij
. (17)

Deep k-means clustering
In the bottleneck layer, also known as the hidden layer, we per-
formed unsupervised clustering and the clustering loss is defined
as follows:

Ldk =
N∑

i=1

K∑
j=1

wijf (Z̃i, Vj), (18)

where, Vj represents the j-th cluster center, f (·) calculates the
Euclidean distance between the cell and the cluster center. While
wij represents the weight of distance. To ensure gradient smooth-
ness, the Gaussian kernel is employed for the transformation of
feature projections, following the procedure outlined below:

w̃ij = exp(−f (Z̃i, Vj))∑K
k=1 exp(−f (Z̃i, Vk))

. (19)

To facilitate convergence, an additional inflation operation is
incorporated for the weight w̃ij:

wij =
w̃2

ij∑K
k=1 w̃2

ij

. (20)

Table 2: The summary of datasets

Dataset Samples scRNA.dim scATAC.dim Clusters

BMNC 30 672 1000 25 27
PBMC 3762 1000 49 16
SLN111 16 828 1000 112 35
SMAGE-10K 11 020 2000 2000 12
SMAGE-3K 2585 2000 2000 14

Then, we amalgamated the KL divergence loss and the deep k-
means distance loss to form the ultimate clustering loss Lclu:

Lclu = Lkl + Ldk. (21)

Datasets
In this parallel clustering analysis, we conducted comprehensive
experiments on five authentic multi-modal single-cell datasets:
BMNC (https://www.ncbi.nlm.nih.gov/geo), PBMC (https://www.
10xgenomics.com/resources/datasets), SLN111 (https://github.
com/YosefLab/totalVI_reproducibility), SMAGE-10K2, SMAGE-3K2.
The data sources have been delineated in the footnotes, and
corresponding cell type labels were downloaded. The cluster
number was determined by the categories of the downloaded
cell type labels. All of these datasets encompass both scRNA and
scATAC sequencing for the same batch of cells. In cases where
the datasets have already undergone dimensionality reduction
by the original authors, we will employ their processed forms.
For datasets that have not yet been dimensionally reduced,
we achieve standardization by limiting the feature count to
2000, thus ensuring consistency. An overview of the dataset
information, including the number of cells, dimensions of the
scRNA data, dimensions of the scATAC data and the number of
clusters, is provided in Table 2.

Evaluation metrics
This work employed two widely used evaluation metrics, adjusted
Rand index (ARI) and normalized mutual information (NMI), to
evaluate the clustering performance.

ARI is a measure of similarity between two clusterings, which
ranges between −1 and 1, with closer to 1 indicating higher
consistency. It can be formulated as follows:

ARI =
∑

ij

(nij

2

) − [
∑

i

(ai
2

) ∑
j

(bj

2

)
]/

(n
2

)
1
2 [

∑
i

(ai
2

) + ∑
j

(bj

2

)
] − [

∑
i

(ai
2

) ∑
j

(bj

2

)
]/

(n
2

) . (22)

Furthermore, NMI is a normalized mutual information metric
used to measure the shared information between two clusterings,
which ranges between 0 and 1, with closer to 1 indicating higher
similarity. Its mathematical representation is as follows:

NMI = 2MI(U, V)

H(U) + H(V)
. (23)

Implementation details
We employ PyTorch (version 1.13.1) in Python 3.7 to implement
scEMC. The encoding layers of the ZINB-based denoising autoen-
coder are set (256, 64, 32, 8), with a bottleneck layer size of 8 for
both scRNA and scATAC. The aggregated bottleneck layer size is
24, while the batch size is set to 256. Initially, we conduct the
pretraining for 400 epochs, followed by 5000 epochs of training.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.10xgenomics.com/resources/datasets
https://github.com/YosefLab/totalVI_reproducibility
https://github.com/YosefLab/totalVI_reproducibility
https://github.com/YosefLab/totalVI_reproducibility
https://github.com/YosefLab/totalVI_reproducibility
https://github.com/YosefLab/totalVI_reproducibility
https://github.com/YosefLab/totalVI_reproducibility
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Table 3: Clustering result comparison for five datasets.

