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Summary
Background It has been shown that AI models can learn race on medical images, leading to algorithmic bias. Our aim in
this study was to enhance the fairness of medical image models by eliminating bias related to race, age, and sex. We
hypothesise models may be learning demographics via shortcut learning and combat this using image augmentation.

Methods This study included 44,953 patients who identified as Asian, Black, or White (mean age, 60.68 years ±18.21;
23,499 women) for a total of 194,359 chest X-rays (CXRs) from MIMIC-CXR database. The included CheXpert images
comprised 45,095 patients (mean age 63.10 years ±18.14; 20,437 women) for a total of 134,300 CXRs were used for
external validation. We also collected 1195 3D brain magnetic resonance imaging (MRI) data from the ADNI
database, which included 273 participants with an average age of 76.97 years ±14.22, and 142 females. DL models
were trained on either non-augmented or augmented images and assessed using disparity metrics. The features
learned by the models were analysed using task transfer experiments and model visualisation techniques.

Findings In the detection of radiological findings, training a model using augmented CXR images was shown to
reduce disparities in error rate among racial groups (−5.45%), age groups (−13.94%), and sex (−22.22%). For AD
detection, the model trained with augmented MRI images was shown 53.11% and 31.01% reduction of disparities in
error rate among age and sex groups, respectively. Image augmentation led to a reduction in the model’s ability to
identify demographic attributes and resulted in the model trained for clinical purposes incorporating fewer de-
mographic features.

Interpretation The model trained using the augmented images was less likely to be influenced by demographic in-
formation in detecting image labels. These results demonstrate that the proposed augmentation scheme could
enhance the fairness of interpretations by DL models when dealing with data from patients with different de-
mographic backgrounds.
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Introduction
Computer-aided diagnosis (CAD) and deep learning
(DL) have proven highly effective in pathologic diag-
nosis1,2 (radiological finding detection), anatomical
segmentation on chest X-rays (CXR),3,4 detecting Alz-
heimer’s disease (AD),5,6 and segmenting brain regions
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on magnetic resonance imaging (MRI).7,8 DL models
have also demonstrated remarkable performance in
augmenting clinical decision making and assisting re-
searchers to better utilise clinical data for tasks such as
medical imaging classification,7,8 personalised risk pre-
diction in electronic health records (EHR),9,10 and
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Research in context

Evidence before this study
We used Google Scholar and PubMed search engines to do
our review. We used keywords “Fairness”, “Shortcut learning”,
“Machine learning in healthcare”, and “Medical image” to
query the articles on Google Scholar. We used the following
terms “(((disparity OR bias OR fairness OR shortcuts) AND
(classification)) AND ((x-ray) OR (MRI))) AND (machine
learning [MeSH Terms] OR deep learning [MeSH Terms])” on
PubMed. We limited the articles to original research and
English articles. We excluded the articles which were written
before January 1 2010, and did not focus on medical imaging.
Previous works have discussed the bias in medical imaging
classification tasks and demonstrated the discrepancy in
performance in demographic groups. Gichoya and colleagues
have shown that the deep learning (DL) model could
recognise the race of the patients by CXR with exceptional
accuracy and that could be a potential source of the disparity
in performance of healthcare AI. DeGrave and colleagues have
shown that the DL models may exploit the token in CXR
images as shortcuts in COVID-19 detection. Zhang and
colleagues benchmarked several debias methods during the
training phase in improving the fairness of the classifier.
Jabbour and their colleagues tried to prevent the shortcuts
and improve fairness in medical imaging fields by
implementing transfer learning approaches. In computer
vision applications, Chung and colleagues proposed a data
augmentation method to achieve group fairness. Tian and
colleagues demonstrated several research methods that
implement data augmentation to solve fairness issues.
However, to the best of our knowledge, no study has focused
on using image augmentation to enhance the fairness of AI in
medical imaging.

Added value of this study
The augmentation is an unsupervised, model-agnostic, and
data-agnostic approach and can be applied in either training
or test phases. In this study, we mitigated the effect of

demographic attributes contributing to model decision-
making for disease prediction. First, we showed that the
augmented images weaken the performance of DL models in
classifying demographics by learning fewer demographic
attributes. The augmentation schemes were implemented
and validated on two publicly available CXR datasets and a
brain MRI dataset. Second, models trained using augmented
images maintained good performance in radiological finding
or neurological disorder detection while reducing disparities in
several evaluation metrics among demographic groups. We
compared our method to several debiasing methods using
various evaluation metrics. Finally, our experiment objectively
showed that augmenting the images prevents a DL classifier
from learning demographic features for pathology detection.

Implications of all the available evidence
In our study, we focus on lowering the disparity in AUC,
binary cross entropy (BCE), expected calibration error (ECE),
error rate, and precision by augmenting the images before the
DL model training process. In contrast to current
methodologies for mitigating bias, our proposed approach is
noteworthy for its model-agnostic and task-agnostic
characteristics, coupled with the absence of a dependency on
auxiliary demographic labels. This augmentation strategy
demonstrates a capacity to diminish disparities while
concurrently sustaining model performance. Although our
method does not entirely eradicate disparities, it accentuates
the imperative for further investigative efforts in this
relatively nascent domain, particularly in the context of the
escalating application of DL within the medical sector. Human
researchers are unable to detect biases from imaging alone,
and we must further understand how algorithms are learning
biases and perpetuating them to combat this issue. This study
indicates some evidence we can combat algorithmic bias
through data augmentation and preventing shortcuts; still,
work still needs to be done to completely remove bias that
could potentiate racial disparities prevalent today.
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analysing physiological data.11–13 Despite these advances,
fairness in healthcare DL models is a growing
concern.13–15 Defined here, fairness represents an algo-
rithmic bias present in model predictions, and an
example would be an unfair model creating unfav-
ourable predictions based on race, sex, or age from
training data. A growing number of researchers are
addressing fairness and detecting algorithmic biases in
the application of DL models for various healthcare
applications.16–20 A recent study has benchmarked
several debias methods in improving the fairness of the
healthcare model.21

