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Abstract Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity 
in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk 
of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that 
drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an 
enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-
associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals 
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with AIS and 93,238 unaffected controls, significant association was identified with a variant in 
COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); 
p=7.07E–11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). 
In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the inter-
vertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI 
detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type 
Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding 
the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter 
suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, 
we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment signifi-
cantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model 
of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility 
by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.

eLife assessment
This valuable study analyzes a large cohort of Adolescent Idiopathic Scoliosis (AIS) patients, identi-
fying an association with a variant in COL11A1 (Pro1335Leu). Experimental testing of this potentially 
pathogenic variant in vitro suggests a connection between Pax1, Col11a1, Mmp3, and estrogen 
signaling, thus providing solid support for the proposed link between hormonal and matrix compo-
nents in the development of AIS.

Introduction
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that is essential 
for integrating the brain and nervous system with the axial skeleton while simultaneously providing 
flexibility in three dimensions (Richards et al., 2020). Idiopathic scoliosis is the most common develop-
mental disorder of the spine, typically appearing during the adolescent growth spurt. Adolescent idio-
pathic scoliosis (AIS) is reported in all major ancestral groups, with a population prevalence of 1.5–3% 
(Wise, 2014; Hresko, 2013). Children with AIS usually present with a characteristic right-thoracic 
major curve pattern and a compensatory lumbar curve. Major thoracolumbar and lumbar curves are 
less frequent (Richards et al., 2020). The three-dimensional nature of the deformity results in torsion 
in the spine that is most significant at the apex of the major curve, and changes in the structures of the 
vertebrae and ribs may develop as the curve worsens or progresses (Richards et al., 2020). Children 
with thoracic curves, with larger curves at first presentation, and/or with greater remaining growth 
potential are at increased risk of progression, but this risk decreases sharply after skeletal maturity 
(Richards et al., 2020). Sex is a recognized risk factor for AIS, with girls having at least a fivefold 
greater risk of progressive deformity requiring treatment compared to boys (Karol et al., 1993). This 
well-documented sexual dimorphism has prompted speculation that levels of circulating endocrine 
hormones, particularly estrogen, are important exposures in AIS susceptibility (Liang et al., 2021).

The genetic architecture of human AIS is complex, and underlying disease mechanisms remain 
uncertain. Heritability studies of Northern European (Wynne-Davies, 1968; Grauers et al., 2012), 
North American (Riseborough and Wynne-Davies, 1973; Kruse et al., 2012), and South Asian (Tang 
et al., 2012) ancestral groups suggest that disease risk is multifactorial, caused by genetic and envi-
ronmental contributions (Wise, 2014; Wise et al., 2020). Accordingly, population-based genome-
wide association studies (GWAS) in multiple ancestral groups have identified several AIS-associated 
susceptibility loci, mostly within non-coding genomic regions (Wise et al., 2020). In particular, multiple 
GWAS have implicated non-coding regions near the LBX1 (Takahashi et al., 2011), ADGRG6 (also 
known as GRP126) (Kou et al., 2013), and BNC2 (Ogura et al., 2015) genes. An association with 
alleles in an enhancer distal to PAX1, encoding the transcription factor paired box 1, was primarily 
driven by females, suggesting that it contributes to the sexual dimorphism observed in AIS (Sharma 
et al., 2015). Subsequent meta-analysis of combined AIS GWAS identified additional susceptibility 
loci. These included variants in an intron of SOX6, a transcription factor, that along with PAX1, is 
important in early spinal column formation (Smits and Lefebvre, 2003). Furthermore, gene enrich-
ment analyses found significant correlation of AIS-associated loci with biological pathways involving 
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cartilage and connective tissue development (Khanshour et al., 2018). A more recent GWAS in a 
Japanese population identified 14 additional AIS loci that are candidates for further evaluation (Kou 
et al., 2019). In separate studies, genome sequencing in AIS cases and families identified enrich-
ment of rare variants in the COL11A2 (Haller et al., 2016) and HSPG2 (Baschal et al., 2014) genes, 
encoding components of the cartilage extracellular matrix (ECM). Hence, variation affecting cartilage 
and connective tissue ECM is an emerging theme in the heterogeneous genetic architecture of AIS.

