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Abstract

Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and
helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular
profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological
mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and
intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health
(MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and
care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH
disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in
the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular
data and described challenges and areas of opportunities in this space.
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INTRODUCTION
How bioinformatics and data science contribute
to biomarker discovery in MH
Thanks to the digitization of healthcare data, massive amounts
of data are being generated and collected from electronic health
record (EHR) systems, medical imaging, laboratory and genomics
tests, mobile health and wearable technology. This surge in Big
Data, projected to reach the zettabytes range annually [1, 2]. With
advances in artificial intelligence (AI) methodologies and cloud
computing technologies, scientists are able to apply machine
learning (ML) and AI-based deep learning techniques to struc-
tured and unstructured data on a scale that was previously
unimaginable.

In this Big Data revolution, bioinformatics and data science
play a crucial role as it enables scientists to extract and integrate
biological information from the DNA, mRNA, microRNA, genes,
proteins and metabolites, environmental and lifestyle factors.
The scalable computational power of cloud computing empowers
researchers to delve into complex disease mechanisms, enabling
a systems-level understanding [3, 4].

The US Food and Drug Administration (FDA) has defined
various categories of biomarkers and their various areas of

applications. They include diagnostic, prognostic and theranostic
biomarkers and can enable identification of various disease
subtypes, better prediction of disease progression and better
monitoring of treatment response [5, 6]. A good biomarker must
be reliable, reproducible and independently confirmed by more
than one study [7].

In recent years, mental health (MH) disorders have become
a promising venue for biomarker discovery and for improved
patient outcomes due to increasing prevalence and rising treat-
ment costs [6]. Exploration of underlying biological mechanisms
is the key to the pathogenesis and pathophysiology of men-
tal disorders [8]. This is also keeping with National Institute of
Mental Health (NIMH)’s Research Domain Criteria (RDoC) which
is a framework that enables the study of the mechanisms of
mental illness [6]. At present, very few biomarker tests have
been approved for use in the clinic for MH, making this research
even more important [9]. The progressive identification of new
biomarkers in the MH space could enable researchers to build
advanced clinical description support systems (CDSS) empowered
by sophisticated AI models to advance personalized medicine [10].

Translational bioinformatics plays a vital role in biomarker
discovery as it bridges the gap from the bench to the bedside.
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Table 1: Summary of articles categorized by the type of omics analysis

Category of omics study Number of published articles Percentage of published articles

Proteomics 46 27
NGS; genomics 36 21
Cellular 21 12
Microbiome 17 10
Multiomics 16 9
microRNA 13 8
Gene expression 11 6
Epigenomics 11 6
Imaging 2 1
Total 173 100

Table 2: Summary of articles categorized by MH disorder

Category of MH disorder Number of published articles Percentage of published articles

Alzheimers 35 20
Major depressive disorders 33 19
Neurodegenerative disorders (in general) 26 15
Neuropsychiatric disorders (in general) 19 11
PTSD, general anxiety 18 10
ASD and ADHD 15 9
Other (neurological disorders, psychiatry) 15 9
SCZ and BD 12 7
Total 173 100

In order to better understand the various mechanisms of men-
tal illnesses, we reviewed the major accomplishments in MH
translational research from a bioinformatics and data science
perspective, summarized computationally enabled discoveries of
potential molecular and cellular biomarkers and described chal-
lenges and areas of opportunities for further exploration in this
space.

This review is based on extensive search of relevant publica-
tions. A multiterm query for the following terms was performed
in the NCBI Pubmed repository (bioinformatics OR transcriptome
OR Proteomics OR genomics OR sequencing OR infection OR
microbiome OR microRNA OR gene expression OR multiomics OR
NGS OR RNA-seq OR RNAseq) AND (brain OR mental illness OR
psychiatric OR psychiatry OR depression OR schizophrenia OR
bipolar OR bi-polar OR autism OR anxiety OR PTSD OR Addiction
OR Neurodegenerative diseases OR dementia OR memory loss.
This resulted in 195,104 results from publications in 2009–2019,
and 200 of the most relevant publications were downloaded for
detailed review. The publications were then tagged based on two
categories—category of MH disorder and molecular technology.

The scope of this review article was limited to the most com-
mon MH disease categories including major depressive disorders
(MDD), Alzheimer’s disease (AD) and common disorders including
schizophrenia (SCZ), bipolar disorder (BD), autism spectrum dis-
order (ASD), attention-deficit/hyperactivity disorder (ADHD) and
posttraumatic stress disorder (PTSD). The word ‘biomarker’ was
not used in the query as that may have resulted in publications
unrelated to molecular and cellular mechanisms. As a result, the
final list of publications was 173 (Tables 1 and 2).

Summary of diseases reviewed
AD is a progressive neurodegenerative disorder that is estimated
to affect one in nine senior adults. Its risk factors include age,

family history and surrounding environment [11]. Many studies
have been conducted to understand the underlying molecular
mechanisms but no cure has been found so far [12]. MDDs is one of
the most common MH disorders in the USA [13] and affects about
4.7% of the people in the world [14]. MDD which is associated with
high mortality includes clinical depression, BD, suicide and other
mood disorders. MDD is known to be heterogeneous and caused
by a combination of genetic, environmental and psychological
factors, and not many biomarkers are known to be effective in
this domain [13].

According to the World Health Organization (WHO), SCZ is
a psychiatric disorder that affects 1 in 300 people worldwide.
SCZ is not as well studied as other psychiatric disorders like
MDD. BD is a mental illness associated with extreme changes in
mood from high to low and vice versa [15]. ADHD is one of the
most common neurodevelopmental disorders that begin in early
childhood. ASD is another neurological disorder that also begins
in early childhood and impairs the ability to communicate and
interact [16]. Anxiety disorders, such as PTSD among others, are
one of the most common classes of psychiatric disorders and are
known to be familial and heritable to a moderate degree [17].

Potential biomarkers from proteomics studies in
various MH-related disorders
One of the most studied molecular datatypes in AD is proteomics-
derived protein-based biomarkers. Advances in proteomics have
allowed development of new biomarker discovery methods for
early detection and diagnosis [18, 19]. The articles reviewed high-
light the pivotal role of proteomics in unraveling intricate molec-
ular mechanisms associated with AD, including the identifica-
tion of protein-based biomarkers for early detection and diag-
nosis. Noteworthy findings encompass the characterization of
over 400 proteins linked to amyloid plaques [20], the influence
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of hyperphosphorylated tau protein on neuronal health [21] and
the discovery of key proteins such as glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in AD progression [22, 25]. The mitochon-
drial dimension of AD is explored through proteomic analysis
of mitochondrial proteomes, revealing distinct patterns between
early-onset and late-onset AD [23, 24]. Additionally, mitochondrial
dysfunction, oxidative stress and alterations in protein homeosta-
sis and energy production emerged as crucial contributors to AD
pathophysiology [25–27]. Exploration of the proteomic landscape
of the hippocampal tissues pinpointed to the changes in protein
expression and potential implications for calcium signaling and
extracellular matrix dynamics [28]. In the clinic, reduced glucose
utilization is used as a biomarker for AD detection [29].

We found proteomics to be one of the most common molecular
profiling platforms applied in MDD as well. One hundred and
seventy-one serum proteins were identified, and serum analytes
were linked to diverse cell communication in MDD patients [30].
Changes in protein abundance that were associated with several
biological functions, including inflammation, transcription, cell
metabolism and cytoskeleton organization [31] and those related
to energy metabolism-related were also identified [7, 32].

In MDD, the protein HINT1 displayed increased brain levels,
while SCZ exhibited lowered HINT1 levels [32]. Other aberra-
tions associated with SCZ included glutamate receptor N-methyl-
d-aspartate receptor (NMDA-R) and gamma-aminobutyric acid
(GABA) [33]. Clinicians needed to identify and differentiate BD
from MDD at the first depressive episode as the treatment course
is different. Ren et al. [34] studied the differences between the two
disorders by using a proteomics technology that applied isobaric
tags for relative and absolute quantification (iTRAQ) technology
combined with liquid chromatography–tandem mass spectrom-
etry (LC–MS/MS). The authors found nine proteins significantly
changed between MDD and BD and shortlisted B2RAN2 and ENG
as potential biomarkers to distinguish BP from MDD.

The p140Cap protein interactome network associated with the
SRCIN1 gene has been found associated with SCZ, ASD and BD
[35]. Da Silva et al’s [36] proteomic profiling elucidated molecular
mechanisms underlying the effects of methylphenidate in ADHD,
highlighting potential links between pathways related to neuro-
transmitter release and GABA transmission, with drug response.
The findings are summarized in Table 3.

Potential biomarkers from genomics/NGS studies
in various MH-related disorders
Affordable high throughput genome sequencing has spurred a
wave of new studies utilizing next-generation sequencing (NGS)
to uncover biomarkers and untangle the intricate pathology of
MH disorders like AD [37]. Bertram et al’s [38] NGS investigations
unveiled mutations in genes APP, TREM2 and PLD3. Verheijen et al.
studied distinct subtypes of AD including early onset Alzheimer’s
disease (EOAD) and late onset Alzheimer’s disease (LOAD). EOAD
affects people before the age of 65 and often hereditary; was asso-
ciated with genes like APP, PSEN1 and PSEN2 and characterized
by amyloid accumulation. On the contrary, LOAD, affecting those
over 65, with about 80% genetic contribution, is notably linked to
APOE ε4 allele, which is a major risk factor [39].

