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Abstract

Objective: Millions of Americans are infected by influenza annually. A minority seek

care in the emergencydepartment (ED) and, of those, only a limitednumber experience

severe disease or death. ED clinicians must distinguish those at risk for deterioration

from those who can be safely discharged.

Methods: We developed random forest machine learning (ML) models to estimate

needs for critical care within 24 h and inpatient care within 72 h in ED patients with

influenza. Predictor data were limited to those recorded prior to ED disposition deci-

sion: demographics, ED complaint, medical problems, vital signs, supplemental oxygen

use, and laboratory results. Our study population was comprised of adults diagnosed

with influenza at one of five EDs in our university health system between January 1,

2017 andMay 18, 2022; visits were divided into two cohorts to facilitate model devel-

opment and validation. Prediction performance was assessed by the area under the

receiver operating characteristic curve (AUC) and the Brier score.

Results: Among 8032 patients with laboratory-confirmed influenza, incidence of crit-

ical care needs was 6.3% and incidence of inpatient care needs was 19.6%. The most

common reasons for ED visit were symptoms of respiratory tract infection, fever, and

shortness of breath. Model AUCs were 0.89 (95% CI 0.86–0.93) for prediction of
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critical care and 0.90 (95% CI 0.88–0.93) for inpatient care needs; Brier scores

were 0.026 and 0.042, respectively. Importantpredictors included shortness of

breath, increasing respiratory rate, and a high number of comorbid diseases.

Conclusions:MLmethods can be used to accurately predict clinical deterioration in ED

patients with influenza and have potential to support ED disposition decision-making.

1 INTRODUCTION

1.1 Background and importance

The Centers for Disease Control and Prevention estimates that 9.3–

45 million Americans experienced symptoms of influenza infection

each year between 2010 and 2020. Most infections were mild and

self-limited, but a minority progressed to severe disease and death.

Annual influenza hospitalizations ranged from140,000 to 590,000 and

12,000–52,000 patients died from influenza-related complications.1

These numbers declined during the COVID-19 pandemic, but are

expected to return to similar or higher levels in coming years.2

In the United States, emergency departments (EDs) are the pri-

mary gateway to hospital-based care and treat up to a million patients

with influenza each year.3–5 Emergency clinicians must differentiate

patients who can be safely discharged from those who require hospi-

talization, and those who require intensive monitoring in critical care

settings.3,4 These decisions are made within hours of presentation and

can be challenging due to time constraints and limited information

availability. Suboptimal EDdispositiondecision-makinghasbeen linked

to increasedmortality as well as excess healthcare expenditures.6

The electronic health record (EHR) is a valuable source for clini-

cal insight generation.7 Machine learning (ML) algorithms, trained on

large EHR datasets, can identify subtle patterns and predict future

outcomes.8,9,10 Recent studies suggestML-based clinical decision sup-

port (CDS) may be useful for clinical decision-making in the ED,

including at the point of disposition.11–14 ManyMLmodels for COVID-

19 outcome prediction have been described.14,15 Influenza has been

a leading cause of past pandemics and remains a major threat for the

future, yet has not received the same level of attention.16,17 As an NIH

Center of Excellence for Influenza Research and Response, we sought

to determine whether ML methods could be leveraged to support

management of severe influenza.

1.2 Goals of this investigation

Our primary objective was to derive and validate a series of ML mod-

els that reliably predict severe clinical outcomes in ED patients with

influenza. We hypothesized that short-term inpatient and critical care

needs could be accurately predicted using routinely available EHR

data, and designed ML models to support ED disposition decision-

making at the point-of-care. Because degradation of predictive per-

formance is a potential barrier to the real-world implementation

of ML-driven CDS, a key secondary objective of this study was to

assess the stability of ML prediction models over time (multiple flu

seasons) and location (across clinical sites).18 This was achieved by

employing and evaluating two distinct approaches tomodel derivation,

out-of-sample testing and external validation.

2 METHODS

2.1 Setting and selection of participants

This retrospective cohort analysis was performed using data collected

at five EDswithin a university-based health systembetween January 1,

2017 andMay 18, 2022. Study sites included two urban academic EDs

(Johns Hopkins Hospital [JHH] and Bayview Medical Center [BMC])

and three suburban community EDs (Howard County General Hos-

pital [HCGH], Suburban Hospital [SH], and Sibley Memorial Hospital

[SMH]) with a combined patient volume of 270,000 ED visits per year.