One potential source of algorithm bias has been
uncovered from previous studies that have demon-
strated DL models are prone to shortcuts based on the
oversimplification of data features.22,23 For example,
using an image dataset from a single hospital with a
high prevalence of pneumonia to train a model could
result in the ubiquitously used metal marker placed by
the radiology technician in the corner of the chest
radiograph to be prioritised over the more complex
shapes and patterns indicative of true pathologic pneu-
monia. Similar situations might arise when a machine
learning model focuses on features that are typical of
race, age, or sex, rather than pathological phenomena.
For example, one breast histology algorithm reflected
ethnicity rather than intrinsic tumour biology based on
histologic staining patterns at a particular site with more
Black patients than other participating institutions.24

Further studies demonstrated that convolution neural
networks (CNNs) were shown to generate results that
varied as a function of race, age, sex, or socioeconomic
www.thelancet.com Vol 102 April, 2024
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status, thereby exposing patients to potentially erro-
neous predictions.16,18 Importantly, one recent study25

reported that DL models are highly effective in differ-
entiating among individuals of different races, based on
chest radiographs, cervical spine radiographs, and
computed tomography (CT) scans of the chest. In that
study, DL models achieved high area under the receiver
operating characteristic (ROC) curve (AUC) scores
(0.80–0.99) even when trained using images of low
quality, segmented regions, or other perturbations.
These biases can seriously compromise prediction ac-
curacy in real-world settings as the models are making
predictions based on unintended patterns, hindering
model generalizability.

The ease with which machine learning models
identify race from patient data such as CXR images
raises the possibility of using these features as shortcuts
in identifying pathological features and thereby affecting
the fairness of the models by introducing and perpetu-
ating bias. Researchers remain in the dark when it
comes to understanding the means by which machine
learning models identify race, thereby making it very
challenging to improve fairness and eliminate race-
related bias from diagnostic results.25 One hypothesis
is that algorithms are taking shortcuts (shortcut
learning) and is a problem of inadequate generaliz-
ability.26 Data augmentation, widely used in machine
learning for a range of data types,27–31 can reduce the
effects of overfitting,27,31 underperformance,28 and
generalizability.31–33 It attempts to extract more infor-
mation from the original training data set by artificially
expanding the training set through warping images or
oversampling.29,33 Multiple studies have demonstrated
that data augmentation can effectively eliminate learned
shortcuts from the original dataset.34–36 This is further
evidenced by a recent study employing an adversarial U-
Net architecture to alter natural images, thereby
removing shortcut features.36 If shortcut learning po-
tentiates bias in healthcare DL algorithms, data
augmentation may assist in improving model fairness
by counteracting shortcut learning.

In the current study, we sought to improve model
fairness by preventing a DL model from learning
shortcuts using data augmentation. Our objective was to
eliminate disparities in detection performance in med-
ical images among demographic groups (e.g., Black vs.
White, male vs. female, or young vs. old).
Methods
Dataset
This study was based on 2D images in two CXR datasets
and 3D images in a brain imaging dataset. We collected
de-identified CXR images and clinical data in the
MIMIC-CXR v2.0.0 database,37–39 a retrospective CXR
database containing over 220,000 CXR images from
patients admitted to the emergency department between
www.thelancet.com Vol 102 April, 2024
2011 and 2016. The MIMIC-IV40–42 database, a retro-
spective EHR database containing data from over 40,000
patients admitted to the intensive care unit at Beth Israel
Deaconess Medical Center from 2008 to 2019, was used
to extract the corresponding demographic attributes of
patients in MIMIC-CXR. The institutional review boards
of the Massachusetts Institute of Technology (No.
0403000206) and Beth Israel Deaconess Medical Center
(2001-P-001699/14) both approved the assembly of the
database for research. The CheXpert43 database is a large
public CXR database containing 224,316 chest radio-
graphs labelled with 14 radiological findings (labels)
from 65,240 patients. Frontal CXR images retrospec-
tively retrieved from MIMIC-CXR (2011–2016) were
used for whole experiments, whereas radiographs from
CheXpert (2002–2017) were used for external validation.
The radiological findings of each CXR image was
extracted from the free-text radiology report using rule-
based natural language processing models (NegBio44

and CheXpert43). Radiological findings for CXR images
were: ‘Atelectasis’, ‘Cardiomegaly’, ‘Consolidation’,
‘Edema’, ‘Enlarged Cardiomediastinum’, ‘Fracture’,
‘Lung Lesion’, ‘Lung Opacity’, ‘No Finding’, ‘Pleural
Effusion’, ‘Pleural Other’, ‘Pneumonia’, ‘Pneumo-
thorax’, and ‘Support Devices’. Three types of de-
mographic attributes were extracted: self-identified race,
age, and self-reported sex. As shown in Table 1, this
study included MIMIC-CXR images from 44,953 pa-
tients who identified themselves as Asian, Black, or
White (mean age, 60.68 years ±18.21; 23,499 (52.3%)
women) for a total of 194,359 radiographs. This study
also included CheXpert images of 45,095 patients (mean
age 63.10 years ±18.14; 20,437 (45.3%) women) for a
total 134,300 radiographs. We used the CheXpert as an
external validation cohort due to the different distribu-
tion of races. We considered Asian, Black, and White
because of the larger populations in both MIMIC-CXR
and CheXpert databases. We excluded three radiolog-
ical findings (‘Fracture’, ‘Lung Lesion’, and ‘Pleural
Other’) because of the data scarcity and excluded ‘Sup-
port Devices’ because of its low clinical relevance.