Increased hypothalamic–pituitary–adrenal (HPA) axis activity
has been known to occur in MDD leading to reduced mood and
cognitive dysfunction [40], Nashed et al’s study on cancer-induced
depression via RNA-seq revealed pathways tied to neuronal devel-
opment, intracellular signaling, memory and learning [41]. NR3C2
and NR3C1 genes encoding mineralocorticoid and glucocorticoid
receptors emerged as MDD risk factors, affecting HPA axis and

cognitive functions [42]. Other candidate genes that have been
linked with MDD include SNPs of CRHR1 that function through
the HPA axis. [17, 43]. RGS2 gene has been found associated
with multiple MH disorders including PTSD, generalized anxiety
disorder (GAD) and PD [17].

Pies et al. studied biomarkers in SCZ and identified four main
potential biomarkers that included mutations in neuregulin-1
NRGI, a cell adhesion molecule which acts on the EGFR family of
receptors. Mutations in this gene have been linked with increased
risk of SCZ [7, 44]. Mutations in DISC1 have been found in multiple
MH disorders including BD, SCZ, MDD and ASD [35, 45–47]. Li
et al. studied 36 studies on 4 neuropsychiatric disorders including
ASD, epileptic encephalopathy, intellectual disability, SCZ profiled
by WES/WGS and found 764 candidate genes in these disorders.
Of these, 53 genes were found in more than one disorder and
indicated a shared etiology of those disorders, with de novo muta-
tions in SCN2A mutations common to all. [48]. Common pathways
found between SCZ and ASD were synaptogenesis and synapse
function and epigenetic process [49]. RGS2 gene has been found
associated with PTSD, GAD and PD genes [17].

An interesting discovery was serotonin transporter SLC6A4
gene was found associated with both ASD [50] and tandem repeats
in the promoter region of this gene was associated with PTSD [17].
Mutations in dopamine transporter and D4 receptor have shown
to have potential as biomarkers in ADHD [51, 52]. Overall, we
saw the genes commonly found in biomarker studies to be linked
with monoaminergic neurotransmitter systems, neuropeptides
and HPA axis function and an increased activity of transporter
genes in the SLC family. Table 4 summarizes these findings in
more detail.

Potential biomarkers from gene expression
studies in various MH-related disorders
A wide array of gene expression studies was examined across
various MH disorders, offering interesting insights into the
underlying molecular mechanisms. Wang et al. [53] suggest a
potential link between abnormal AMP expression and AD onset
in flies. Forero et al. [54] conducted a substantial meta-analysis of
gene expression studies in MDD, revealing differentially expressed
genes across various brain regions including blood, amygdala,
cerebellum, anterior cingulate cortex (ACC) and prefrontal
cortex (PFC) regions and highlighting 23 confirmed genes from
their findings (Table 4). Dysregulated genes associated with
MDD include SLC1A2 (glutamate transporter), GABRD (GABA
receptor [54, 55]), genes in the HTR serotonergic family [56]
and PXMP2 (ROS metabolism) [54]. Xiao et al’s [57] study on
SCZ and BD revealed altered mRNA levels of RELN, while Kuan
et al’s [58] research from World Trade Center responders who had
PTSD identified 99 differentially expressed genes, including the
upregulation of FKBP5 in PTSD responders. Overall, we can see
diverse gene expression patterns associated with different MH
disorders, providing valuable insights into potential biomarkers
and therapeutic targets. Table 5 summarizes these differentially
expressed genes and findings in more detail.

Potential biomarkers from microRNA studies in
various MH-related disorders
Forero et al. performed one of the largest meta-analysis of
gene expression studies in MDD that covered 24 datasets that
included a total of 753 samples. The authors identified 35, 793,
231, 668 and 252 genes differentially expressed from studies
analyzed in the blood, amygdala, cerebellum, ACC and PFC
regions, respectively [59, 60]. One particular microRNA reported
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Table 3: Potential biomarkers from proteomics studies in various MH-related disorders

Author name or study ID Disorder Protein(s)/biological
functions affected

Implications Source

[22] AD GAPDH Interaction with β-amyloid
precursor protein [22]

Various

[24] AD Respiratory mitochondrial
complex subunits including
those from the NDUFA and
NDUFB subunits of the
enzyme NADH dehydrogenase

Mitochondrial proteomic
differences in early-onset and
late-onset AD [24]

Brain tissue

Multiple studies:
Moya-Alvarado et al. [25–27]

AD Proteins associated with
mitochondria,
phosphorylation and
oxidation

Impaired glucose metabolism
and energy production [25–27]

Multiple studies from blood
and brain tissue

Hondius et al. [28] AD Calcium-dependent signaling
proteins, extracellular matrix
components

Protein expression changes in
hippocampus [28]

Brain

[138] AD Novel peptide sequences
identified (SpotLight)

Antibody variable region
associations with potential to
provide disease origin insights
[138]

Blood

[29] AD Reduced glucose utilization Biomarker for AD detection
[29]

Brain

Bot et al./Netherlands Study
of Depression and Anxiety

MDD 171 serum proteins and
serum analytes

Linked to diverse cell
communication, signal
transduction processes,
immune response and protein
metabolism [30]

Serum

Gellen et al. MDD Changes in protein
abundance

Linked to several biological
functions, including
inflammation, transcription,
cell metabolism and
cytoskeleton organization [31]

Animal model

Comes et al. [139] MDD 141 peptides and analytics
analytes with combined m/z
1017, m/z 1042 and m/z 1479

Potential biomarkers Blood

Multiple studies: [32, 140];
[7, 32]

MDD DPYSL2 also known as
CRMP2; CA2 and ALDOC

Regulating axonal guidance,
neuronal growth cone
collapse and cell migration
[32, 140]; energy metabolism
[7, 32]

Studies from blood and
brain tissue

[32] MDD versus SCZ HINT1 increased in MDD and
lower in SCZ.

Differential protein levels in
brain of MDD and SCZ
patients

Blood and urine

[139] BD Alpha-2-macroglobulin,
Apolipoprotein A-I and
C4b-binding protein alpha
chain, Complement C3,
Glutathione-S-transferase A3,
hemopexin, Immunoglobulin
M, Kit ligand, Macrophage
migration inhibitory factor,
MMP7 and sex
hormone-binding globulin

Proteins belonging to the
following pathways
associated with BD: FXR/RXR
activation, LXR/RXR
activation, acute phase
response signaling,
clathrin-mediated
endocytosis signaling and
atherosclerosis signaling

Blood

Ren et al. [34] BD versus MDD Proteins upregulated:
B2RAN2, B4E1B2, APOA1, ENG,
SBSN and QSOX2. Proteins
downregulated: ORM1, MRC2
and SLPI downregulated

B2RAN2 and ENG as potential
biomarkers to differentiate BD
and MDD

Blood plasma

Ristori et al. [10] ASD (APOE and APOA1) and (FN1) Large presence of
apolipoproteins proteins and
fibronectin

Studies from blood and
brain tissue

Junaid et al. [141] ASD Glyoxalase I (Glo1) [141] Increase in polarity Brain
[35] SCZ, ASD and

BD
p140Cap protein interactome
network associated with the
SRCIN1 gene

Common interactome
network

Various
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Table 4: Potential biomarkers from genomics/NGS studies in various MH-related disorders

Author name or study ID Disorder Genes/biological functions affected Implications/key findings Source

Bertram et al.’s [38] AD APP, TREM2 and PLD3 Gene mutations associated with AD Various
Iacono et al. [142] AD A study of mouse models in AD using

single-cell RNA sequencing
(scRNA-seq) and functional analysis
identified genes associated with gene
expression or metabolic processes

Genes linked with multiple mouse
organs were found to be associated

Brain

Verheijen [39] EOAD Increased accumulation of the
amyloid-β (Aβ)1–42 peptide. Genes
associated included amyloid
precursor protein (APP), presenilin 1
(PSEN1) and presenilin 2 (PSEN2)

Hundreds of pathogenic mutations
were found in this inherited disorder

brain

Verheijen [39] LOAD APOE ε4 allele Well-known risk factor Brain
Pantazatos et al. [143] MDD Humanin-like-8 (MTRNRL8),

interleukin-8 (IL8) and serpin
peptidase inhibitor, clade H
(SERPINH1) and chemokine ligand 4
(CCL4)

Altered gene expression identified
using RNA-seq

Brain

Nashed et al. [41] MDD Neuronal development, intracellular
signaling, learning and memory

Pathways implicated in depression
using RNA-seq

Brain

Pantazatos et al. [144] MDD SSAT and SATX isoforms, SAT1 Low gene expressions in MDD Brain
Pirooznia et al. [145] MDD Calcium signaling and dendrite

regulation
Exons of synaptic genes potentially
involved in the etiology of MDD

Brain

Howard et al. [146] MDD 102 genomic variants and 269 genes
including SORCS3 and NEGR1

Meta-analysis study of three large
genome-wide association studies
(GAWAS) studies

Brain

Keller et al. [42] MDD Variants in the NR3C1 gene including
rs33388, rs10052957, rs10482633,
rs41423247. variants in the NR3C2
gene included rs1879829, rs3910052,
rs4835488, rs6535578, rs7658048 and
rs5522

NR3C2, NR3C1 variants affecting
HPA axis and cognition

Brain

Belzeaux et al. [147] MDD RORA, GCET2 and SMARCC2 Three potential biomarkers for
treatment response