Datasets BMNC PBMC SLN111 SMAGE-10K SMAGE-3K

Metrics ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

k-means 0.5205 0.7443 0.4768 0.6734 0.2629 0.5659 0.465 0.5861 0.5109 0.5807
Spectral 0.4497 0.6919 0.5018 0.7022 0.4315 0.6060 0.4982 0.5679 0.5389 0.5989
DESC 0.5125 0.6872 0.5125 0.6872 0.4607 0.5712 0.3263 0.5322 0.5360 0.5664
scDeepCluster 0.5676 0.7572 0.5676 0.7572 0.3482 0.5591 0.3518 0.5604 0.3929 0.5740
scDSC 0.6193 0.6504 0.6193 0.6504 0.2992 0.4308 0.5102 0.5314 0.5514 0.6189
DCCA 0.4912 0.7277 0.4912 0.7277 0.2611 0.5809 0.3866 0.5511 0.2984 0.5473
scMCs 0.1841 0.3906 0.1841 0.3906 0.0947 0.3088 0.2471 0.3598 0.2505 0.4255
scMVAE 0.4225 0.7060 0.5437 0.6983 0.2161 0.5936 0.3430 0.5726 0.3616 0.5794
scEMC(ours) 0.6480 0.7603 0.6289 0.7325 0.4654 0.6149 0.6953 0.6636 0.6419 0.6572

These experiments are performed on a personal computer run-
ning the Linux operating system, which is configured with an i9-
12900KF CPU, 64 GB of RAM and a GeForce RTX 3070Ti GPU. It is
important to note that our algorithm utilizes k-means, so the user
needs to manually specify the number of clusters before running
the algorithm. For the baseline methods, we conducted the k-
means and spectral clustering algorithms utilizing the scikit-learn
package. Regarding the other comparative methods, we followed
the implementations as delineated in their respective official
repositories. For all methods employed, parameter settings were
maintained as per the default configurations.

RESULTS
scEMC attains outstanding clustering
performance.
To comprehensively evaluate the clustering performance of our
scEMC, in this work, we conduct thorough experimentation across
five multi-modal single-cell datasets, along with the inclusion of
eight competitive methods.

These competitive methodologies can be categorized into
three groups, multi-modal clustering methods: scMVAE, scMCs,
DCCA; single-modal clustering methods: scDSC, scDeepCluster,
DESC; foundational clustering methods: spectral clustering and
k-means clustering. A brief introduction to these approaches is
presented below:

• scMVAE [17]: deep-joint-learning analysis model of single-
cell transcriptome and open chromatin accessibility data.

• scMCs [22]: scMCs: a framework for single-cell multi-omics
data integration and multiple clusterings.

• DCCA [21]: deep cross-omics cycle attention model for joint
analysis of single-cell multi-omics data.

• scDSC [12]: deep structural clustering for scRNA data jointly
through autoencoder and graph neural network.

• scDeepCluster [10]: clustering scRNA data with a model-
based deep learning approach.

• DESC [9]: deep learning enables accurate clustering with
batch effect removal in scRNA analysis.

• Spectral clustering [7]: a tutorial on spectral clustering.
• k-means [6]: Algorithm AS 136: a k-means clustering algo-

rithm.

As depicted in Table 3, the clustering performance of scEMC
and the eight competitive methods is quantitatively evaluated by
ARI and NMI. The results indicate that scEMC surpasses other
clustering algorithms significantly. Over a series of 10 evaluations,
it consistently achieved the top position 9 times, yielding only the

Figure 2. Assess the model’s performance both with and without scATAC
information using the ARI.

Figure 3. Assess the model’s performance both with and without scATAC
information using the NMI.

second position in NMI for the PBMC dataset. It remains a fact
that no algorithm can attain perfection in every scenario. Nev-
ertheless, scEMC consistently showcases exceptional clustering
performance in the majority of situations.

scEMC effectively integratessparse information
from the scATAC modality
The motivation for our study arises from the observation that
the application of data from multiple modalities in multi-modal
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Figure 4. 2D t-SNE visualization showcasing the clustering quality disparities among embeddings in the absence of various modules, on the PBMC
dataset. (A) w.o. aggregation module. (B) w.o. skip module. (C) w.o. clustering loss. (D) w.o. reconstruction loss. (E) scEMC with all modules preserved.

clustering analysis does not consistently yield improved results.
A deeper investigation into this pattern revealed that the quality
of scRNA modality data generally exceeds that of scATAC data.
As a result, the comparatively lower quality of scATAC data can
negatively influence the overall performance of the model. To
solve this issue, we developed the SAN network, which shifts
our model from an equal integration strategy to a refined tuning
mechanism primarily based on scRNA modality data.