The 3D brain MRI data used in the preparation of this
article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)45 database (adni.loni.usc.
edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W.
Weiner, MD. We extracted the preprocessed scans with
NIFTI format, which had undergone image preprocess-
ing steps including multiplanar reconstruction (MPR),
GradWarp, and B1 non-uniformity correction. We
collected a total of 272 patients which were labelled as
either Alzheimer’s Disease (AD) or Cognitively Normal
(CN). As shown in Table 1, the cohort included 272 pa-
tients (mean age 76.97 years ±14.22; 142 women) for a
total 1195 brain MRI images. Because the race distribu-
tion was imbalanced (91.2% areWhite), we only separated
groups by age and sex in our following experiments. The
3
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Attributes MIMIC-CXR CheXpert Attributes ADNI

Type CXR CXR Type Brain MRI

# Images 194,359 134,300 # Images 1195

# Patients 44,953 45,095 # Patients 272

Race Race

Asian 1941 (4.3%) 7422 (16.5%) Asian 1 (0.4%)

Black 8945 (19.9%) 3016 (6.7%) Black 21 (7.7%)

White 34,067 (75.8%) 34,657 (76.9%) White 248 (91.2%)

Others N/A N/A Others 2 (0.7%)

Sex Sex

Female 23,499 (52.3%) 20,437 (45.3%) Female 142 (52.2%)

Male 21,454 (47.7%) 24,657 (54.7%) Male 130 (47.8%)

Age Age

0–40 6390 (14.2%) 5644 (12.5%) 0–75 110 (40.4%)

40–60 13,680 (30.4%) 13,316 (29.5%)

60–80 17,095 (38.0%) 17,599 (39.0%) 75+ 162 (59.6%)

80+ 7788 (17.3%) 8536 (18.9%)

Table 1: Datasets used in the current study.
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augmented image dataset was created by distorting all
images via random rotation, shear transformation, scaling
transformation, and fisheye distortion.

In MIMIC-CXR, the dataset was split into subsets for
training (116,405 radiographs, 60%), validation (119,339
radiographs, 10%), and testing (58,618 radiographs,
30%). All images underwent histogram equalisation and
resizing to (224, 224) before being written to TFrecords
to ensure data consistency. In ADNI, the dataset was
split into training (765 images, 64%), validation (187
images, 15.6%), and testing (243 images, 20.3%) sets.
All MRI images were segmentented using SPM 12
(https://www.fil.ion.ucl.ac.uk/spm/) and only the gray
matter, white matter and cerebrospinal fluid were pre-
served. The segmented images were centre cropped
according to the brain area and resized to (96, 96, 96).
The random seed was set to 2021 for all analyses to
ensure reproducibility. We partitioned the data into
training, validation, and testing sets according to sub-
jects, thereby ensuring that no data leakage occurred.
The detailed data information regarding the train, vali-
dation, and test splits are shown in Supplementary
Tables H1 and H2.

Experiment overview
Fig. 1 illustrates the four experiments conducted in the
current study. (A) We assessed the correlation between
image labels (radiological finding or disease) and de-
mographics. (B) We assessed the performance of a DL
model in differentiating demographics with and without
augmented images. The performance was an indication
of the presence of the learned demographic features in
images, which may be exploited as shortcuts by the DL
model. (C) We computed disparities across racial, age,
and sex subgroups in detecting image labels (i.e., AD or
radiological findings) to assess the extent to which the
predictions of the DL model exhibited bias. (D) We
conducted a task transfer experiment in which feature
representations embedded in the trained model in (C)
were used to predict demographic attributes. The per-
formance was used to indicate whether the model had
incorporated demographic features as shortcuts in the
image label detection task.46 We then evaluated for
improvement of fairness in Experiments B, C, and D,
the results of which were compared with those obtained
without augmentation.

Proposed augmentation
As shown in the dashed boxes in Fig. 1, which illustrates
Experiments B, C, and D, the proposed augmentation
scheme involved distorting images via random rotation,
shear transformation, scaling transformation, and fish-
eye distortion. Image rotation was implemented using
random angles between −90◦ and 90◦ for CXR and
between −10◦ and 10◦ for brain MRI. The shear trans-
formation was implemented using random radians
between −π/4 and π/4 for CXR and between −π/6 and
π/6 for brain MRI. Image scaling was implemented
using randomly selected sizes of between 0.4 and 1 for
CXR and between 0.8 and 1 for brain MRI. Fisheye
distortion47 was implemented with the coefficient set to
0.4 with a randomly selected central point for CXR and
brain MRI. Details pertaining to the four augmentations
are listed in Supplementary Table A1. Table 2 presents
the example of applying a single augmentation to an
CXR image. Supplementary Table A2 shows the
example of an augmented brain MRI image.

Experiment A: relationship between demographic
attributes and image labels
In Experiment A, the mutual independence of demo-
graphic attributes (race, age, and sex) and image labels
www.thelancet.com Vol 102 April, 2024
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Fig. 1: Experiments performed in the current study. Experiment A: Radiological/AD label detection based on demographic attributes via logistic
regression. Experiment B: Demographic attribute prediction from CXR and brain MRI images via the CNN-based model. Detection performance
was used to indicate the presence of demographic features in CXR or brain MRI images, which could potentially be used as shortcuts.
Experiment C: Testing for disparities in radiological/AD label detection results among demographic groups when applying a Densenet121-based
model to CXR images and a ResNet 18-based model to brain MRI images. Experiment D (Task transfer test): The trained model in Experiment C
would be frozen and the last prediction layer would be replaced to classify demographic attributes. The model’s performance was used to
indicate whether the model had incorporated demographic features as shortcuts in the radiological/AD label detection task. The proposed
augmentation method was then applied to Experiment B–D and compared with the results obtained without augmentation.