Various

Feng et al. [148] MDD EEF2, RPL26L1, RPLP0, PRPF8, LSM3,
DHX9, RSRC1 and AP2B1

potential pathogenic genes
associated with MDD and potential
therapeutic targets

Various

Multiple studies [17, 43] MDD SNPs of CRHR1 Candidate genes reported various; blood
Multiple studies [149–151] MDD Whole-genome sequencing was used

to identify SNPs: one near gene SIRT1,
an enzyme that deacetylates proteins
that contribute to cellular regulation
and the other SNP in an intron of
LHPP gene [149–151]

Single nucleotide polymorphisms
(SNPs) associated with MDD

Various; blood; saliva

Multiple studies [35, 152,
153]

SCZ and BD Mutations and DNA methylation in
BRD1 protein

Genetic associations Various; blood; blood

Pies et al. [7, 44] SCZ Mutations in neuregulin-1 NRGI Potential biomarkers for SCZ;
increased risk of SCZ

Various; various

Multiple studies [35, 154,
155]

SCZ ZNF804A [35, 155] and CRMP2
mutations [35, 154]

Increased risk of SCZ Various; blood; mouse
models, cell lines and
DNA constructs

[49] SCZ Voltage-gated calcium channels,
ARC-associated scaffold and FMRP
interactors

The affected functional gene sets
were identified using whole exome
sequencing (WES)

Induced pluripotent
stem cells (iPSC)

Demkow et al. [133] ASD, ADHD NGS testing justification in various
clinical scenarios

Enables search for inherited
conditions and new de novo
mutations

Various

Goes et al. [156] ASD RPGRIP1L, FRAS1, AHNAK, KDM5B
and SLC12A4

Shortlisted genes implicated in ASD
using WES

DNA from
lymphoblastoid cell
lines

Multiple studies [51, 52] ADHD Mutations in dopamine transporter
and D4 receptor

Potential biomarkers Various

Li et al. [48] ASD, epileptic
encephalopathy
(EE), intellectual
disability (ID), SCZ

53 shared genes among four
disorders, including SCN2A

Indicates a shared etiology of these
disorders

Various

[49] SCZ and ASD Synaptogenesis and synapse function
and epigenetic process

Common pathways found Induced pluripotent
stem cells (iPSC)

Wen et al. [157] ASD Mutations in MECP2 Used WES to identify several
loss-of-function mutations that
could lead to ASD

Peripheral blood

Multiple studies: Sjaarda
et al. [17, 50]

ASD and PTSD Serotonin transporter SLC6A4 Mutations linked to ASD and
prenatal stress; GWAS-identified
polymorphisms associated with
PTSD

Mouse model; various

[17] PTSD, generalized
anxiety disorder
(GAD) and
Parkinson (PD)

RGS2 Only a few findings have been
confirmed by multiple studies

Various
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Table 5: Potential biomarkers from gene expression studies in various MH-related disorders

Author name or study ID Disorder DEGs/biological functions affected Implications/key findings Source

Wu et al. [158] AD ITGB5, RPH3A, GNAS, THY1 and SEPT6 Associated with AD disease
progression

Brain tissue

Wang et al. [53] AD Abnormal AMP expression Onset and development of AD
in flies

Brain tissue

Forero et al. [60] MDD A list of 23 genes including ABCG4,
ACTA2, AGAP1, AP2B1, ATP1A3, ATP2B1,
ATP5A1, BMI1, C10orf10, C3orf70,
CAMK2A, CD24, CDC37, CDH13,
CDKN1B, CDO1, CLDND1, CPLX1,
CSRNP3, GLDN, GRM8, IL17RD, TUSC3

Short list of 23 genes
confirmed in other studies as
well

Meta-analyses for GWES
of MDD for four brain
regions and for blood

Multiple studies: [54–56] MDD Glutamate transporter gene SLC1A2
[54]; GABAergic gene GABRD that codes
for gamma-aminobutyric acid type A
receptor delta subunit [54, 55]; genes in
the serotonergic family including
HTR1A, HTR1B, HTR2A, HTR2C [56] and
the PXMP2 gene which is involved in
reactive oxygen species (ROS)
metabolism [54]

Dysregulated in various
regions of the brain in MDD

Brain and peripheral
tissues; blood

Multiple studies: [49, 159,
160, 161]

SCZ GFAP [159], GLUL [160] and S100B [49,
161]

Genes implicated in SCZ Brain tissue; brain tissue;
blood

Xiao et al. [57] SCZ and BD mRNA levels of RELN were affected in
patients

The study of the methylome
and transcriptome

Brain tissue

Ansel et al. [74] ASD DIO2, Cirbp, DNMT3A, DNMT3B, TET1,
TET3

Dysregulated genes identified Multiple sources

McCaffrey et al. [162] ADHD ABCB5, RGS2, GAK, GIT1 This study of RNA markers
could be studied further
towards design of targets for
diagnostics and therapeutics
in ADHD

Blood

in most of the studies was miR-132 which is one of the microRNAs
regulating expression of BDNF, one of the key players in brain
plasticity. This microRNA also targets the gens MAOA and SLC6A3
that are implicated in neuropsychiatric disorders [61, 62]. Kohen
et al. applied RNA-seq to patients with MH disorders including
SCZ, MDD and BD and found that the level of expression of
another microRNA: miR-182 was changed in these disorders.
miR-182 was also found activated in patients with BD and
healthy controls, while it was found downregulated in MDD
and SCZ [63]. Nakata et al. [64] studied microRNA expression
in peripheral blood from adults with high functioning ASD and
compared with healthy controls and discovered miR-6126 as
downregulated in ASD. Gupta et al. studied PTSD data from
military veterans and found circulatory microRNAs to play an
important role. Specifically, microRNAs associated with HPA
axis regulation through FKBP5 were found to play a key role
in PTSD [65]. Detailed findings are summarized in Table 6.
Overall, these diverse miRNAs implicated in MH disorders offers
valuable insights into potential mechanisms and therapeutic
avenues.

Potential biomarkers from epigenomics studies
in various MH-related disorders
Zhang et al. employed whole genome bisulfite sequencing to
identify novel differentially methylated sites in genes DLGPAP1,
TMEM51 and EIF2AK2 that could serve as potential biomarkers
for AD. [66]. Li et al’s review of 67 studies highlighted hyperme-
thylation in BDNF and SLC6A4 as associated with depression [67,
68]. Kuan et al. [69] studied epigenome-wide association studies

(EWASs) of MDD of 473 World Trade Center responders and found
phosphatidylinositol signaling and cell cycle pathways affected.
DNA methylation changes in genes CAMK2A, SLC1A2, HTR1A and
HTR1B have also been implicated in MDD [68, 70, 71]. Epigenetic
changes in gene BDNF or receptor TRKB were found in multiple
psychiatric disorders including MDD, BD, SCZ and borderline per-
sonality disorder [72].

Epigenetic changes in serotonin transporter SLC6A4 have impli-
cations in MDD, BD, PTSD, SCZ, and ADHD.

Loke et al. [73] studied epigenetic changes associated with
Autism and identified five candidate genes (OXTR, GAD1, EN2,
RELN, MECP2) whose methylation was affected in the brains of
ASD patients. One of the very commonly studied methylation
changes is the addition of a methyl group on the fifth carbon of
cytosine (e.g. 5-methylcytosine 5mC). This epigenetic marker in
involved in important functions including X-chromosome inacti-
vation, chromatin structure, gene silencing and genomic imprint-
ing. Disruptions in 5mc has recently been linked to ASD with
promising relevant in the clinic [74–76]. Kuan et al. [69] conducted
EWASs of PTSD responders and found genes enriched in the
following pathways including stress response, inflammation and
physical health. Detailed findings are summarized in Table 7.

Potential biomarkers from imaging studies in
various MH-related disorders
Imaging biomarkers play a crucial role in not only understanding
MH disorders but also help with early detection in many MH dis-
orders. In AD, functional and structural MRI, along with amyloid
imaging using PET tracers, aid in detecting changes and amyloid
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Table 6: Potential biomarkers from microRNA studies in various MH-related disorders

Author name or study ID Disorder Molecular features/biological
functions affected

Implications/key findings Source

Pang et al. [163] AD hsa-let-7d, hsa-miR-144,
hsa-miR-374a, and hsa-miR-106b
targeting genes in pathways
PI3K-AKT signaling pathway, MAPK
signaling pathway, oxidative
phosphorylation, synaptic vesicle
cycle, cell–cell adhesion,
cytokine-mediated signaling
pathway, proteasome, arginine,
proline metabolism and pentose
phosphate pathway [163]

Analysis of two important
regions of the
brain—entorhinal cortex (EC)
and hippocampus (HIP) of AD
patients revealed microRNAs
that targeted genes in
specific pathways

Blood

Multiple studies: Forero
et al. [55, 59, 60, 164]

MDD DEGs in various brain regions.
MicroRNAs including hsa-miR-32,
hsa-miR-33, hsa-miR-122,
hsa-miR-429 associated with MDD.
These microRNAs also known to
regulate other MDD genes
including GABA receptors, NOTCH2
and HNRNPU [60, 164]. Other
miRNAs implicated include
hsa-miR-370, hsa-miR-411,
hsa-miR-433, hsa-miR-487b and
hsa-miR-539 [165]

Studies analyzed in the
blood, amygdala, cerebellum,
ACC and PFC regions
revealed microRNAs linked
to chronic stress and fear
and GABA receptors linked to
chronic stress and fear [55,
164]

Various brain regions

Wang et al. [166–168] SCZ hsa-miR409-3p [166–168] which
targets genes associated with SCZ
including FAM117B, GABRA1,
GAD1, and NUMBL. hsa-miR-370
targets several SCZ associated
genes including BDNF, NRG1 and
SYN2 [166, 169]. Other microRNAs
affected include miR-30e, miR-7,
miR-195, miR-34a and miR-346

microRN As that targets
genes associated with SCZ

Tissue; blood; blood

Multiple studies [61, 170] MDD and BD miR-652 [61, 170] microRNA affected in both
MDD and BD