Pre-clinical animal models are essential tools for accelerating mechanistic understanding of AIS 
and for therapeutic testing (Wise et al., 2020). In zebrafish, several genetic mutants with larval or 
later-onset spinal deformity have been described, including ptk7 (Hayes et al., 2014; Van Gennip 
et al., 2018), c21orf59 (Jaffe et al., 2016), ccdc40 (Becker-Heck et al., 2011), ccdc151 (Bachmann-
Gagescu et al., 2011), dyx1c1, and kif6 (Konjikusic et al., 2018). In rescue experiments, Rebello et 
al. recently showed that missense variants in COL11A2 associated with human congenital scoliosis fail 
to rescue a vertebral malformation phenotype in a zebrafish col11a2 knockout line (Rebello et al., 
2023). In mouse, conditional deletion of Adgrg6 in skeletal cartilage (using Col2a1-Cre) produces a 
progressive scoliosis of the thoracic spine during postnatal development that is marked by hernia-
tions within the cartilaginous endplates of involved vertebrae. Progressive scoliosis, albeit to a lesser 
extent, was also observed when Adgrg6 was deleted from committed chondrocytes (using ATC:Cre) 
(Long et al., 2001; Liu et al., 2019; Liu et al., 2021). These studies demonstrate that cartilage and 
possibly other osteochondroprogenitor cells contribute to the scoliosis phenotype in these models 
(Liu et al., 2019). Taken together, genetic and functional studies in mouse, although limited, support 
the hypothesis that deficiencies in biogenesis and/or homeostasis of cartilage, intervertebral disc 
(IVD), and dense connective tissues undermine the maintenance of proper spinal alignment during the 
adolescent growth spurt (Wise et al., 2020).

eLife digest Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs 
during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery 
to stop it from getting worse, presenting a significant financial burden to health systems and families.

Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have 
remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not 
been explained. Advances in techniques to study the genetics underlying diseases have revealed that 
certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one 
such variation is near a gene called Pax1, and it is female-specific.

The extracellular matrix is a network of proteins and other molecules in the space between cells 
that help connect tissues together, and it is particularly important in cartilage and other connective 
tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. 
hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues 
of the spine, leading to AIS.

To show this, the scientists screened over 100,000 individuals and found that AIS is associated with 
variants in two genes coding for extracellular matrix proteins. One of these variants was found in a 
gene called Col11a1, which codes for one of the proteins that makes up collagen.

To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically 
modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was 
reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could 
not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmu-
tated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen 
receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These 
findings suggest a possible mechanism for AIS, particularly in females.

The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly 
relevant in AIS. The results also point to specific molecules within the extracellular matrix as important 
for maintaining proper alignment in the spine when children are growing rapidly. This information may 
guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly 
girls.

https://doi.org/10.7554/eLife.89762
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The combined contribution of reported AIS-associated variants is broadly estimated to account for 
less than 10% of the overall genetic risk of the disease (Kou et al., 2019). To address this knowledge 
gap, we sought to define novel loci associated with AIS susceptibility in genes encoding proteins 
of the ECM (i.e. the ‘matrisome’; Naba et al., 2012b; Naba et al., 2012a). Here, we identify new 
genetic associations with AIS. Further, our functional assessments support a new disease model 
wherein AIS-associated genetic variation and estrogen signaling perturb a PAX1-COL11a1-MMP3 
axis in chondrocytes.

Results
Nonsynonymous variants in matrisome genes are associated with 
increased risk of AIS
The ‘matrisome’ has been defined as ‘all genes encoding structural ECM components and those 
encoding proteins that may interact with or remodel the ECM’ (Hynes and Naba, 2012). Proteins 
comprising the global ECM as currently defined have been identified by both experimental and bioin-
formatic methods (Naba et al., 2012b). We assembled 1027 matrisome genes as previously identified 
(Naba et al., 2016), including 274 core-matrisome and 753 matrisome-associated genes (N=1027 
total). For the genes encoding these 1027 proteins, we identified all nonsynonymous common 
variants (MAF>0.01) queried by the Illumina HumanCoreExome-24v1.0 beadchip and determined 
their genotypes in a discovery cohort of 1358 cases and 12,507 controls, each of European ancestry 
(Table 1). After applying multiple quality control measures (see Methods section), we retained 2008 
variants in 597 matrisome genes for association testing (Supplementary file 1). This sample size 
was estimated to provide at least 80% power to detect significant associations at the matrisome-
wide level (α≤2.5E–05), for alleles with population frequency  ≥0.05  and OR  ≥1.5 (Figure  1—figure 
supplement 1). Two nonsynonymous variants, in COL11A1 (rs3753841; NM_080629.2_c.4004C>T; 
p.(Pro1335Leu); odds ratio (OR)=1.236 [95% CI = 1.134–1.347], p=1.17E–06) and MMP14 (rs1042704; 
NM_004995.4_c.817G>A; p.(Asp273Asn); OR = 1.239 [95% CI = 1.125–1.363], p=1.89E–05) were 
significantly associated with AIS (Figure 1A). Given the sexual dimorphism in AIS and our prior obser-
vation of a female-predominant disease locus (Sharma et  al., 2015), we tested the 2008 variants 
separately in females (N=1157 cases and 7138 controls). In females, the association with rs3753841 
remained statistically significant, whereas rs1042704, near MMP14, was not associated with AIS in 
females (Figure  1—figure supplement 2). Our study was not sufficiently powered to test males 
separately.