Articles
(radiological findings for CXR, AD for brain MRI) was
evaluated using the chi-square test and permutation test.

Experiment B: demographic attribute identification
from images
Experiment B involved implementing trained models
within the DenseNet12148 initialised with ImageNet pre-
trained weights and 3D ResNet 1849,50 without pre-
trained weights for CXR and brain MRI, respectively.
For the classification of race/age/sex from CXR, we
added a Softmax classification layer with three outputs
for race (Asian, Black, and White), four outputs for age
(0–40, 40–60, 60–80, and 80-), and two outputs for sex
(male and female), and the Adam optimizer was used to
optimise categorical cross entropy loss. For the classifi-
cation of age/sex from brain MRI, we added a single
node sigmoid prediction layer for age (0–75 and 75-) and
sex (male and female), and the binary cross entropy
(BCE) loss was used. The number of epochs depended
on the specifics of the training process. Training for the
CXR data was discontinued if the validation loss did not
show improvement over 4 consecutive epochs within a
span of 15 epochs. Similarly, for the brain MRI data,
training ceased when there was no improvement in
validation loss across 10 consecutive epochs within a
www.thelancet.com Vol 102 April, 2024
total of 80 epochs. The batch size was set to 128 and 16
for CXR and brain MRI, respectively. The learning rate
decayed by 5% per 2 epochs with an initial learning rate
of 0.001.

Experiment C: disparities of radiological findings
and AD detection in images
Experiment C involved the detection of radiological
findings or disease in images. For CXR, we added a
sigmoid classification layer with ten nodes correspond-
ing to 10 radiological findings. Because the ten labels
were independent, we performed a multi-label classifi-
cation task by optimising BCE loss. For brain MRI, we
performed a binary classification task for classifying AD
and CN. The batch size, learning rate, and number of
epochs were the same as the model used for the clas-
sification of demographic attributes. Binary classifica-
tion thresholds were selected for each radiological
finding (or AD label) to maximise the weighted F1-score
for the validation set. Test-time augmentation is a
technique for obtaining ensemble effects and enhancing
the performance by averaging the predictions over
multiple augmented data.51 In this study, we employed
our proposed augmentation scheme on the test set to
simulate real-world scenarios where re-training a model
5
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Methods Examples

Rotating transformation Angle: −20◦ Angle: 45◦ Angle: 90◦

Shear transformation Radian: π/6 Radian: −π/5 Radian: −π/4

Scaling transformation Size: 0.8 Size: 0.6 Size: 0.4

Fisheye distortion Central point: (133, 164) Central point: (176, 105) Central point: (110, 92)

Table 2: Examples of image distortion methods used in this study (one distortion per image).
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is impractical. For each original image, we generated
three augmented images using each augmentation
method, resulting in a total of twelve augmented im-
ages. The final prediction was obtained by averaging the
prediction scores for each of the augmented images.

Experiment D: task transfer from image label
detection to demographic attribute identification
To indicate whether the model had incorporated de-
mographic features as shortcuts in the image label
detection task, Experiment D involved predicting de-
mographic attributes by using the hidden state from the
penultimate layer of the radiological finding or AD
detection model. Comparisons were performed on
models trained with and without augmentation.

Model interpretation
To gain insight into how the models perform image-
based evaluations, we first used Gradient-weighted
Class Activation Mapping (GradCAM)52 and integrated
gradient53 to generate heatmaps for individual examples
showing the regions on which the model focused. We
further used mean saliency maps generated by inte-
grated gradients, to show the regions on which the
model focused for a set of images. We selected the
images where the original model accurately identified
www.thelancet.com Vol 102 April, 2024
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the demographic attributes but the proposed model did
not, while both models correctly recognised radiological
findings.

Comparison with existing debias methods
We implemented existing debiasing methods to
compare the improvement of fairness with our pro-
posed method. A brief comparison of the existing
methods and the proposed method is summarised in
Table 3. The existing methods included those training
on the balanced dataset or stratified dataset,21 using
adversarial learning,21,54,55 penalising with the distribu-
tion distance, and using FairALM algorithms. We also
applied our proposed methods to the existing methods
to see if our proposed method could further improve the
fairness.

Evaluation metrics
We used the model performance and disparities in
AUC, BCE, expected calibration error (ECE), error rate,
and precision to evaluate the efficacy of our proposed
model. AUC, BCE, and ECE are threshold-free met-
rics.21,60,61 Error rate and precision are threshold-required
metrics used in group fairness criteria and are also
known as equalised odds and equal opportunity. Details
of evaluation metrics can be found in Supplementary
Table I1.

Statistics
In Experiment A, we employed the chi-square test to
assess whether the distribution of image labels signifi-
cantly differed across demographic groups. In the per-
mutation test, we initially utilised a logistic regression
(LR) model to predict the image labels based on
demographic attributes. Subsequently, we compared the
Method Implementation Does it requ
demograph
information

Baseline Do not consider the demographic group differences.

Balanced21 Reduce the sample size of the majority group to
achieve a balanced population for each group.

Yes

Stratified21 Train separate models for each group. Yes

Adversarial54,56 Use an adversary to an adversary to decrease the
model’s capacity to identify demographic groups.

Yes

DistMatch
MMD57

Add a penalty to reduce the maximum mean
discrepancy58 distance between groups

Yes

DistMatch
Mean57

Add a penalty to reduce the mean of the
distribution between groups.

FairALM59 Apply an augmented Lagrangian method to
penalise the distribution discrepancy.