Various sources
(microRNA affected in
both MDD and BD); blood

Kohen et al. [63] SCZ, MDD and BD miR-182 RNA-seq revealed this
microRNA was found
activated in patients with BD
and healthy controls while
downregulated in MDD and
SCZ [63]

Brain tissue

Multiple studies [61, 62] Multiple
neuropsychiatric
disorders

miR-132, one of the microRNAs
regulating expression of BDNF, and
targets the genes MAOA and
SLC6A3

One of the key players in
brain plasticity and
implicated in
neuropsychiatric disorders
[61, 62]

Various sources
(microRNA affected in
both MDD and BD);
various sources

Srivastav et al. [171] ADHD microRNAs regulated the gene
expression of BDNF, DAT1, HTR2C,
HTR1B and SNAP-25

These microRNAs were also
linked to ADHD etiology [171]

Various sources

Nakata et al. [64] ASD miR-6126 downregulated in ASD Study of microRNA
expression in peripheral
blood from adults with high
functioning ASD compared
with healthy controls

Blood

Gupta et al. [65] ADHD microRNAs associated with HPA
axis regulation through FKBP5 were
found to play a key role in PTSD

Circulatory microRNAs to
play an important role in
PTSD

Blood

Martin et al. [172] PTSD Four upregulated microRNAs
(miR-19a-3p, miR-101–3p,
miR-20a-5p and miR-20b-5p) and
four downregulated microRNAs
(miR-15b-3p, miR-125b-5p,
miR-128-3p and miR-486-3p) in
PTSD samples

Implications of microRNA
dysregulation in PTSD
patients

Blood
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Table 7: Potential biomarkers from epigenomics studies in various MH-related disorders

Author name or study
ID

Disorder Molecular features/biological
functions affected

Study summary/key findings Source

Zhang et al. [66] AD Novel differentially methylated sites
in genes DLGPAP1, TMEM51 and
EIF2AK2

Potential biomarkers for AD
identified through
whole-genome bisulfite
sequencing in mouse brains

Brain

Li et al. [67, 68] MDD Hypermethylation in BDNF and
SLC6A4 associated with MDD. DNA
methylation changes in genes linked
to MDD. [67, 68]

Review of 67 studies to
summarize the relationship
between DNA and depression

Blood; various

Multiple studies: Kuan
et al. [68–71]

MDD Phosphatidylinositol signaling and
cell cycle pathways affected in MDD.
Genes CAMK2A, SLC1A2, HTR1A and
HTR1B also implicated

EWASs Various; blood; various;
various

[72] MDD, BD, SCZ Epigenetic changes in gene BDNF or
receptor TRKB

Could be a potential biomarker
as it was found in multiple
psychiatric disorders

Various

Multiple studies [35, 57,
152, 153]

SCZ and BD Mutations and DNA methylation in
BRD1 protein. Methylation changes
in RELN, PPP3CC, DNMT1, DTNBP1,
NOS1, HTR1E, GRM5, PRIMA1,
HTR2A and HTR2A [57]

The study of the methylome and
transcriptome in SCZ and BD
found changes in the
methylation of many genes

Various; brain; various;
brain;

Neumann et al [173] ADHD DNA methylation in CREB5 which is
known to be important for neurite
outgrowth was associated with
ADHD [173]

DNA methylation at birth was
associated with ADHD by
performing an epigenome-wide
association study (EWAS)

Blood

[72, 174] MDD, BD, PTSD,
SCZ and ADHD

Epigenetic changes in serotonin
transporter SLC6A4

Could be a potential biomarker
as it was found in multiple MH
disorders

Blood; various

Loke et al. [73] ASD (OXTR, GAD1, EN2, RELN, MECP2) Identified five candidate genes
whose methylation was affected
in the brains of ASD patients [73]

Various

Multiple studies [74–76] ASD 5mC is a methylation marker
involved in important functions
including X-chromosome
inactivation, chromatin structure,
gene silencing and genomic
imprinting

5mc methylation could be a
potential marker in the clinic
[74–76]

Various; brain; brain

[175] PTSD Methylation levels of FKBP5 and
SLC6A4 genes studied for
associations with PTSD

Epigenetic insights into genes
associated with PTSD

Blood

Kual et al. health [69] PTSD Genes enriched in the following
pathways including stress response,
inflammation and physical health
[69]. Epigenetic changes in HDAC4

Epigenetic changes were found
in a gene in the blood of patients
with PTSD

Blood

plaques in the brain [77–79]. For MDDs, MRIs reveal structural
abnormalities in regions like the PFC, cingulate cortex, thalamus
and hippocampus, offering insights into potential pathogenesis
[80]. In ASD, white matter microstructure and amygdala growth
abnormalities impacted brain networks in early life [81]. MRIs
were also found to differentiate ADHD patients from controls
based on alterations in the cortical shape in areas of the brain
[82]. Such an approach could be explored further for clinical
use to identify clinical symptoms and treatment response [83].
Detailed findings are summarized in Table 8.

Potential biomarkers from copy number studies
in various MH-related disorders
Copy number variations (CNVs) in the genomic regions are linked
to various MH disorders. From this summary, it is clear that there

are common genomic regions of copy number instability across
various MH disorders including 1p, 1q, 15q, 16p and 22q.

In AD, variations in regions of chromosome 1 and 2 were
found including 1p36, 1q21,1q32, 2p23 and 2q14 [84]. People who
inherit one copy of the APOE isoform APOE ε4 have an increased
chance of AD and those with two copies have an even greater risk
[85]. In another study, MDD patients had a higher mitochondrial
DNA copy number and could be relevant to the pathophysiology
of MDD [86]. For SCZ and BD, Xiao et al. pinpointed CNV ‘hot
spots’, i.e. regions of large CNV as 1q32 and 22q11.22 [87, 88].
Krgović et al. predicted that the rate of CNVs in patients with
ADHD was 1.33 times higher when compared to healthy controls
[89]. Duplications of 15q13.3 and 16p13.11 regions were found
in ADHD patients [89, 90], while deletions in the 22q11.2 and
deletions/duplications in 16p11.2 were commonly observed in
ASD patients [91]. The mitochondria has been found to play a
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Table 8: Potential biomarkers from imaging studies in various MH-related disorders

Author name or study ID Disorder Molecular features/biological
functions affected

Study summary/key findings Source

[77] Alzheimer’s
disease (AD)

Functional and structural MRI Functional and structural
magnetic resonance imaging (MRI)
can be used to indicate the changes
in the cerebrospinal fluid (CSF)

Resting-state functional
MRI (rfMRI)

[78, 79] AD Many AD patients have amyloid-β
(Aβ) plaques present in their brains
long before they develop the disease.
Amyloid imaging i.e., using PET
tracers for detecting changes and
amyloid plaques

This amyloid imaging can help
with early detection purposes, but
are expensive and have a hazard of
radiation [78, 79]

PET; PET

[80] MDD MRI reveals structural abnormalities
in PFC, cingulate cortex, thalamus
and hippocampus

These abnormal brain functions
may also be associated with the
pathogenesis of MDD and could be
studied further for early diagnosis
and intervention [80]

MRI

[176] SCZ and BD Genetic variants of the genes GFAP
[159], GLUL [160] and S100B [49, 161]
associated with cytoskeletal effects
manifested in brain imaging

Potential for use in early detection Various

Lainhart et al [81] ASD White matter microstructure and
amygdala growth abnormalities
impact brain networks in early life

Potential for use in early detection
in ASD

MRI

Sun et al [82] ADHD MRIs differentiate ADHD patients
from controls based on cortical
shape alterations

Potential biomarkers for ADHD Anatomic and
diffusion-tensor
magnetic resonance (MR)
imaging

Zilcha-Mano et al. [83] PTSD Resting state MRIs and ML identify
unique brain abnormalities for
clinical differentiation and
treatment response

Such an approach could be
explored further for clinical use to
identify clinical symptoms and
treatment response [83]

Resting-state magnetic
resonance images

crucial role in neurodegenerative diseases including AD, MDD, BD
and others [23] [86]. Mitochondrial DNA copy number was found
significantly lower in PTSD patients, which may reflect impaired
energy metabolism [92]. Detailed findings are summarized in
Table 9.

Potential biomarkers from metabolomics and
glycomics studies in various MH-related
disorders
Metabolites are the substrates and products of metabolism and
include sugars, lipids, amino acids, fatty acids, phenolic com-
pounds and alkaloids among others [93]. Glycans are long chain
essential carbohydrate molecules that serve structure, energy
storage and regulatory purposes [94]. The advantage of using
metabolites as biomarkers is that they are found in blood and
serum. They can be extracted and analyzed using noninvasive
and inexpensive analysis techniques. Changes in glycosylation
typically occur during disease progression and have been increas-
ingly studied for biomarker development [95]. Table 10 shows key
takeaways on research in this area.

Mapstone et al. [96] identified a set of 10 lipids from the
peripheral blood of people who went on to develop AD 2–3 years
later with 90% accuracy. Frenkel-Pinter et al. [97] studied the
changes in glycosylation pathways associated with AD, found
changed levels of glycans involved in protein O-GlcNAcylation
and N-/O-glycosylation and proposed for the use as novel glyco-
based biomarkers for AD [97]. Hashimoto et al. [98] found purine
metabolism downregulation in MDD patients and amino acid
metabolism involvement in MDD pathogenesis. Okamoto et al.