All adult patients (≥18 years old) who tested positive for influenza dur-

ing their index ED encounter were included in the study. Patients who

tested negative for influenza or who were not tested were excluded

from analysis.

2.2 Methods of measurement

Outcome and predictor data were extracted from the EHR (Epic,

Verona, WI). Prediction time-points were set as the time of dispo-

sition order entry (eg, discharge or hospitalization orders) for each

patient. To be included in analysis, predictor data had to be recorded

and available in the EHR prior to the time of prediction. Data ele-

ments included patient demographics (age, sex), chief complaint(s),

activemedical problems (identified based on ICD-10 codes), vital signs,

routine laboratory results,markers of inflammation (c-reactiveprotein,

d-dimer, ferritin), and respiratory support requirements. Additional

description of influenza testing and predictor processing procedures is

included in a Supplementary Appendix.19,24

2.3 Outcome definitions

The primary outcomes predicted were critical care needs and inpa-

tient care needs within 24 and 72 h of ED disposition, respectively.

Outcome definitions were developed by multidisciplinary (emergency
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medicine, internal medicine, and critical care) consensus as previously

described and operationally defined.14 In brief, outcome criteria were

designed to capture events (eg, administration of supplemental oxy-

gen) and physiologic states (eg, hypoxemia) reflective of a need for

medical care provided in a hospital ward or critical care unit, as appli-

cable. ED disposition decision-making may be influenced by social

factors (eg, unsafe living conditions) as well, but such considerations

were not included in our models.25 As described below, hospitalized

patients were required to meet predefined physiologic parameters for

cardiopulmonary dysfunction to meet inpatient care needs outcome

criteria. Patients discharged without meeting outcome criteria before

reaching 24 or 72 hwere assumed to be outcome negative.

Criteria for critical care needs were met if a patient died, was

admitted to an intermediate or intensive care unit (ICU), or devel-

opedcardiovascular or respiratory failurewithin24hofEDdisposition.

Cardiovascular failure was defined by hypotension requiring intra-

venous vasopressor support (dopamine, epinephrine, norepinephrine,

phenylephrine, or vasopressin). Respiratory failure was defined by

hypoxemia or hypercarbia requiring high-flow oxygen (>10 L/min),

high-flow nasal canula, noninvasive positive pressure ventilation, or

invasive mechanical ventilation.26

Criteria for inpatient care needs were met if patients exhibited

at least moderate cardiovascular dysfunction (systolic blood pres-

sure < 80 mmHg, heart rate ≥ 125 for ≥ 30 min or any troponin

measurement > 99th percentile), respiratory dysfunction (respiratory

rate ≥ 24, hypoxemia with documented SpO2 < 88%, or administra-

tion of supplemental oxygen at a rate> 2 L/min sustained for ≥30min)

or were discharged at initial ED visit and had a return ED visit and

hospitalization within 72 h.

2.4 Model derivation and validation

For ML models designed to predict clinical outcomes, performance

can be affected by evolution of disease pathology and changes in

therapeutic approach over time, as well as by differences in local epi-

demiology, resource availability and clinical practice between sites.

Two approaches tomodel derivation and external validationwere used

to measure the effects of time and practice location on out-of-sample

performance separately. Under the first approach (temporal valida-

tion), the entire cohort was divided into two datasets by time. Models

were trained and tested in a derivation cohort that comprised the ear-

liest two out of three of ED encounters (January 1, 2017 to December

21, 2019) and validated in a cohort that comprised the latest one out of

three of ED encounters (December 22, 2019 to May 18, 2022). Under

the second approach (spatial validation), the cohort was divided into

two datasets based on site of care. Models were trained and tested in

a derivation cohort comprised of all ED visits to JHH, HCGH, and SMH

during our study period and were validated using ED visit data from

BMC and SH only.

Under each approach, separate ensemble-baseddecision tree learn-

ing algorithms (random forest) were trained to predict each outcome

(critical care needs within 24 h, inpatient care needs within 72 h).

The Bottom Line

A machine learning model was developed to estimate the

need for critical care and inpatient care in patients pre-

senting to the ED with influenza. The study model has the

potential to support ED disposition decision making but may

need further training and validation to be used outside the

study setting.