Yes

Proposed
augmentation

Use image augmentation to prevent the model
from learning shortcut based on demographic
information

No

aIt is not necessary to re-train the model as the image augmentation can be applied d

Table 3: Summary of the existing debias methods and the proposed method

www.thelancet.com Vol 102 April, 2024
AUC of the LR model against that of randomly
permuted image labels, achieved by shuffling the
radiological labels 100,000 times. We established a sig-
nificance level of 0.001 for testing. In Experiment B, the
AUC with 95% confidence interval (CI) was calculated
over 1000 bootstrap iterations. Throughout this process,
we repeatedly sampled data from the entire testing
dataset and tested the model to obtain the results. To
assess the presence of a statistically significant differ-
ence, the Student’s t-test was utilised. In Experiment C,
we quantified the disparities across demographic groups
by averaging values over 1000 bootstrap iterations.
Comparisons were performed on models trained with
and without augmentation. In Experiment D, the AUC
with 95% CI was calculated using the bootstrap method.

Ethics
The Institutional Review Board exempted this retro-
spective study from the written informed consent
requirement, as the Act on medical research involving
human subjects did not apply.

Role of the funding source
The funding source had no role in the study design, data
collection, data analyses, interpretation, or writing of the
report.
Results
Experiment A: relationship between demographic
attributes and image labels
For CXR, the results of the chi-square test revealed de-
pendencies between all radiologic labels and de-
mographic attributes (p < 0.01, chi-square test) except
sex and two labels (“Cardiomegaly” and “Edema”). In
ire
ic
?

Does it require re-
training the
model?

Difficulty

Yes The amount of data decreases.

Yes Minority groups may have insufficient data, resulting in a poorly trained
model.

Yes Model-specific; determining the appropriate level of the adversary can be
challenging.

Yes The data imbalance between demographic groups, different data splits, and
distance metrics during training may lead to instability in calculating the
distance.

Yes Different assumptions regarding distribution can yield varying results.

Noa Time-consuming when augmenting images

uring the test phase.

.
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the case of brain MRI analysis, the chi-square test
indicated no significant association with AD, yielding p-
values of 0.06 for age and 0.42 for sex (chi-square test).
Through permutation testing, LR achieved significantly
higher AUC for all but two of the ten radiological fea-
tures (“Cardiomegaly” and “Edema”) with p < 0.01
(permutation test). However, in the case of brain MRI
analysis, LR did not yield a significantly higher AUC
compared to random permutation. Details of the sta-
tistical results are shown in Supplementary Tables
B1–B3.

Experiment B: demographic attribute identification
from images
The models trained and tested using the original CXR
images achieved high AUC values in the classification of
images according to race, age, and sex (first row of
Table 4). The AUC values obtained using the model
trained and tested using the augmented data were 17%
lower than those obtained using the original data in the
detection of race, 16.4% lower in the detection of age,
and 0.6% lower in the detection of sex. The t-test results
indicate that the predictions have the statistically signif-
icant difference (p-value <0.001, t-test) for race, age, and
sex. Table 5 shows the results of predicting age and sex
using original and augmented MRI images. The pro-
posed augmentation model was effective in preventing
the model from recognizing the age (18.3% lower) and
sex (35.2% lower) using brain MRI images. The t-test
results indicate that the predictions have the statistically
significant difference (p-value <0.001, t-test) for age, and
sex. These results indicate that using augmented (dis-
torted) images hindered the retrieval of demographic
information. Disparities using only a single augmenta-
tion method can be found in Supplementary
Tables A3–A8.

Experiment C: performance and disparities in the
detection of image labels
Figs. 2 and 3 illustrate the performance and fairness
gaps of each method implemented. The fairness gap, as
indicated on the x-axis, is presumed to measure the
discrepancy in performance metrics across de-
mographic groups, while the y-axis denotes the metric
values.62 The dashed black lines represent the perfor-
mance outcomes of the proposed model. For metrics
such as AUC and precision, higher y-values signify
better performance, whereas for BCE, ECE, and error
rate, lower values are preferable. A smaller fairness gap
denotes a more equitable model. Our proposed model
demonstrates comparable performance and fairness
relative to other debiasing methods and exhibits a
reduced fairness gap compared to the baseline model in
most scenarios. Specifically, Fig. 2 reveals that the pro-
posed model’s performance in Edema identification is
on par with other debiasing methods across five evalu-
ation metrics and shows a smaller fairness gap than the
baseline in most demographic categories. The results
for the other nine radiological labels are shown in
Supplementary Figures E1–E9. Fig. 3 highlights that the
proposed model has a lower fairness gap than the
baseline in all categories, except for sex when assessed
with ECE. In terms of overall model performance, the
proposed model also matches other debiasing methods.
It is important to note that no single method consis-
tently outperforms the others across all metrics and
demographic groups, reflecting the inherent challenges
in mitigating bias within DL models.

As shown in Fig. 4, the AUC values of the model
trained with proposed augmented images do not
decrease substantially in edema and AD detections, and
the disparities for TPR and FPR are smaller than those
of the original model. The results of all ten radiological
findings for CXR images are shown in Supplementary
Table C1.

As shown in Tables 6 and 7, our proposed
augmentation scheme could also apply to testing data
(test-time augmentation) without re-training the model
(Second row). By incorporating the augmentation
scheme in either the training or testing phases, the
model could achieve the lowest disparities in AUC, ECE,
and error rate across different age groups and in all
metrics across different race or sex groups. Similarly,
the model trained or tested using the proposed
augmented MRI achieved the lowest disparities in all
metrics across different age groups and in metrics
except ECE in the sex groups. Furthermore, when add-
ing the augmentation scheme to the existing debias
methods for CXR or MRI, the disparity decreased
(Supplementary Tables D1–D5). The results of using
ResNet 50 architecture, using CheXpert dataset, and
without ImageNet pretrained weights are presented in
Supplementary Tables D6–D8, respectively.