To assess the SAN network’s effectiveness in leveraging the
lower-quality scATAC data, we executed comparative experiments
on the five datasets involved in our study. These experiments
were divided into two categories: one without incorporating
scATAC modality information and the other including all data.
The outcomes, illustrated in Figures 2 and 3, reveal a noticeable
decrease in model performance when scATAC modality informa-
tion is excluded. This finding highlights that the SAN network
not only diminishes the adverse effects of low-quality scATAC
data on the model but also well consolidates sparse informa-
tion from the scATAC modality, thereby improving clustering
accuracy.

scEMC learns effective cell representations in
latent space
In this research, plenty of computations take place within the
latent space. Consequently, the quality of cell representations
directly exerts influence on clustering performance.

To investigate whether scEMC has learned high-quality cell
representations, we retained the hidden layers of scEMC and
its various variants, visualizing them through t-SNE on the
PBMC dataset. These variants included four different absences:
removal of the aggregation module, skip connections with scRNA,

clustering loss, and reconstruction loss. For the sake of illustra-
tion, we use the abbreviation w.o. to signify the absence of these
modules.

As shown in Figure 4, we observed that once the skip connec-
tion with scRNA data was removed, the quality of the learned cell
representations drastically declined, resulting in chaotic clusters
that make it challenging to distinguish between different cell
types. Simultaneously, when the structural aggregation module
is removed, cells that do not belong to the same class are grouped
into one cluster. This implies that the structural aggregation mod-
ule effectively enhances the quality of the learned embeddings.
Furthermore, the removal of clustering loss or reconstruction loss
leads to a certain degree of degradation in cell representations’
quality, demonstrating the effectiveness of the loss functions we
have employed in optimizing the cell representations.

Ablation study
To further investigate the individual impacts of proposed modules
on the overall performance, we conducted comprehensive abla-
tion experiments.

Specifically, we constructed two sets of variants of scEMC and
compared their clustering performance. The first set of variants
was created to validate the effectiveness of the network structure.
In this set, we devised two variants: one that removed the struc-
tural aggregation mechanism and another that eliminated skip
connections with the scRNA data. The results are presented in
Table 4, and from the results, it is evident that both the removal of
the structural aggregation mechanism and skip connections with
the scRNA data resulted in a significant degradation in perfor-
mance. This indicates that the structural aggregation mechanism
effectively integrates information from both modalities, while
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Table 4: Ablation study of skip and aggregation module.

Datasets Metric w.o.Skip w.o.Aggregation scEMC

BMNC ARI 0.5207 0.5496 0.6480
NMI 0.7309 0.7166 0.7603

PBMC ARI 0.4776 0.4644 0.6289
NMI 0.7187 0.6982 0.7325

SLN111 ARI 0.4326 0.3780 0.4654
NMI 0.6033 0.5487 0.6149

SMAGE-10K ARI 0.5400 0.5618 0.6953
NMI 0.6184 0.6363 0.6636

SMAGE-3K ARI 0.5657 0.5883 0.6419
NMI 0.6259 0.6285 0.6572

skip connection with the scRNA data effectively prevents network
degradation.

The second set of variants aimed to explore the effectiveness
of the optimization modules. In this set of variants, we separately
removed the reconstruction loss and the clustering loss. As shown
in Table 5, scEMC exhibited the best performance, while the other
two variants demonstrated a noticeable decline in performance.
This highlights the critical importance of both clustering and
reconstruction losses in the optimization process, indicating that
the constraint losses we have introduced effectively optimize the
cell representations.

Table 5: Ablation study of optimizing module.