During training and testing, the random forest algorithm executed a

randomized sampling process to train a set of individual decision trees

and aggregated output to produce a single probabilistic prediction for

each outcome.27 To maximize opportunity for algorithmic learning, all

encounters by influenza positive patients were included in training

datasets, including those where patients met criteria for the outcome

of interest prior to the prediction timepoint (i.e., time of disposition

order entry by treating ED clinician). However, to prevent overestima-

tion of model performance, we excluded patients who met outcome

criteria at the time of prediction during model performance evalua-

tion. This exclusion was applied to derivation cohort testing sets and

external validation cohorts.

Model performance was measured using receiver operating char-

acteristic (ROC) curve analysis, with confidence intervals and differ-

ence between performance determined using DeLong’s method.28 In

derivation cohorts, performance was tested out-of-sample across all

encounters using 10-fold cross-validation; training and testing was

repeated 10 times to minimize the variance in prediction performance

estimations.29 Within each repetition, the cohort was randomly dis-

tributed into training (90% of data) and testing (10% of data). The

models learned from the training data set, and their performance was

assessed on the test data set, iteratively. During each iteration, isotonic

regression was applied to achieve model calibration, thus optimizing

the accuracy of individual model estimates across the full range of

predicted probabilities.30 For both derivation and validation cohorts,

performance was reported for models that used all predictor data as

well as for more parsimonious model versions. Specifically, we eval-

uated a model (model 1) that only included predictors available at

ED triage (demographics, triage vitals, chief complaint, active medical

problems); a second model (model 2) that included everything from

model 1 as well as incorporated ED laboratory results; and finally, a

third model (model 3) that included everything from model 2 as well

as ED oxygen requirements, last vital signs measured prior to dis-

position decision and vital sign trends. Overall goodness of fit (Brier

Score) and calibration curves (plots of observed versus predicted risk)

were evaluated.31,32 Model interpretation was performed using fea-

ture importance measures including SHapley Additive exPlanations

(SHAP) values to assess predictor impact and directionality.33 All

model building and statistical analyses were performed using Python

3.6.
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2.5 Ethical review

This research was performed under the approval of the Johns Hopkins

Medicine Institutional Review Board (IRB00185078).

3 RESULTS

A total of 8032 patients with laboratory-confirmed influenza infec-

tion were included in this study (Table 1). Females comprised 57.4%

(n=4614) of our cohort andmost patients self-identified as either non-

Latino Black or non-LatinoWhite (Table 1). The most common reasons

for ED visit (e.g., chief complaint) were symptoms of upper or lower

respiratory tract infection, fever, and shortness of breath (Table 1).

Across the cohort, incidence of critical care needswithin 24 hwas 6.3%

(n= 502) with 2.2% (n= 176) meeting criteria at the time of ED dispo-

sition order entry and 4.1% (n = 326) meeting criteria within 24 h of

disposition. Incidence of inpatient care needs within 72 h was 19.6%

(n= 1579), with 11.6% (n= 935) meeting criteria at the time of ED dis-

position and 8.0% (n = 644) meeting criteria within 72 h of disposition

(Table 1).

Study population flow diagrams for both approaches to model

derivation and validation are detailed in Figure 1. Under the spatial

approach to external validation (Figure 1A), 5087 ED encounters from

JHH, HCGH, and SMH that occurred across the entire study period

were included in our derivation cohort. All encounter data were used

formodel training, while 85 (1.7%) and 437 (8.6%) visits were excluded

from critical care and inpatient care testing sets due to meeting

outcome criteria at the point of prediction (Figure 1B and Table 1). A

cohort of 2945 ED visits to separate hospitals (BMC and SH) during

the same period was utilized for external validation, with performance

of critical and inpatient care needs prediction models measured in

the 2854 (96.9%) and 2447 (83.1%) visits who had not met outcome

criteria at the point of prediction, respectively. Under the temporal

approach (Figure 1A), all ED encounters that occurred at any study

site between January 1, 2017 and December 21, 2019 (n = 5352)

were included in our model derivation cohort and ED encounters that

occurred between January 22, 2019 andMay 1, 2022 (n= 2680) were

included in our external validation cohort. Two percent of encounters

from each cohort were excluded from derivation testing set and vali-

dation cohort for meeting critical care outcome criteria prior to time

of prediction, while 12.9 and 9.1% were excluded from the inpatient

care testing set and validation cohort, respectively (Figure 1B and

Table 1).