[99] noted reduced metabolite peak values in SCZ, affecting
pathways like glutamate metabolism. Ren et al. [100] identified
potential BD biomarkers: lactate, trimethylamine oxide, N-acetyl
glycoprotein and α-glucose. Orozco et al. [101] linked 11 plasma
metabolites to ASD outcomes, revealing disturbances in one-
carbon metabolism and the tricarboxylic acid cycle. Tian et al’s
[102] ADHD study identified differentially changed metabolites
including FAPy-adenine and dopamine 4-sulfate. Karabatsiakis
et al’s [103] PTSD research found 13 significant metabolite
changes including glycerophospholipids and an endocannabinoid
signaling metabolite.

Potential biomarkers from multiomics studies in
various MH-related disorders
Utilizing multiple omics data types enhances our understanding
of brain-related disorders [39, 104]. In AD, multiomics approaches
have been applied, integrating genomics, epigenomics, transcrip-
tomics and proteomics data to gain insights into AD pathogenesis
and identify potential biomarkers.

In MDD, integration of metabolomics and proteomics unveiled
intricate molecular alterations that could contribute to the patho-
physiology, offering insights for potential therapeutic strategies
[105]. A multiomics analysis (RNA-seq, microRNA, ChiPseq) dis-
covered dysregulation of nuclear FGFR1 signaling in SCZ, indi-
cating a potential therapeutic target [106]. Another multiomics
analysis comparing ASD and SCZ revealed affected biological
processes including neural development, synaptic dysfunction
neural networks, and enriched chromatin modification in ASD
[107]. Another multiomics investigation unveiled the molecular
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Table 9: Potential biomarkers from copy number studies in various MH-related disorders

Author name or study ID Disorder Molecular features/biological
functions affected

Study summary/key findings Source

Cuccaro et al [84] AD CNV identified in genomic
regions1p36, 1q21,1q32, 2p23, and
2q14 [84]

Identification of CNVs in specific
regions associated with AD (1p, 1q,
2p, 2q)

DNA

Multiple studies [85, 177] AD People who inherit one copy of the
APOE isoform APOE ε4 have an
increased chance of AD and those
with two copies have an even
greater risk [85]

APOE ε4 allele is known to affect
normal brain function and early
onset of memory loss. Potential
biomarker

Blood

Chung et al [86] MDD Higher mitochondrial DNA copy
number in MDD patients

Potential relevance of
mitochondrial DNA copy number to
MDD pathophysiology

Peripheral blood

Xiao et al. [87, 88] MDD Genomic regions 1q32 and
22q11.22 identified as ‘hot spots’
i.e. regions of large copy number
variation for SC and BD [87, 88]

Identification of genomic regions
with large CNVs in SCZ and BD

Genotyping and DNA
pooling; genotyping

Krgović et al. [89] ADHD Patients with ADHD show higher
CNV rate compared to healthy
control

Association of higher CNV rate with
ADHD

Genome-wide study

[89, 90] ADHD Duplications in 15q13.3, 16p13.11
regions found in ADHD patients

CNV in chromosomal regions 15p
and 16p associated with ADHD

Genome-wide study;
blood

[91] ASD Duplications in the 16p11.2 regions,
and deletions in the 22q11.2 region

CNV in chromosomal regions 16p
and 22q associated with ADHD

Genetic study

[23, 86] AD, MDD and BD Energy production impaired and
higher levels of oxidative stress

The crucial role of mitochondria in
neurodegenerative diseases

Mitochrondrial DNA

Bersani et al. studied [92] PTSD Lower mitochondrial DNA copy
number (mtDNAcn) in PTSD
patients

Impaired energy metabolism
potentially reflected by mtDNAcn
in PTSD patients

Mitochrondrial DNA

Table 10: Potential biomarkers from metabolomics and glycomics studies in various MH-related disorders

Author name or study ID Disorder Molecular features/biological
functions affected

Study summary/key findings Source

Mapstone et al. [96] AD Identification of a lipid panel in
peripheral blood predicting AD
development with 90% accuracy

Promising noninvasive biomarkers
for early AD detection

Blood

Frenkel-Pinter et al. [97] AD Altered levels of glycans involved in
protein O-GlcNAcylation and
N-/O-glycosylation

Potential glyco-based AD
biomarkers

Brain regions
and serum

Hashimoto et al. [98] MDD Downregulation of prune
metabolism and involvement of
amino acid metabolism in MDD
pathogenesis [98]

Identification of affected metabolic
pathway in MDD

Various

Okamoto et al. [99] SCZ Lower peak values of metabolites in
SCZ patients, affecting pathways like
glutamate metabolism

Metabolic differences in SCZ
patients, contributing to a better
understanding of the disorder

Serum

Ren et al. [100] BD Identified potential BD biomarkers:
lactate, trimethylamine oxide,
N-acetyl glycoprotein and α-glucose

Discovery of metabolites with
potential biomarker utility for BD

Serum

Orozco et al. [101] ASD Linked 11 plasma metabolites to ASD
outcomes, revealing disturbances in
one-carbon metabolism and the
tricarboxylic acid cycle

Insights into metabolic changes in
ASD and their potential roles

Plasma

Tian et al. [102] ADHD Identified differentially changed
metabolites including FAPy-adenine
and dopamine 4-sulfate

Metabolomic profiling in ADHD,
highlighting potential metabolic
contributors to the disorder

Urine

Karabatsiakis et al. [103] PTSD metabolite 13 significant metabolite changes
including glycerophospholipids and
an endocannabinoid signaling

Insights into metabolic alterations
in PTSD patients using peripheral
blood, and suggesting candidate
markers and pathways of interest

Blood
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Table 11: Potential biomarkers from multiomics studies in various MH-related disorders

Author name or study
ID

Disorder Molecular features/biological functions
affected

Study summary/key findings Source

Pang et al. [163] Alzheimer’s
disease (AD)

Measured genes and microRNAs expression,
systems biology analysis

Identification of potential AD
biomarkers, better understand
AD pathogenesis

Entorhinal cortex,
hippocampus and blood

Song et al. [178] AD Summarized studies and results based on the
genome, transcriptome and epigenome,
curated data into a database called AlzBase

Advancements towards
candidate biomarkers and new
hypotheses

Various

De Yager et al. [179] AD Multiomics analysis of the frontal cortex
regions. The data had come from over 3000
patients that included 1179 samples from
whole genome sequencing (WGS), 740
samples from DNA methylation, 712 samples
from chromatin immunoprecipitation with
sequencing (Chip-seq), 638 samples from RNA
sequencing (RNA-seq) and 702 samples from
microRNA expression profiling. The patients
profiled were part of the Religious Orders
Study (ROS) or the Rush Memory and Aging
Project (MAP) [179, 180]

This dataset includes controls
well and hence allows users to
repurpose and offers
opportunities for new findings

Various

Wang et al. [181] AD Generated WGS, whole exome sequencing
(WES), RNA-seq and proteomic data from
258 AD brains along with clinical and
pathophysiological data called the Mount
Sinai cohort [181, 182]

This large-scale study of
matched multiomics data in
AD and control brains servers
as an important resource for
further analyses. The raw and
processed data are publicly
available.

Brain

Zhang et al. [105] MDD Studied the brains of chronic unpredictable
mild stressed rat models by application of
both metabolomics and proteomics.
Significant changes were found in 30
metabolites and 170 proteins, related to these
biological processes including impairment in
amino acid metabolism and protein
synthesis/degradation; dysregulation of
glutamate and glycine metabolism;
disturbances in fatty acid and
glycerophospholipid metabolism; abnormal
expression of synapse-associated proteins

Such multiomics studies could
improve our understanding of
the biology behind MDD and
enable better treatments

Gas
chromatography/mass
spectrometry (GC–MS)

Narla et al. [106] SCZ Applied multiomics analysis including
RNA-seq, microRNA and ChiPseq to find
dysregulation of nuclear FGFR1 signaling in
SCZ patients

Potential as a therapeutic
target for SCZ

Plasmids expressing
FGFR1 constructs and
Human induced
pluripotent stem cell
lines, neuron committed
cells

Goes et al. [156] BD Performed a large-scale meta-analysis using
whole-exome sequencing (WES)and found
three genes affected: MLK4, APPL2 and
HSP90AA1

Identification of BD-affected
genes

Various

Pineda-Cirera et al.
[108]

ADHD Studied genetic variation that influences
brain methylation. They found that genetic
variants for ADHD were correlated with
higher gene expression and lower methylation
of ARTN and PIDD1. On the other hand,
Genetic variants for ADHD were correlated
with a lower gene expression and higher
methylation of C2orf82 [108]

Interplay of gene expression
and methylation changes in
ADHD

Brain

Hubers et al. [183] ADHD Performed an integrative analysis of
genomics, epigenomics and metabolomics
data from in 596 twins (cases and controls)
from the Netherlands Twin Register (NTR) and
looked for associations with ADHD. The top
differentially changed features included
TMEM, STAP2 and DNA methylation in
MAD1L1 [183]

Identification of differentially
changed features related to
ADHD

Urine, buccal cell swabs

(continued)
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Table 11: Continued

Author name or
study ID

Disorder Molecular features/biological functions affected Study summary/key findings Source

Nomura et al. [107] ASD versus
SCZ

Performed a multiomics analysis to compare ASD and
SCZ and found the several biological processed affected
in both disorders including neural development, synaptic
dysfunctions and neural network. The authors also
found chromatin modification process to be enriched
only in ASD samples

Shared and distinct biological
processes in ASD and SCZ

Various

Dean et al. [184] PTSD Studied warzone-related PTSD using multiomics
technologies including genetics, DNA methylation,
proteomics, metabolomics, immune cell counts, cell
aging, endocrine markers, microRNAs and cytokines.
They applied multistep ML models to identify candidate
biomarkers for PTSD.
At the end of their multi step analysis, 10 top performing
candidate biomarkers were identified as most relevant to
PTSD, including methylation markers cg01208318,
cg20578780, cg15687973 (PDE9A) and 75,938,326 C2orf3;
microRNA markers hsa-mir-133a-1-3p, hsa-mir-192-5p,
hsa-miR-9-1-5p, metabolite marker gamma
glutamyltyrosine; clinical labs insulin and mean platelet
volume and physiological marker heart rate

Identification of
top-performing candidate
biomarkers for PTSD

Blood

interplay between genetic variation, gene expression and methy-
lation, providing insights into ADHD-related mechanisms [108].
This multiomics approach is instrumental in understanding the
complex biology of neuropsychiatric disorders, offering potential
avenues for treatment and biomarker discovery. Table 11 summa-
rizing key findings from these studies.