Experiment D: task transfer from image label
detection to demographic attribute identification
Figs. 5a and 4b present the result obtained in detecting
demographic attributes using image features embedded
in models trained for the detection of radiological
findings and AD, respectively. The lower AUCs of the
model trained with augmented images indicate that the
model embedded less demographic information.
Supplementary Table F1 shows the additional results in
the task transfer experiment using ResNet50 architec-
ture and the CheXpert dataset, where similar results
were obtained.

Model interpretation
Fig. 6a presents an example of heatmaps generated
from the original model and the model trained using the
augmented data using GradCAM. The results using
other interpretation methods are shown in
Supplementary Figure G11. In these examples, the
original model was unable to locate cues related to
www.thelancet.com Vol 102 April, 2024
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Augmentation Age (0–75 vs. 75+) Sex (Female vs. Male)

w/o 0.655 [0.575–0.735] 0.856 [0.800–0.912]
w/ 0.535 [0.448–0.622] 0.555 [0.468–0.641]

Lower values indicate a weaker ability to recognise age or sex based on brain
MRI images. The model trained using augmented images is hard to recognise
demographic attributes from brain MRI. The minimum values are highlighted in
bold.

Table 5: AUCs of models with and without proposed augmentation in
detecting demographic attributes in brain MRI.
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‘Consolidation’, whereas the model trained using the
augmented data was able to locate the abnormality. Fig. 6b
displays the heatmaps of a representative case generated
by the original model for predicting radiological label,
race, age, and sex, which exhibit similar distributions. In
contrast, the proposed model yields different distribu-
tions. Fig. 7a and b depict the mean saliency maps ob-
tained from the original model and the model trained
using augmented data, accompanied by the correspond-
ing distributions of gradients in Experiment B and
Experiment D, respectively. The saliency maps illustrate
that the original model relied heavily on certain regions in
the CXRs to make decisions, while these regions were no
longer prioritised in the proposed model. This suggests
that the model could be previously using specific de-
mographic features as shortcuts, and the augmentation
process helped the model overcome these biases.
Supplementary Figures G1–G10 show the saliency maps
of models used for detecting radiological findings.
Discussion
Shortcut learning refers to a phenomenon in which a DL
model memorises specific features or patterns (i.e.,
simple solutions) in the training data instead of learning
the underlying relationships between the input and the
target.63 Our objective in this study was to identify if DL
models were embedding demographic shortcuts in
detecting of image labels and then evaluate if augment-
ing the training data could combat these shortcuts,
thereby improving fairness. As demonstrated by the
high AUCs of the original model in Experiment B, it is
far easier for a DL model to detect demographic attri-
butes than to detect image labels (e.g., Race: 0.948 vs.
Radiological findings: 0.744). Thus, including these de-
mographic shortcuts undermines the ability of the
model to perform the classification task appropriately,
which it was designed for, and can seriously skew
detection results for radiological findings or diseases.25,64

This study indicates that the proposed dataset augmen-
tation scheme is effective in mitigating the impact of
demographic features in medical images. Specifically,
the use of augmented images leads to reduced perfor-
mance disparities between demographic groups while
maintaining the original detection performance.
Compared to existing debiasing methods, our proposed
9
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Fig. 2: The model performance and fairness gap for identifying Edema from CXR images in different race, age, and sex groups. Each row
represents the performance (y-axis) and fairness gap (x-axis) of each evaluation metric. The 95% confidence intervals are calculated from 1000
bootstrap iterations. Each plot represents a different de-bias technique including the baseline model, the proposed augmentation, balanced,
stratified, adversarial learning, DistMatchMMD, DistMatchMean, and FairALM. AUC: Area Under the ROC Curve; BCE: Binary Cross Entropy; ECE:
Expected Calibration Error.

Articles
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augmentation scheme shows comparable or even supe-
rior effectiveness in reducing disparities between de-
mographic groups, as shown in Fig. 2. In addition, our
proposed augmentation scheme offers several
advantages over other debiasing techniques. Firstly, it is
model- and data-agnostic, meaning that it can be applied
to various models and datasets. Secondly, our method
does not require demographic labels during the training
www.thelancet.com Vol 102 April, 2024
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Fig. 3: The model performance and fairness gap for identifying AD from brain MRI in different age and sex groups. Each row represents the
performance (y-axis) and fairness gap (x-axis) of each evaluation metric. The 95% confidence intervals are calculated from 1000 bootstrap
iterations. Each plot represents a different de-bias technique including the baseline model, the proposed augmentation, balanced, stratified,
adversarial learning, DistMatchMMD, DistMatchMean, and FairALM. AUC: Area Under the ROC Curve; BCE: Binary Cross Entropy; ECE: Expected
Calibration Error.

Articles
process. Thirdly, it does not affect the amount of data, as
we do not require the generation of synthetic data or the
removal of existing data to create a balanced dataset.
Lastly, our method can be applied only during the testing
time, making it particularly useful in situations where re-
training the model is not feasible. To the best of our
knowledge, this is the first study to introduce a dataset
augmentation scheme to mediate the influence of
demographic-related features in medical images.