Predictive accuracy of all models, as measured by AUC, is shown

in Table 2. Performance was high under all conditions, but overall

accuracy during external validation was highest using a comprehen-

sive model that included demographics, ED chief complaint, active

medical problems, first and last vital signs with trends, ED oxygen

requirements, and laboratory results (model 3). As shown in Table 2,

no performance degradation for prediction of critical care needs was

observed between derivation and validation cohorts regardless of

whether a spatial or temporal approach to model derivation and val-

idation was pursued, with comprehensive model 3 achieving similar

AUCs during external validation in both scenarios (0.90, 95% CI 0.87–

0.92 under the spatial approach and 0.89, 95% CI 0.86–0.93 under the

temporal approach).

Accuracy of prediction for inpatient care needs was also pre-

served during external validation under the temporal approach (AUC

0.90, 95% CI 0.88–0.93). However, some performance degradation

was observed for prediction of inpatient care needs under the spa-

tial approach, when a model derived and tested out-of-sample using

data from JHH, HCGH, and SMH hospitals (AUC 0.90, 95% CI 0.88–

0.91) was evaluated in a contemporaneous cohort from BMC and SH

hospitals (AUC 0.86, 95%CI 0.84–0.89).

Based on superior prediction performance and consistent stability

during external validation, comprehensive models (“model 3”) devel-

oped under the temporal approach were selected for further analysis.

Prediction performance of these models during external validation is

visualized in Figure 2. ROC curves that correspond to data included

in Table 22 and demonstrate overall prediction accuracy are shown in

panels 2A and 2B and calibration curves in panels 2C and 2D. Crit-

ical and inpatient care prediction models were both well calibrated,

with Brier scores of 0.026 (95% CI 0.021–0.031) and 0.042 (95% CI

0.036–0.048), respectively. As demonstrated in kernel density estima-

tion plots, predicted probabilities of critical care and inpatient care

outcomes were low for most of the population (Figures 2E and F).

Binary performancemetrics including sensitivity, specificity, predictive

values, and likelihood ratios across a wide range of operating points

are shown for bothmodels in Figure S1. If optimized toward specificity,

with a single cut-off set to achieve 95% specificity while maintaining

53% sensitivity, patients labeled “at-risk” by our critical care model

would have a positive likelihood ratio of 11.3 for manifestation of crit-

ical care needs within 24 h. Similar operating point selection for our

inpatient care needs model would generate a positive likelihood ratio

of 9.7. While Figure S1 provides insight into model performance using

a single cut-off, it is more likely that real-world decision support would

function best as a scale with risk levels (e.g., 1–10) assigned across

a range of prediction probabilities. Development of decision support

software for these models under a user-centered design framework is

an important future aim.

Individual predictor importance, determined by SHAP analysis and

demonstrated using bee swarm plots, is shown in Figure 3. Markers

of respiratory dysfunction were important predictors of adverse out-

comes in bothmodels. Interestingly, patients who complained of upper

respiratory symptoms at arrival were less likely to develop either out-

come. Respiratory rate trend was the most important predictor for

each model, with rising respiratory rates portending high likelihood

for the development of severe illness and declining respiratory rates

predictive of good outcome. Several laboratory derangements, includ-

ing elevated lactate, leukocytosis, and coagulopathy, were predictive

of both critical and inpatient care needs. Only blood urea nitrogen

exhibited bimodal predictive properties, with high values predictive of

adverse outcome and normal values predictive of their absence. Ele-

vated troponin was highly predictive of critical outcome but was not

a leading predictor of inpatient care needs. The only comorbidity with
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F IGURE 1 Study flow chart. (A) Two parallel approaches tomodel derivation and external validation were employed. Under the spatial
approach, models were derived and cross-validated (out of sample) using data from encounters at three study sites, then underwent external
validation at two separate study sites. Under the temporal approach, models derived were derived and cross-validated using data from encounters
at all sites that occurred on or before December 21, 2019, then externally validated using data from encounters that occurred afterward. (B)
Under both approaches, all encounters were used for model training, but patients whomet outcome criteria prior to the prediction timepoint
(disposition order entry) were excluded frommodel performance evaluation. These exclusions were applied during out-of-sample testing in the
derivation cohorts and in the validation cohorts.

TABLE 2 Predictionmodel performance.