Potential biomarkers from cellular data in
various MH-related disorders
Cellular data in the form biological functions and pathways offer
another dimension to better understand the underlying mecha-
nism in various MH disorders. While some biological functions
may have come up along with the molecular markers in previous
sections, the current section focuses solely on features at the
cellular level. These could be pathways, biological functions and
cellular processes associated with various MH disorders. Table 12
summarizes these key features. These could be used as potential
targets for further research and potential therapeutic interven-
tions.

Noteworthy themes of interest
Throughout this comprehensive review, we have encountered
several noteworthy discoveries.

Dysregulation in the immune and inflammatory
systems
Researchers have found that the immune system and inflamma-
tory responses undergo a systemic change in patients affected
with neurodegenerative diseases including dementia and neu-
rodegeneration [109, 110]. Increased levels of circulating cytokines
and other pro-inflammatory markers have been found and its role
in these diseases is being studied in more detail [111, 112].

Heightened activity within the HPA axis
The heightened activity within the HPA axis has been consis-
tently observed across various MH disorders and in this review.
Furthermore, multiple NGS studies have implicated the role of

serotonin transporter SLC6A4 in MH disorders. An interesting
parallel was found in the involvement of the dopamine trans-
porter gene SLC6A3 in neuropsychiatric conditions [113]. While
dopamine predominantly resides in the brain and serotonin pre-
dominantly in the gut, both neurotransmitters play pivotal roles
not only in MH but also in gut health [114]. Presently, the interac-
tions between these neurotransmitters remain currently unclear.
However, a detailed exploration of complex interconnections in
the body (i.e. ‘axis’) may provide valuable insights interactions
[115]. There are various connections in the body such as gut–
brain, gut–lung and gut–skin axes. Interestingly, these axes are
also linked with the immune system. Below, we discuss in more
detail the gut–brain axis and potential for the gut microbiome in
MH disorders as a future direction.

The gut–brain axis and the microbiome: an
emerging biomarker in MH
The gut microbiome, comprising trillions of microorganisms in
the gastrointestinal tract, is a novel biomarker with far-reaching
implications for MH. Linked through the gut–brain axis, it exerts
bidirectional influence over human behavior and brain function
via the immune, nervous and endocrine systems [116]. Dysreg-
ulations in gut microbiota have been associated with neurode-
generative diseases, mood disorders and depression, often driven
by chronic inflammation converting into mood symptoms [116,
117]. Stress influences neuroendocrine hormones affecting bac-
terial growth, and consequently, behavior, metabolism, appetite
and immunity. Microbiome research is particularly extensive in
MDD and neuropsychiatric conditions like SCZ and BD. MDD
shows microbiota alterations, while SCZ and BD exhibit sys-
temic immune changes [116–118]. Furthermore, ASD and ADHD
have their unique microbiota profiles. Preclinical AD is associated
with gut microbiome shifts correlating with pathological mark-
ers. [119–121, 214]. Complementary therapies like ‘psychobiotics’
and fecal transplants are being explored alongside traditional
treatments, promising new avenues for MH understanding and
intervention [122].
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Table 12: Potential biomarkers from cellular data in various MH-related disorders

Author name or
study ID

Disorder Molecular features/biological functions
affected

Study summary/key findings Source

Sancesario et al. [185] AD A meta-analysis of 96 articles related to
Alzheimer’s disease that included 12
meta-analyses, 21 re-analyses of existing data
and 63 original studies. Studies of brain
tissues identified the following affected
pathways including dopamine metabolism,
mitochondrial function, oxidative stress,
protein degradation, neuroinflammation,
vesicular transport and synaptic
transmission. Studies of the blood identified
the following affected pathways including
pathways involved in immune function,
inflammation, RNA processing, protein
chaperones, mitochondrial function and
programmed cell death.

Pathways identified in both
blood and brain tissue were
mitochondrial function, protein
degradation and inflammation
indicated that AD was a
systemic disease and not
localized to any one region [185]

Both blood and brain
tissue

Reitz et al [186] AD These included amyloid pathway, immune
and inflammation system, lipid transport and
metabolism, synaptic cell functioning, Tau
pathology, cell migration, hippocampal
synaptic function, cytoskeletal function and
axonal transport and microglial and myeloid
cell function

Identification of major
pathways associated with AD,
including immune system
involvement and synaptic
function

Various

Mirza et al. [187] AD The study of the electrophysiological changes
indicated the following pathways contributed
to the pathophysiology of AD including
Glutamate receptor signaling, CREB signaling,
dopamine- DARPP32 feedback in cAMP
signaling and fMLP signaling in neutrophils

Implicates various
neurotransmitter systems

Various

Li et al. [188] AD Identified nitric oxide, reactive oxygen species
in macrophages (NOROS), NFkB and
mitochondrial dysfunction and the major
pathways associated with late onset AD
(LOAD) [188]

Major pathways associated
with late-onset AD, highlighting
oxidative stress and immune
response

Various

Mengsi et al. [158] AD Used gene expression data from 76 AD
patients and discovered that the GABAergic
(related to neurotransmitter GABA) system,
neurons and synaptic function were affected
in AD

AD affects neurotransmitter
systems and synaptic function

Brain

Di Resta et al. [12] AD Reviewed the AD disease from an omics
perspective. The molecular analyses shed light
on AD pathogenesis, the cellular level analysis
provided a systems biology perspective that
could enable more effective treatment options

Concluded that an integration
of molecular and cellular level
analyses could better help with
understanding of this complex
disease

Various

Pang et al. [163] AD Several functional genes expressed together
were affected in AD patients, including ERBB2,
ERBB4, OCT3, MIF, CDK13 and GPI. Several
pathways were found to be significantly
dysregulated in EC and HIP brain regions,
including PI3K-AKT signaling pathway, MAPK
signaling pathway, oxidative phosphorylation,
synaptic vesicle cycle, cell–cell adhesion,
cytokine-mediated signaling pathway,
proteasome, arginine and proline metabolism
and pentose phosphate pathway

Analysis of two important brain
regions in AD patients the
entorhinal cortex (EC) and
hippocampus (HIP) compared
to normal controls

EC and HIP

[189, 190] AD In AD patients, the protein Tau is no longer
able to help with forming structures that
transport nutrients within nerve cells, which
eventually leads to cell death.
Hyperphosphorylation, i.e. signaling
mechanisms used by the cell to regulate
mitosis of this tau protein is known to be
associated with AD

Importance of tau protein
dysfunction and
hyperphosphorylation

Clones of human brain τ

isoforms

(continued)
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Table 12: Continued

Author name or
study ID

Disorder Molecular features/biological functions
affected

Study summary/key findings Source

[191, 192] AD Researchers found S100A9 increased in the
brains of AD patients. S100A9 is a calcium
binding protein that plays an important role
in the regulation of inflammatory processes
and immune response [191, 192]

Increased S100A9 Various; ultracentrifugation-
electrostatic repulsion
hydrophilic interaction
chromatography (UC-ERLIC)
coupled mass
spectrometry-based
proteomics profiling of
soluble and aggregated
amyloidal plaque

Howard et al. [146] MDD Performed gene set enrichment analysis
(GSEA) on the 269 genes that they found to be
associated with MDD and found the following
pathways as significantly enriched including
post synapse, synapse, neuron spine,
excitatory synapse, behavior, cognition,
neuron projection, modulation of synaptic
transmission and regulation of synapse
structure or activity [146, 193, 194]

Pathways associated with MDD,
revealing potential therapeutic
targets

Various

Pantazatos et al.
[143]

MDD Used RNA-seq and found the following
pathways affected in MDD including lower
expression of immune-related pathways like
chemokine receptor activity, chemotaxis and
cytokine biosynthesis and angiogenesis and
vascular development

Insights into immune system
involvement in MDD.