Data augmentation is a technique that expands the
size and diversity of a training dataset by creating new
examples from the original data through various
www.thelancet.com Vol 102 April, 2024
transformations, such as rotating or scaling. One
possible reason why the augmentation process can
alleviate shortcut learning is that it exposes the model to
a more comprehensive range of features, patterns, and
contexts by adding new examples with different varia-
tions. As a result, the model is less likely to recognise
demographic information that depends on specific pat-
terns. When recognizing demographic information be-
comes as challenging as identifying radiological
findings or diseases (e.g., Race: 0.776 vs. Radiological
findings: 0.724), the model is less likely to take
demographic information as shortcuts. Our
11
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Fig. 4: ROC curve of the detection results using the baseline model and the model trained on augmented images. (a) and (b) The detection of
Edema from CXR in different race, age, and sex groups. (c) and (d) The detection of Alzheimer’s disease from brain MRI in different age and sex
groups. The TPR and FPR at the cutoff points are shown in each plot.
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demonstration of lower gradients in the mean saliency
maps indicates that the proposed augmented data made
it more challenging for models to capture demographic-
related features. This may explain why the augmenta-
tion scheme is effective in reducing disparities across
different groups.
The above-mentioned concept was supported by our
four experiments. The results of the chi-square test and
permutation test from Experiment A revealed that the
radiological findings were strongly related to de-
mographics. In Experiment B, we utilised the proposed
augmentation scheme for retraining the models, which
www.thelancet.com Vol 102 April, 2024
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Train-time
aug.

Test-time
aug.

Race disparity

AUC BCE ECE Error rate Precision

w/o w/o 0.040 [−0.020 to 0.099] 0.063 [−0.018 to 0.144] 0.015 [−0.012 to 0.042] 0.055 [0.010–0.100] 0.044 [−0.033 to 0.120]

w/o w/ 0.037 [−0.009 to 0.084] 0.057 [−0.013 to 0.128] 0.013 [−0.007 to 0.032] 0.047 [−0.002 to 0.096] 0.060 [−0.020 to 0.140]

w/ w/o 0.035 [−0.016 to 0.086] 0.058 [−0.019 to 0.134] 0.018 [−0.003 to 0.039] 0.052 [0.007–0.097] 0.040 [−0.018 to 0.099]

w/ w/ 0.037 [−0.016 to 0.090] 0.056 [−0.014 to 0.126] 0.014 [−0.001 to 0.028] 0.052 [0.003–0.101] 0.045 [0.004–0.087]

Age disparity

w/o w/o 0.114 [0.012–0.215] 0.183 [−0.104 to 0.470] 0.031 [−0.019 to 0.081] 0.208 [−0.060 to 0.476] 0.093 [−0.060 to 0.246]

w/o w/ 0.106 [0.013–0.200] 0.189 [−0.098 to 0.476] 0.036 [−0.021 to 0.093] 0.181 [−0.112 to 0.473] 0.120 [−0.062 to 0.302]

w/ w/o 0.125 [0.041–0.209] 0.197 [−0.108 to 0.502] 0.023 [−0.032 to 0.078] 0.179 [−0.040 to 0.397] 0.099 [−0.091 to 0.289]

w/ w/ 0.112 [0.012–0.212] 0.186 [−0.086 to 0.457] 0.026 [−0.026 to 0.077] 0.163 [−0.110 to 0.437] 0.104 [−0.066 to 0.274]

Sex disparity

w/o w/o 0.010 [−0.009 to 0.030] 0.025 [−0.019 to 0.069] 0.013 [−0.014 to 0.039] 0.027 [−0.009 to 0.063] 0.020 [−0.017 to 0.057]

w/o w/ 0.010 [−0.008 to 0.029] 0.020 [−0.014 to 0.054] 0.009 [−0.006 to 0.023] 0.023 [−0.015 to 0.061] 0.035 [−0.041 to 0.110]

w/ w/o 0.014 [−0.014 to 0.042] 0.021 [−0.009 to 0.051] 0.007 [−0.005 to 0.019] 0.021 [−0.014 to 0.055] 0.016 [−0.012 to 0.045]

w/ w/ 0.013 [−0.011 to 0.037] 0.021 [−0.012 to 0.054] 0.007 [−0.007 to 0.021] 0.015 [−0.014 to 0.044] 0.026 [−0.020 to 0.072]

The high disparities of the model indicate inequitable predictions. The minimum values are highlighted in bold.

Table 6: Results of macro average disparities among race, age, and sex in each evaluation metric for 10 radiological finding detection using CXR.

Articles
led to poor performance in detecting demographic at-
tributes (Tables 4 and 5). In instances where de-
mographic characteristics are not readily discernible by
DL models, our assumption is that the DL model
designated for pathology detection cannot utilise these
shortcuts. Consequently, this could lead to a reduction
in the disparity of performance between different de-
mographic groups, as demonstrated in Experiment C.
We also demonstrate that the proposed model main-
tains a reasonable level of performance in detecting
radiological findings or AD. The results of the task
transfer test from Experiment D revealed that the dis-
torted images embedded less demographic information
from images, which means that these images could be
used as training data to prevent the model from taking
demographic shortcuts in the detection of radiological
findings.
Train-time aug. Test-time aug. Age disparity

AUC

w/o w/o 0.209

w/o w/ 0.251

w/ w/o 0.163

w/ w/ 0.170

Sex disparity

w/o w/o 0.247

w/o w/ 0.138

w/ w/o 0.065

w/ w/ 0.064

The high disparities of the model indicate inequitable predictions. The minimum value

Table 7: Results of disparities among age and sex in each evaluation metric

www.thelancet.com Vol 102 April, 2024
Ensuring fairness when using DL models for diag-
nosis and prognostic analysis requires that practitioners
understand the means by which DL models formulate
their decisions.65

However, interpreting the model’s operations pre-
sents a significant challenge. The complexity arises from
the intricate algorithms and the model’s non-
transparent decision-making process.66 Some DL appli-
cations (e.g., classifying handwritten digits) can be
elucidated from a purely visual perspective52; however,
saliency maps are notoriously unreliable due to a lack of
reproducibility and sensitivity in modelling parameters
and difficult data distributions.67–69 The extreme
complexity of radiographic images renders many of the
explanations provided by machines opaque to human
comprehension. This could make eliminating shortcuts
a serious ongoing challenge since we could not
BCE ECE Error rate Precision

