Skip to main content
. 2024 Mar 4;15:1291362. doi: 10.3389/fpsyt.2024.1291362

Table 2.

The mean AUC of the best-performing models (95% confidence interval) for predicting suicide outcomes by study design, data source, sample size, and type of machine learning methods.

Suicidal thoughts Suicide attempt Death by suicide Overall Best-performing algorithms
Study design
 Cross-sectional 0.884 (0.859 - 0.909) 0.866 (0.822 - 0.911) 0.815 (0.014 - 1.615) 0.862 (0.835 - 0.889) Regularized regressions
 Longitudinal 0.846 (0.799 - 0.892) 0.836 (0.813 - 0.858) 0.827 (0.798 - 0.854) 0.829 (0.813 - 0.846) Support Vector Machine
Data source
 Administrative 0.885 (0.801 - 0.968) 0.829 (0.783 - 0.875) 0.826 (0.780 - 0.854) 0.838 (0.816 - 0.861) Support vector machine
 Survey 0.849 (0.819 - 0.878) 0.857 (0.830 - 0.884) 0.815 (0.014 - 1.615) 0.842 (0.822 - 0.862) Regularized regressions
 Administrative & Survey 0.822 (0.695 - 0.950) 0.822 (0.695 - 0.950) Regularized regressions
Total Sample size
 ≤1,000 0.882 (0.818 - 0.947) 0.847 (0.799 - 0.894) 0.840 (0.804 - 0.792) Regularized regressions
 1,001-10,000 0.874 (0.845 - 0.904) 0.826 (0.801 - 0.851) 0.824 (0.669 - 0.979) 0.841 (0.819 - 0.863) Support vector machine
 >10,000 0.771 (0.640 - 0.903) 0.874 (0.828 - 0.921) 0.825 (0.795 - 0.856) 0.839 (0.815 - 0.862) Regularized regressions
Target sample size
 ≤200 0.910 (0.873 - 0.947) 0.838 (0.810 - 0.866) 0.819 (0.645 - 0.993) 0.843 (0.819 - 0.867) Support vector machine
 201-1,000 0.845 (0.822 - 0.868) 0.859 (0.811 - 0.906) 0.831 (0.787 - 0.874) 0.844 (0.821 - 0.866) Regularized regressions
 >1,000 0.771 (0.640 - 0.901) 0.862 (0.793 - 0.930) 0.822 (0.771 - 0.873) 0.829 (0.800 - 0.859) Gradient boosting
Machine learning method
 Bayesian algorithms 0.764 (0.698 - 0.829)
 Boosting algorithms 0.864 (0.678 - 1.050) 0.864 (0.827 - 0.900)
 Cox regression 0.789 (-0.491 - 2.069) 0.762 (0.731 - 0.793)
 Decision tree 0.760 (0.252 - 1.268) 0.729 (0.682 - 0.777)
 K-nearest neighbors
 Linear discriminant analysis
 Logistic regression 0.812 (0.569 - 1.054) 0.823 (0.701 - 0.945) 0.788 (0.630 - 0.945) 0.789 (0.737 - 0.841)
 Neural network 0.823 (0.676 - 0.970) 0.858 (0.750 - 0.965) 0.838 (0.741 - 0.935) 0.841 (0.803 - 0.879)
 Random forest 0.874 (0.846 - 0.901) 0.879 (0.848 - 0.909) 0.841 (0.801 - 0.881) 0.870 (0.852 - 0.889)
 Regularized regressions 0.795 (-0.412 - 2.002) 0.851 (0.807 - 0.894) 0.805 (0.100 - 1.511) 0.841 (0.801 - 0.879)
 Super learner 0.860 (0.720 - 1.005) 0.802 (0.708 - 0.896) 0.835 (0.796 - 0.875)
 Support vector machine 0.930 (0.040 - 1.819) 0.712 (0.616 - 0.808) 0.877 (0.589 - 1.164)

AUC, Area under the receiver operating characteristic curve.

The symbol "-" means no data is available to compute the summary statistics in the cell.