Brain

Forero et al. [60]. MDD Performed one of the largest meta-analysis of
gene expression studies in MDD that covered
24 datasets that included a total of 753
samples. A functional analysis of the DEGs in
MDD identified the following biological
processes and KEGG pathways enriched with
DEGs including synaptic transmission, neuron
projection, Alzheimer’s disease pathway and
proteasome pathways

Identification of biological
processes and pathways in
MDD

Various

[139] MDD Studies have also identified a change in the
abundance of pro-inflammatory and
oxidative stress response proteins in MDD.
Other pathways implicated include LXR/RXR
activation, acute phase response signaling,
FXR/RXR activation, agranulocyte adhesion
diapedesis and granulocyte adhesion
diapedesis

Changes in the abundance of
pro-inflammatory and
oxidative stress response
proteins in MDD

Blood

Multiple studies [7,
32, 137, 140, 193, 195]

MDD Dysfunctional metabolic pathways for ATP
production have been observed in MDD [193,
195]. This includes mitochondrial dysfunction
and issues with glucose transporter proteins
[32, 140]. Changes in energy
metabolism-related proteins have also been
identified [7, 32]. Studies have explored
dysregulation in the glutamate system in
MDD, particularly in the context of ketamine
studies [137]

Dysregulation in metabolic and
glutamate systems

Various; various; various,
various, brain; various

Silva-Costa et al.
[196]

The study of proteomic-based biomarker
studies associated with MDD found gene
biomarkers as part of several biological
processes including inflammatory system,
immune and inflammatory systems, lipid
metabolism, carboxypeptidase activity,
retinoid metabolic process, artery
morphogenesis, coagulatory systems, cell
communication, protein metabolism,
regulation of the nervous system, energy
metabolism, oxidative stress, and cell
communication and oligodendrogenesis [196].

Identifies potential gene
biomarkers associated with
MDD.

various

(continued)
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Table 12: Continued

Author name or
study ID

Disorder Molecular features/biological functions affected Study summary/key findings Source

Multiple studies
[197]. [198].

MDD Mehta et al. reviewed gene expression and RNA-seq
studies from postmortem brain and peripheral
blood for potential links to MDD and found
biological processes that include inflammatory
response, cell survival, apoptosis and oxidative
stress [197]. Lin and Tsai [198] also reviewed gene
expression-based studies in MDD to identify
biomarkers related to peripheral immune response
and growth factors, endocrine factors and
metabolic markers

Several systems implicated
including immune and
inflammatory, oxidative stress
and more

Postmortem brain and
peripheral blood;
peripheral blood cells

[139]. [199]. SCZ Multiple proteins associated with SCZ belonged to
the following pathways including LXR/RXR
activation, FXR/RXR activation, hepatic fibrosis and
hepatic stellate cell activation and atherosclerosis
signaling [139]. A total of 99 peptides were found
associated with BD and 202 peptides [139]. The
pathways altered in SCZ included oxidative
phosphorylation, mitochondrial dysfunction, EIF2
signaling, protein ubiquitination Pathway, mTOR
signaling, CDK5 signaling, among others [199]

Pathways associated with SCZ,
suggesting targets for further
research and potential
therapeutic interventions.

Blood; prefrontal
pyramidal cells

Multiple studies [49,
159–161, 176,
200–202]

SCZ Genetic variants of the genes GFAP [159], GLUL
[160] and S100B [161] [49] were implicated
including astrocyte function, including signal
transduction, tyrosine kinase signaling, G
protein–coupled receptor signaling, small
GTPase-mediated signaling, cell adhesion and gene
transcription [49, 200]. Other cell processes found
altered in SCZ include reduced migration in neural
precursor cells [201], Cytoskeletal effects [176],
aberrations in mitochondrial function [202]

Cell processes found altered in
SCZ

Various; brain; brain;
various; various;
brain; brain;
fibroblasts

Depino et al. [203] SCZ A review of animal models of SCZ found changes in
dopaminergic function and reduction in
neurogenesis (the process that produces the cells
of the nervous system)

Altered dopaminergic function
and neurogenesis in SCZ

Animal models

Multiple studies:
Wang et al. [204].

SCZ A review of RNA-seq-based studies in SCZ found
GABA function, glutamate function, myelin and
oligodendrocyte related processes affected. Other
biological processes related to immune and
inflammatory pathways (including genes IL6 and
SERPINA3) and response to virus or bacteria were
also affected [204]

Biological processes affected in
SCZ

Various

[7, 44] SCZ Patients with SCZ were found to have abnormal
smooth-pursuit eye movement and reduced
anterior cingulate volumes; enlarged lateral and
third ventricular volumes and white matters
abnormalities [7, 44]

Potential biomarkers and
structural anomalies associated
with SCZ

Various; various

[7, 205, 206] SCZ Changes in oligodendrocytes, energy metabolism
(NADPH) [7, 206], glutamatergic neurotransmission
and cannabinoid metabolism [7, 205]

Dysregulations in SCZ Various; cerebrospinal
fluid (CSF);
postmortem
mediodorsal thalamus
(MDT)

Arion et al. [199] SCZ Transcriptome alterations in pyramidal cells of
prefrontal cortex (SCZ patients)

Transcriptome changes specific
to SCZ, less prominent in BD
and MDD

Prefrontal pyramidal
cells

[61] SCZ and
MDD

Oxidative phosphorylation was the most affected
pathway in MDD whereas glycolysis pathway was
the most affected in SCZ brains. Pathways found
commonly affected between SCZ and MDD include
WNT pathway, MAPK, PTEN signaling pathways,
glutamate signaling that includes SLC38A2, GRM7,
GRIA2; neurodevelopment-related genes including
RUNX3, ITGB1, FMR1, STAT3 and SCZ susceptibility
genes PDGFRA and PPARG [61]

Shared and distinct pathways
in SCZ and MDD; potential
targets for understanding and
treating these disorders

Blood, serum and
plasma

(continued)
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Table 12: Continued

Author name or
study ID

Disorder Molecular features/biological functions affected Study summary/key findings Source

[207] BD Mitochondrial dysfunction may be associated
with decreased in mitochondrial respiration,
downregulation of proteins involved in
mitochondrial respiration. It could also cause
changes in mitochondrial morphology, increased
mitochondrial DNA polymorphisms [207]

Mitochondrial dysfunction’s
potential contribution to BD
progression

Various

[7, 208, 209] ASD Fragile X syndrome is the most commonly
studied genetic cause for Autism [7, 208].
Hormozdiari et al. studied WES data from 1116
patients with Autism to identify two sets of gene
networks. One set was found associated with
Wnt, Notch, SWI/SNF and NCOR complexes. The
second set was associated with synaptic function,
including long-term potentiation and calcium
signaling [209]

Gene network analysis reveals
two sets of genes associated
with ASD, shedding light on
molecular pathways involved in
synaptic function and complex
biological processes

Various; various;
various

[7, 141, 210, 211] ASD Research has linked ASD with several biological
processes including oxidative stress and
mitochondrial dysfunction [210], increased
polarity of glyoxalase 1 (GLO1) [141] and protein
phosphorylation [7, 211]

Biological processes associated
with ASD

Various; brain;
various; saliva

Multiple studies [7,
162, 212–214]

ADHD Biological processes affected in ADHD include
prefrontal dopamine deficiency, central
dopaminergic dysfunction, changes in oxidative
metabolism and immunity [7, 212, 213]. In recent
years, dopaminergic and noradrenergic systems
have risen as potential genetic and biochemical
markers in ADHD diagnosis [214]. McCaffrey et al.
[162] studied RNA markers in case-controlled
subjects and a study of twins which revealed the
genes in the galactose metabolism pathway as
affected

Biological processes associated
with ADHD that could be
studied further towards design
of targets for diagnostics and
therapeutics

Various; blood;
various; blood;
various

[58, 65] PTSD RNA-seq analysis in individuals with PTSD
revealed glucocorticoid receptor signaling and
immunity-related pathways. The authors found
the key biological processes associated with PTSD
to be immune dysregulation and HPA axis [58].
Gupta et al. studied PTSD data from military
veterans, and the micoRNAs associated with
immune response inflammation were found to
play a pivotal role in PTSD in veterans [65]

The key biological processes
associated with PTSD are
immune dysregulation and HPA
axis

Blood; various

DISCUSSION
A systems biology approach
We used the potential NGS biomarkers indicated in this article to
demonstrate how the results could give us insights to the underly-
ing mechanisms of Alzheimer’s. We performed a systems biology
analysis using an online interaction network tool StringDB (https://
string-db.org/) [123] and subsequently an enrichment analysis
using online tool EnrichR (https://maayanlab.cloud/Enrichr/) [124].
Figure 1 shows a gene interaction network obtained from the
potential NGS biomarkers. The lines that connect the genes are
the edges of this network and indicate gene associations obtained
from various types of evidences including curated databases,
experimentally determined connections or predicted interactions
by published literature. From our enrichment analyses, we identi-
fied many of the genes to be associated with regulation of amyloid
fibril formation and positive regulation of amyloid-beta clearance
validating the gene results and its disease association (Figure 2).

A similar analysis was performed using the potential biomarker
genes associated with MDD. We used StringDB which generated

two gene interaction networks (Figure 3). Enrichment analysis
was performed on the gene network on the left side using EnrichR
and was found to be involved in serotonin signaling receptor
pathway and serotonin metabolism. Serotonin binding deficits
have been well documented in MDD literature [125]. Enrichment
analysis performed on the genes network on the right side
revealed RNA editing mechanisms which have been documented
in association with MDD in a publication [126].

A third analysis was performed using the potential biomarker
microRNAs and genes associated with PTSD (Figure 4). These
molecular features were enriched by the annotation of com-
mon cell processes and diseases relevant to MH. This analysis
was performed using Elsevier Pathway Studio software (www.
pathwaystudio.com).