Datasets Metric w.o.Lr w.o.Lc scEMC

BMNC ARI 0.6201 0.4054 0.6480
NMI 0.7414 0.5846 0.7603

PBMC ARI 0.6145 0.4058 0.6289
NMI 0.7277 0.5977 0.7325

SLN111 ARI 0.4592 0.2768 0.4654
NMI 0.6144 0.5398 0.6149

SMAGE-10K ARI 0.6211 0.5021 0.6953
NMI 0.6222 0.5917 0.6636

SMAGE-3K ARI 0.5875 0.3974 0.6419
NMI 0.6362 0.5751 0.6572

Convergence analysis
To intuitively assess whether the model has been effectively opti-
mized and achieved convergence, we saved the loss values at each
epoch and plotted the descent curves. As depicted in Figure 5, it is
evident that the loss values on all four datasets exhibit monotonic
decreasing trends until convergence, indicating that the model
has been adequately trained.

The descent curves do not further extend into horizontal lines,
which may be attributed to the early stopping mechanism we
incorporated into the algorithm for the sake of computational
efficiency. Once the model converges to the threshold, the training

Figure 5. The descent process of the loss function on four benchmark datasets. (A) BMNC, (B)PBMC, (C) SLN111, (D) SMAGE-10K.
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Figure 6. Investigation of hyperparameter λ1 and λ2 by ARI.

Figure 7. Investigation of hyperparameter λ1 and λ2 by NMI.

process is prematurely terminated. Nevertheless, the results in
Figure 5 robustly confirm the effectiveness of optimization and
the convergence of our algorithm.

Parameter analysis
In the previous section, we built two hyperparameters, denoted
as λ1 and λ2, to measure the contribution between clustering loss
and reconstruction loss.

Here, we comprehensively assessed the influence of these
hyperparameters on the clustering performance of scEMC. The
experiments were conducted under various parameter sets,
with both parameters ranging from (0.01, 0.1, 1, 10, 100). The
three-dimensional visualizations of the results are presented in
Figures 6 and 7.

From Figures 6 and 7, it becomes apparent that the NMI perfor-
mance of the proposed scEMC algorithm remains not sensitive to
the parameter values within this range. The performance exhibits
minimal fluctuations, with only a marginal decline observed
when λ1 is set to 0.01 and λ2 is set to 100. Conversely, Figures 6
and 7 reveals that the ARI performance of the scEMC algorithm
is sensitive to λ1 within the range of 0.01 to 1. Optimal perfor-
mance is achieved at λ1=1 and λ2=10. This phenomenon might
be attributed to the fact that ARI is based on the consistency in
categorizing paired elements, whereas NMI relies on information
sharing, thereby rendering it relatively insensitive to changes
in parameters when compared to ARI. Based on experience, we

configure λ1 and λ2 in accordance with this optimal parameter
setting.

CONCLUSION
In conclusion, we have developed an effective parallel clustering
method, scEMC, tailored for scRNA and scATAC data. It leverages
the transformer architecture to learn cross-modal global struc-
tural information from parallel single-cell data and facilitates
the fusion of cross-modal information. Additionally, by incor-
porating skip connections that link with scRNA modality data,
scEMC prevents the network from degrading. This skip mecha-
nism effectively preserves richer scRNA data, while the designed
denoising autoencoder based on ZINB optimally fits single-cell
data and refines the cell representations. Experimental results
demonstrate that our model outperforms other methods in terms
of clustering performance.

Furthermore, there remain certain limitations that necessi-
tate our attention. Currently, our proposed framework primarily
considers the parallel analysis of scRNA and scATAC data. More
sequencing modalities can be integrated into our framework in
the future. Additional fusion strategies, such as concatenation
and ensemble learning [34–36], can be incorporated to enhance
the aggregation capabilities of our framework. Additionally, the
design of a more discriminative network structure might be a
potentially effective direction to improve this model.

Key Points

• We propose an effective parallel clustering framework
scEMC, which mitigates the impact of unbalanced infor-
mation richness of scRNA and scATAC data.

• Different from previous methods, we have introduced a
pioneering SAN module that incorporates transformer
structure to learn the global structural relationships
between diverse feature spaces, facilitating aggregation
across different modalities. Moreover, we create a skip
connection between the aggregated representation and
the scRNA modality data to safeguard the network from
degradation.

• By leveraging a denoising autoencoder based on the
ZINB loss, scEMC enables the network to fit the real
distribution of single-cell data. Extensive experiments
demonstrate the excellence of scEMC, surpassing the
other benchmark methods.
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