Critical care outcome Inpatient care outcome

Derivation cohort Validation cohort Derivation cohort Validation cohort

Spatial method

Model 1 0.86(0.84–0.88) 0.89(0.86–0.91) 0.86(0.84–0.88) 0.83(0.81–0.86)

Model 2 0.89(0.87–0.91) 0.89(0.87–0.92) 0.88(0.87–0.90) 0.86(0.83–0.88)

Model 3 0.90(0.89–0.92) 0.9(0.87–0.92) 0.90(0.88–0.91) 0.86(0.84–0.89)

Temporal method

Model 1 0.87(0.84–0.89) 0.87(0.83–0.91) 0.85(0.83–0.86) 0.86(0.83–0.88)

Model 2 0.88(0.86–0.90) 0.90(0.87–0.93) 0.87(0.86–0.89) 0.88(0.85–0.90)

Model 3 0.89(0.86–0.91) 0.89(0.86–0.93) 0.89(0.87–0.90) 0.90(0.88–0.93)

For eachmethod, threemodels of increasing complexitywere tested.Model 1 included predictors available at emergency department (ED) triage only (demo-

graphics, triage vitals, chief complaint, active medical problems). ED laboratory results were added to model 2. ED oxygen requirements, last vital signs

measured prior to disposition decision and vital sign trends were added to model 3. Model prediction performance is shown as area under the receiver

operating characteristic curve (AUC) with 95% confidence intervals in parentheses.

high predictive value in isolation was liver disease, but the presence

of numerous comorbid diseases were highly predictive of both severe

disease outcomes.

4 LIMITATIONS

This study has limitations. Most importantly, models were developed

and evaluated using data from a single health system.While we sought

to mitigate this limitation through inclusion of five diverse sites across

the region, its potential impacts on our conclusions should be con-

sidered. Events that occurred outside our health system, including

returnEDvisits by dischargedpatients, are not captured in our dataset.

Differences in local population characteristics and clinical practice pat-

terns, including influenza diagnostic testing procedures, could also

affect performance and utility. For example, our institution is an NIH

Center of Excellence for Influenza Research and Response; we fre-

quently test for influenza infection (see Table S1). Our models were

developed for patients with confirmed influenza andmay not be useful

at siteswhere influenza testing is not commonly performed. Prediction

performance should be evaluated in local populations prior to use of

thesemodels at any external site.
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F IGURE 2 Final model performance. Receiver operating characteristics curves with area under the curve (AUC) for critical care (red) and
inpatient care (blue) predictionmodels are shown in panels A and B, respectively; model calibration curves with Brier scores are shown in panels C
andD; distribution of predicted probabilities across the cohort is shown using kernel density estimation plots in panels E and F.
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F IGURE 3 Shapley additive explanations (SHAP) values for (A) inpatient care and (B) critical care predictionmodels. The 20most important
features for each predictivemodel are shown using bee swarm plots, with color representing original feature value, kernel density representing
relative frequency of feature values in the cohort, and location on x-axis representing impact onmodel output. AST, aspartate aminotransferase;
BUN, blood urea nitrogen; INR, international normalized ration; PTT, activated partial thromboplastin time; SpO2, peripheral capillary oxygen
saturation;WBC, white blood cell count.

There are additional limitations related to our inclusion and out-

come criteria. First, the cohort used to develop our models was

heterogeneous and included adults of varying age, race, ethnicity, and

baseline health status, but did not include children. Future studies to

determine whether similar data and methods could be used to pre-

dict severe influenza outcomes in pediatric populations are needed.

Second, we required confirmation of influenza infection, but made no

differentiation based on genetic strain. It is possible that inclusion

of strain as a predictor would improve model performance, but was

excluded because this information is not routinely available in real

time. Third, our models were designed to predict clinical outcomes

and would not identify patients who require hospitalization for social

reasons.

Finally, although we have shown that we can make early and reli-

ablepredictionsof clinicallymeaningful events,wehavenot shown that

these predictions out-perform clinician gestalt or would lead to any

change in patient management or outcomes. Studying these questions

under a prospective interventional framework is an important future

aim of our team.

5 DISCUSSION

We leveraged artificial intelligence to estimate short-term risk for

severe disease in ED patients with influenza. ML predictions were

made using information routinely available in the EHR, populated

within hours of hospital arrival. Our final models were well calibrated

and accurately predicted the development of disease states that would

necessitate inpatient care within 72 h and ICU-level care within 24 h.