Such an evidence-based analysis demonstrates the power of
connecting the candidate biomarkers to biology using a systems
biology approach. It not only pinpoints the biological processes
affected but also creates ideas and opportunities for new hypothe-
ses generation and experiments for therapeutic intervention.

https://string-db.org/
https://string-db.org/
https://string-db.org/
https://string-db.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
www.pathwaystudio.com
www.pathwaystudio.com
www.pathwaystudio.com
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Figure 1. Alzheimer’s disease gene interaction network input to this
network: TREM2, PLD3, DLGPAP1, TMEM51, EIF2AK2, APP, PSEN1, PSEN2,
APOE. Genes that are known to interact with each other are connected
by cyan lines (information obtained from curated databases) or magenta
lines (experimentally determined connections). The genes that could be
in the same neighborhood are connected by green lines, those that could
have gene fusions are linked by red lines and those genes that could co-
occur are linked by blue lines.

Knowledge extracted and cataloged from research in the
molecular and cellular domains could enable us to identify
specialized pathways relevant to the MH domain. This would
enable very sophisticated downstream system biology analysis
and that could offer new insights into mechanisms of MH
disorders. Such a cellular level analysis in conjunction with a
multiomics analysis could help understand the functioning of
the disorder at a systems level and improve our understanding of
the disorders.

Taking advantage of publicly available MH
datasets and resources
Throughout this review process for this article, we encountered
many important large datasets and/or resources relevant to this
topic. Many of these resources follow the FAIR principles of Find-
able, Accessible, Interoperable and Reproducible [127] and could
empower researchers to kick-start their analyses without the
need to apply for a federal grant to gather sample data. Data
from such studies could be used in meta-analyses or case con-
trol association studies using powerful modern ML tools or AI-
based models. Reuse of such publicly available resources enable
researchers to perform an in-depth data analysis for their dis-
covery or validation experiments. These resources have been
summarized in Supplementary File 1.

Integration of molecular technologies in the
clinic for MH disorders
The integration of molecular technologies into the clinical realm
for MH disorders is a promising avenue for enhancing diagnosis
and treatment. In the context of MDD, traditional diagnostic
methods involving questionnaires and clinical assessments are
being complemented by molecular omics technologies [128].
Researchers are exploring the potential clinical application of
pharmacogenomic testing in MDD [129]. Antidepressant drugs
have been found to influence the epigenome through multiple
mechanisms. Drug Genipin has been found to reduce activity of
enzyme DNMT1 which preserves the DNA methylation patterns
during replication [130]. Another drug Paroxetine was found to
change phosphorylation of DNMT1 which again affects enzyme
activity. Other drugs known as histone deacetylase (HDAC)
inhibitors have been found to have antidepressant effects through
regulation of gene transcription [131]. HDAC inhibitors and
cyclooxygenase-2 (COX-2) inhibitors also show promise in treating

MDD in animal models [7, 132]. Other examples include the
use of pharmacogenomic markers of CYP450 to predict drug
response or adverse effects in psychiatric drugs. Another example
includes confirming drug treatment in certain genetic conditions
including Down syndrome, Fragile X syndrome, phenylketonuria
and 22q11 deletion syndrome [133]. Understanding the functions
and biological processes of the potential biomarkers would allow
scientists to explore how they could be integrated into the clinic.

Towards clinical decision support systems
In the realm of clinical cancer care, sequencing-based results
and reports, known as Molecular Diagnostic (MolDx) panels, are
gradually making their way into practice. The FDA has approved
an increasing number of NGS-based biomarkers that are covered
by insurance for both diagnostic and treatment purposes. Genetic
counseling often accompanies these tests, ensuring informed
decision-making. A notable example in the field of MH is the Gen-
eSight test (genesight.com) [134], which assesses genetic variants
to guide drug selection for psychiatric disorders. These advance-
ments open the door to creating tailored molecular diagnostic
panels for each MH disorder. These panels could be integrated into
CDSSs, along with patient medical and drug history, to suggest
suitable medications. Clinicians could then use this information
to devise more effective treatment plans, reducing the likelihood
of adverse reactions or poor responses, ultimately lowering hos-
pital readmissions and costs. This progress holds the potential
to drive personalized medicine forward through sophisticated ML
models within CDSS.

Challenges
Challenges and future directions in MH research are multifaceted.
Patients with mental illness are at an elevated risk for other
health issues like cardiovascular disease [135] and type 2 diabetes
[136], emphasizing the need to bridge the gap between psychiatric
disorders and their physiological manifestations. While progress
has been made in identifying biomarkers, actionable ones are still
limited [49], requiring more validation and research. There is a
growing demand for increased funding in MH research, as well as
the development of noninvasive diagnostic procedures, expanded
insurance coverage and cost-effective diagnostic and treatment
options [7].

Future directions
In the realm of future directions for MH research, several promis-
ing avenues emerge. Firstly, there is a growing interest in creating
diagnostic panels using the potential biomarkers discussed in this
article. This approach, already successful in cancer diagnostics
and often covered by insurance, holds the potential to streamline
and enhance MH disorder diagnoses, making them more accessi-
ble and cost-effective.

Moreover, the application of these potential biomarkers could
lead to more sophisticated interaction analyses, a few examples
of which were showcased in this article. These can provide deeper
insights into the underlying mechanisms of these disorders. This
includes exploring intricate relationships between various bio-
logical markers, shedding light on the complex nature of MH
conditions.

To gain a comprehensive understanding, researchers could
employ advanced statistical analyses, such as correlation or ML
approaches to examine the multiomics biomarkers across various
MH disorders listed in this article. This approach could uncover
shared or distinct patterns, aiding in tailored diagnostic and treat-
ment strategies.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae098#supplementary-data
genesight.com
genesight.com
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Figure 2. Top enriched gene ontology biological processes in AD. The x axis shows the negative log base 10 of the adjusted P value. The y axis indicates
the various GO terms enriched.

Figure 3. Gene interaction networks in MDD Input gene list: SORCS3, NEGR1, NR3C2, NR3C1, MTRNRL8, SERPINH1, CCL4, SLC1A2, GABRD, HTR1A, HTR1B,
HTR2A, HTR2C, PXMP2, EEF2, RPL26L1, RPLP0, PRPF8, LSM3, DHX9, RSRC1, AP2B1 Genes that are known to interact with each other are connected by cyan
lines (information obtained from curated databases) or magenta lines (experimentally determined connections). The genes that could be in the same
neighborhood are connected by green lines, those that could have gene fusions are linked by red lines and those genes that could co-occur are linked
by blue lines.

Figure 4. microRNAs and genes associated with PTSD enriched with common cell processes and diseases. The figure shows an interaction network
between the microRNAs and genes associated with PTSD. First connections between the microRNAs and genes were found and then the common cell
processes and diseases were added to the network. The microRNAs are represented as red parallelograms, the cell processes are the yellow colored
boxes and the diseases are the purple colored boxes.
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Additionally, the gut–brain axis and its connections to the
immune system represent an intriguing area for further explo-
ration. Investigating the role of the gut microbiome in MH disor-
ders could yield critical insights into the connection between the
gastrointestinal system and brain function, potentially opening
new avenues for intervention.

Lastly, it is essential to expand this research beyond the disor-
ders already discussed. Applying similar methodologies to other
MH conditions could broaden our understanding of the molecu-
lar underpinnings of these disorders, ultimately paving the way
for more effective diagnostics and treatments across the MH
spectrum.

CONCLUSION
Neuroscience research has made tremendous progress in under-
standing the processes that govern the system. But not much
progress has been made in translating this research into the clinic
to treat psychiatric disorders. Biomarkers can bridge this gap
which is why it is crucial to extract knowledge from molecular and
cellular research using a broad array of bioinformatics and data
analytics methods, tools and resources [121, 137]. The progressive
identification of new biomarkers in the MH space could enable
researchers to build advanced CDSS empowered by sophisticated
ML models to advance personalized medicine.

Our findings suggest that MH disorders we reviewed in this
paper involve complex molecular and cellular changes, affect-
ing various pathways and processes, including protein function,
phosphorylation, inflammation and immune responses, many of
which could lead to new diagnostic or prognostic biomarkers. It
also highlights the tremendous scope and opportunity for appli-
cation of molecular and cellular data to further MH research. As
we strive to integrate MH disorders into mainstream EHR systems,
the power of translational bioinformatics and systems medicine
will enable us to overcome the stigma associated with these
disorders and accelerate new funding for research studies, in silico
and lab analyses and findings.

Key Points

• Biomarkers in mental health disorders: The article dis-
cusses various potential biomarkers associated with dif-
ferent mental health disorders, shedding light on the
molecular and cellular aspects of conditions like AD,
MDD, SCZ, BD, ASD and ADHD.

• Omics technologies: The work emphasizes the impor-
tance of omics technologies, including genomics, pro-
teomics, epigenetics, DNA copy number, microRNA and
multi-omics analysis, in identifying and understanding
these potential biomarkers. These technologies provide
valuable insights into the biological processes underly-
ing mental health disorders.

• Gut–brain axis and the immune system: The article
highlights the emerging role of the gut–brain axis in
mental health. It discusses how the gut microbiome
and its interactions with the brain through the immune
and endocrine systems can influence mental health
conditions, paving the way for potential diagnostic and
therapeutic interventions.

• Example evidence-based analysis: We used the pub-
lished results in mental health disorders and performed
evidence-based analysis to demonstrate the power of

connecting the candidate biomarkers to biology using
a systems biology approach. It not only pinpoints the
biological processes affected but also creates ideas and
opportunities for new hypotheses generation and exper-
iments for therapeutic intervention.

• Clinical integration: The work explores the integration
of molecular technologies, such as pharmacogenomic
testing, into clinical practice for mental health disorders.
It discusses how these technologies can aid in personal-
ized treatment plans and improve treatment outcomes.
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