To validate these results, we sought to replicate the associations of rs3753841 and rs1042704 in 
four independent AIS case-control cohorts, from North America, Europe, and eastern Asia, repre-
senting multiple ethnicities (total N=9161 AIS cases, 80,731 healthy controls, Table 1). Genotypes 
for both variants were extracted from these datasets and tested for association by meta-analysis 
together with the discovery cohort (see Methods). Meta-analysis of all cohorts together increased 
the evidence for association of both variants with AIS risk (Figure 1B). While a similar effect size was 

Table 1. Study cohorts.

Cohort Ethnicity Stage Subjects

Cases Controls

Male Female Male Female

USA (TX) NHW Discovery 13,865 201 1157 5369 7138

USA (MO) NHW Replication 2951 201 1102 1049 689

SW-D NHW Replication 4627 222 1409 505 2491

JP EAS (Japanese) Replication 79,211 323 5004 40,205 33,679

HK EAS (HAN Chinese) Replication 3103 178 812 858 1255

Total 103,757 10,519 93,238

USA (TX): Texas cohort; USA (MO): Missouri cohort; SW-D: Danish cohort; JP: Japanese cohort; HK: Hong Kong 
cohort; NHW: Non-Hispanic White; EAS: East Asian.

https://doi.org/10.7554/eLife.89762
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Figure 1. Matrisome-wide association study. (A) Manhattan plot showing –log10 p-values (y-axis) versus chromosomal position (x-axis) for the 2008 
common coding variants tested in the discovery study USA (TX). The horizontal line represents the threshold for significance level (p-value <2.5 × 10–5) 
after Bonferroni multiple testing correction. (B) Tests of association for SNPs rs3753841 and rs1042704 in discovery and independent replication cohorts. 
RAF – reference allele frequency; OR – odds ratio; CI –confidence interval.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Statistical power as a function of the genotype relative risk (OR) to detect significant association at α=2.5E–05 for different disease 
allele frequencies, using 1358 cases and 12,507 controls in the discovery study.

Figure supplement 2. Manhattan plot showing –log10 p-values (y-axis) plotted versus chromosomal position (x-axis) for the 2009 common coding 
variants tested for females in the discovery study USA (TX).

Figure supplement 3. Tests of association of SNP rs1042704 with adolescent idiopathic scoliosis (AIS) in East Asian cohorts.

Figure supplement 4. LocusZoom plots of SNPs in genomic regions of SNPs rs3753841 (top) and rs1042704 (bottom).

https://doi.org/10.7554/eLife.89762
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noted for rs1042704 in Japanese and Han Chinese cohorts, the results were less significant, likely due 
to lower minor allele frequencies (East Asian MAF = 0.02 compared to total non-Asian cohort MAF 
= 0.20) in these populations (Figure 1—figure supplement 3). Plotting recombination across both 
regions suggested that these signals were likely confined to blocks of linkage disequilibrium within the 
COL11A1 and MMP14 genes, respectively (Figure 1—figure supplement 4).

Rare dominant mutations in COL11A1, often disrupting a Gly-X-Y sequence, can cause Marshall 
(MRSHS) (OMIM #154780) or Stickler syndromes (STL2) (OMIM #604841) marked variously by facial 
anomalies, sensineural hearing loss, short stature, spondyloepiphyseal dysplasia, eye anomalies, 
ectodermal features, and scoliosis. Notably, our AIS cohort and particularly individuals carrying the 
rs3753841 risk allele were negative for co-morbidities or obvious features of Marshall or Stickler 
syndromes. Thus, variation in COL11A1 is independently associated with AIS. Notably, we did not 
detect common variants in linkage disequilibrium (R2>0.6) with the top SNP rs3753841 (Figure 1—
figure supplement 4). Further, analysis of 625 exomes from the discovery cohort (46%) identified 
only three rare COL11A1 variants in five individuals (Supplementary file 2), and rare variant burden 
testing for COL11A1 was not significant as expected (data not shown). These observations suggested 
that rs3753841 itself could confer disease risk, although our methods would not detect deep intronic 
variants that could contribute to the overall association signal.