0.322 0.109 0.273 0.428

0.109 0.024 0.173 0.226

0.253 0.070 0.128 0.095

0.038 0.012 0.151 0.107

0.369 0.033 0.258 0.373

0.038 0.062 0.124 0.182

0.076 0.042 0.178 0.156

0.055 0.100 0.168 0.144

s are highlighted in bold.

for AD detection using brain MRI.
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Fig. 5: Results of task transfer from radiological/AD label detection to race/age/sex detection. (a) The results of the CXR task. (b) The results of
the brain MRI task. The confidence interval for both figures is calculated from 1000 bootstrap iterations.
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understand how models exploit demographic features
by visualised saliency maps. It is challenging for the
current model explanation methods to fully uncover
how the deep learning model operates. The saliency
maps and Grad-CAM heatmaps suffered from limita-
tions such as inconsistency and hard to interpret.70 The
transfer task experiment is a method for investigating
the extent to which features extracted by DL models are
dependent on the tasks being performed, such as
radiological diagnoses and race detection. However,
when assessing the degree to which demographic in-
formation is utilised for making predictions, it is
important to perform additional tests such as test set
resampling, as indicated in a prior study.46

We compared our augmentation scheme with exist-
ing approaches as shown in Table 3. Most of the existing
approaches are supervised learning procedures that
require demographic labels; however, that kind of in-
formation is not always available. Another study used a
transfer learning approach to prevent the model from
exploiting demographic-related features as shortcuts.71

However, additional tasks were required in the
transfer-based training and it relies on an assumption
that the features learned in one diagnostic task are
related to the other diagnostic task.71 Zhang and col-
leagues previously observed that the majority of
debiasing methods operate during the training phase.23

To overcome this limitation, we opted to implement
dataset augmentation as an unsupervised approach.
This method offers greater generalizability and is
particularly useful in cases where model retraining is
not feasible, as it can be directly applied to test data.
However, similar to many debiasing methods, efforts to
bridge the fairness gap frequently result in diminished
model performance.72 The observed higher perfor-
mance, which may be biased, could be attributed to
shortcuts prevalent in the privileged group. Balancing
the maintenance of high performance while enhancing
fairness remains a significant challenge.

Although our data augmentation reduced the algo-
rithm’s ability to predict demographic attributes from
CXR and brain MRI images, it did not abolish it.
Alarmingly, our model was better at predicting race than
detecting the radiologic pathology it was trained for,
both before and after image augmentation. This dem-
onstrates the need for further research into limiting the
ability of algorithms to learn demographic data that
might be used to make decisions instead of clinical
features. Without deliberately making sure sensitive at-
tributes such as race, age, or other demographic infor-
mation are not used for prediction, classification, or
optimization, the data science community risks the
perpetuation of health disparities from implicit bias in
clinical decision-making that currently exists. Moreso,
given the black box nature of DL models, it is virtually
impossible to determine whether a prediction or clas-
sification is based on proxies of race or the relevant
clinical features. Making sure a DL model does not learn
www.thelancet.com Vol 102 April, 2024
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a

b

Fig. 6: Model visualisation based on single cases. (a) Heatmaps of the original model and the model trained using the augmented data. The
original model includes cues outside the lungs or even no cues and the model trained using the augmented data shifted the focus to cues within
the lungs where the findings are supposed to be. The CXRs are the example of ‘Consolidation’ patients. (b) The heatmaps of a representative
case generated by the original model and proposed model for predicting radiological label, race, age, and sex. The original model shows similar
distributions across different tasks.
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a b

Fig. 7: Saliency maps and the gradient distribution of the original model and the model trained using the augmented data. (a) The maps and
distribution for race, age, or sex identification. (b) The maps and distribution in the task transfer experiment, where the model trained for
radiological label detections was transferred for race, age, or sex identification.
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demographic information that should not be used as an
input feature (e.g., race-ethnicity of a prisoner by an
algorithm that informs the decision by a judicial court to
grant parole) is one strategy to prevent algorithms from
having the same implicit biases as humans. Another
strategy is explicitly using demographic information to
reweight features to provide an output that corrects the
implicit human bias. This is an area of research that has
not been fully explored.

Limitation
This study used MIMIC-IV to obtain self-reported labels
of race, which may have been influenced by criteria used
in the assignment of racial characteristics.61 The process
of CXR or MRI labelling relied on manual diagnosis by
radiologists or neurologists, which may have been
affected by the sex of the patients or variations in the
healthcare system.14 When supervised training is
employed, the patterns learned by the model can be
affected by device specifications, the use of tokens, or
biassed annotation, resulting in inequitable pre-
dictions.61 In other words, the data collection and
cleaning process can irreversibly bias the data.

Furthermore, the MIMIC-CXR dataset displayed
substantial imbalances in sample sizes across racial
groups (e.g., 75.8% White compared to 4.3% Asian),
potentially skewing the ECE metric. Such an imbalance
may lead to observed disparities in ECE that are more
indicative of the metric’s inherent biases rather than
actual calibration inaccuracies within the models.73,74

Conclusion
To conclude, our study demonstrated that DL models
can exploit demographic features in medical images as
shortcuts in the detection of image labels. We also
demonstrated that the inclusion of such features could
www.thelancet.com Vol 102 April, 2024
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result in performance disparities among demographic
groups. We developed an image augmentation scheme
for training and testing in order to disguise the de-
mographic information in CXRs and brain MRIs to
improve the detection of radiological findings and dis-
ease. Ensuring accurate predictions made on the desired
pathology while limiting algorithm bias and improving
fairness has wide implications for generalizability and
the eventual use of DL in healthcare applications. We
strongly encourage the future development of tools to
mitigate AI model demographic learning to prevent
perpetuating existing racial disparities in medicine that
would be otherwise unseen by the humans receiving the
predictions.
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