Output from these models could be a useful adjunct to ED clinicians

and staff, allowing them to anticipate the clinical course of individual

patients more accurately and to make more informed treatment and

healthcare resource allocation decisions. Optimal use requires incor-

poration into a system capable of real-time EHR data processing and

provision of specific, actionable decision support at the point of care.34

This is an important future aim of our research group, and onewe have

achieved for other conditions.14,35

Artificial intelligence has been used in the study of influenza

previously. Its most popular application has been forecasting of sea-

sonal influenza at the population level.36–40 Many have used artificial

intelligence-basedmethods to forecast the arrival and intensity of sea-

sonal influenza using social media and widely used search engines

such as Google or Baidu,39,40 while others have utilized prior patterns

of healthcare utilization and external variables such as weather pat-

terns to predict future outbreaks.36,38 Artificial intelligence has also

beenused to predict influenza vaccine uptake and response.41,42 These

applications have shown great promise and may soon provide useful

guidance to policy makers and healthcare administrators, but they are

less useful to front-line clinicians making time-sensitive decisions for

individual patients.



10 of 12 HINSON ET AL.

Hundreds of studies have been published describing ML models

developed to predict clinical outcomes for patients with COVID-19,15

but notably few have pursued a similar objective for patients with

influenza, which remains a significant source of morbidity and mor-

tality each year. Small studies (each with less than 350 patients) have

been performed in the ICU setting, with ML models designed to pre-

dict 30-day mortality in adults and prolonged (≥7 days) hypoxemic

respiratory failure in children.43,44These models exhibited good pre-

dictive performance, but were trained in more homogenous critically

ill populations than we have studied here and focused on longer-term

outcomes less relevant to ED decision-making. Two groups in Tai-

wan have published ED-focused studies on the topic.44,45 Hu et al.44

employed a two-stage logistic regression modeling approach at a

single large academic medical center to predict critical illness (ICU

admission or death) and in-hospital mortality among 1680 adult ED

patients with influenza. Tan et al45 evaluated multiple ML modeling

approaches to predict several clinical outcomes in the ED including

hospitalization, ICU admission, and death in 5508 elderly patients with

influenza. Performance of leading models was comparable to what

we have reported here using random forests. Probability estimates

of leading models also were made available to treating ED clinicians,

though no specific decision support was provided and impact was not

measured. To our knowledge, the ML models reported here are the

first designed to guide disposition decision-making for all ED patients

with influenza and have important clinical and administrative util-

ity. Our models predict clinically important composite outcomes and

can be rapidly embedded into an existing CDS system with proven

effectiveness.14

Potential challenges to the clinical utility of ML-driven CDS are

degradation of predictive performance over time and limited trans-

portability of ML models between clinical settings. ML relies on past

events to predict the future. Changes in disease prevalence, innate

and acquired host immunity, pathogen evolution and therapeutic inter-

vention availability may render these predictions less accurate over

time. Similarly, ML models derived and validated in one clinical or

geographic setting may not perform as expected in another due to dif-

ferences in the patient population or practice patterns of clinicians.18

Transportability also can be affected by local health information tech-

nology practices including timestamping and labeling of predictor and

outcome data used byMLmodels.

In this study, we employed a novel approach to model develop-

ment and validation that allowed us to test the durability of our

models under both conditions directly. Retrospective datasets were

divided into two cohorts: one for model development (derivation

and out-of-sample validation) and the other for external validation.

This process was performed twice, with development and validation

cohorts separated either by space or time; distinct models were gener-

ated and evaluated for each iteration. Under the first scenario, models

derived, tested, and validated out-of-sample at two hospitals under-

went external validation at three others. Under the second, models

were derived, tested, and validated out-of-sample during the 2017–

2019 flu seasons and externally validated using data from future flu

seasons. We found that greater performance degradation occurred

when models were transported from one location to another than

when models developed during one time period were used to make

outcome predictions in another (Table 2). These results reinforce the

concept that the performance of models developed and validated in

one setting should not be assumed in another.18,46 Under real-world

conditions, ML models may require retraining at each destination site.

At the very least, verification of function and validation of perfor-

mance using locally derived datasets must be a prerequisite to clinical

implementation. Our finding that prediction performance remained

stable across influenza seasons is reassuring, as real-world imple-

mentation of model-driven CDS cross-seasonal model training and

prediction.

In conclusion, we developed artificial intelligence-based ML mod-

els which accurately estimate the need for critical and inpatient care

in patients presenting with influenza, using data that were routinely

gathered during the ED encounter. Our results reinforce the concept

that predictive models derived in one setting may need to be retrained

and validated at each new target site but suggest model fidelity can be

maintained over time and over multiple influenza seasons. The results

of this study serve as a basis for the implementation and evaluation

of a CDS system to optimize clinical care and resource utilization for

patients with influenza.
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