COL11A1 is expressed in adolescent spinal tissues
We next characterized COL11A1 in postnatal spine development. COL11A1 encodes one of three 
alpha chains of type XI collagen, a member of the fibrillar collagen subgroup and regulator of nucle-
ation and initial fibril assembly, particularly in cartilage (Fernandes et al., 2007). Spinal deformity is 
well described in Col11a1-deficient (cho/cho) embryos (Hafez et al., 2015; Seegmiller et al., 1971). 
In mouse tendon, Col11a1 mRNA is abundant during development but barely detectable at 3 months 
of age (Wenstrup et al., 2011). We analyzed RNAseq datasets derived from adolescent human spinal 
tissues (Makki et al., 2020), finding that COL11A1 was upregulated in cartilage relative to bone and 
muscle. In cartilage, PAX1 and COL11A2 showed the strongest expression levels relative to other 
published human AIS-associated genes (Kou et al., 2013; Ogura et al., 2015; Sharma et al., 2015; 
Khanshour et al., 2018; Haller et al., 2016; Baschal et al., 2014; Gao et al., 2007; Figure 2A). In 
all, most AIS-associated genes showed the strongest expression levels in cartilage relative to other 
adolescent spinal tissues.

We next sought to characterize Col11a1 expression in spines of postnatal mice. To detect 
COL11A1 protein (collagen α1(XI)), we performed immunohistochemistry (IHC) and immunofluo-
rescence (IF) microscopy using a collagen α1(XI) reactive antibody (Sun et  al., 2020) in newborn 
(P0.5) and adolescent (P28) mice. In spines of P0.5 mice, strong staining was observed in the nucleus 
pulposus (NP) and in surrounding annulus fibrosus (AF) (Figure 2B). In thoracic spines of P28 mice, 
the compartments of the IVD were more distinct, and strong collagen α1(XI) staining was observed in 
each (Figure 2C). In regions of the cartilage endplate (CEP)-vertebral bone transition, collagen α1(XI) 
was detected in columnar chondrocytes, particularly in the hypertrophic zone adjacent to condensing 
bone (Figure 2C). We also examined collagen α1(XI) expression in ribs, as these structures are also 
involved in the scoliotic deformity (Richards et al., 2020). In P28 rib growth plates, as in spine, a 
biphasic pattern was observed in which collagen α1(XI) reactivity was most pronounced around cells 
of the presumed resting and pre-hypertrophic/hypertrophic zones (Figure 2—figure supplement 1). 
These data show that in mouse, collagen α1(XI) is detectable in all compartments of young postnatal 
IVD and, at the thoracic level, is particularly abundant in the chondro-osseous junction region of IVD 
and vertebral growth plate.

Col11a1 is downregulated in the absence of Pax1 in mouse spine and 
tail
We previously identified AIS-associated variants within a putative enhancer of PAX1 encoding the 
transcription factor Paired Box 1 (Sharma et  al., 2015; Khanshour et  al., 2018). Pax1 is a well-
described marker of condensing sclerotomal cells as they form segments that will eventually become 
the IVD and vertebrae of the spine (Chan et al., 2014; Aszódi et al., 1998; Smith et al., 2011). We 
generated Pax1 knockout mice (Pax1-/-) using CRISPR-Cas9 mutagenesis and validated them using 
sequencing and southern blot (Figure 3—figure supplement 1). Homozygous Pax1-/- mice were viable 

https://doi.org/10.7554/eLife.89762
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Figure 2. Col11a1 and Mmp14 expression in spine. (A) A heatmap of transcript per million (TPM) values of COL11A1, MMP14, and other published 
genes associated with adolescent idiopathic scoliosis (AIS). The average TPM value of matrisome genes is represented as MATRISOME. (B) Detection 
of collagen a1(XI) in P0.5 mouse spine. Immunohistochemistry (IHC) shown at top, with immunofluorescence (IF) staining below. ‘-ab’ refers to negative 
controls lacking primary antibody (shown at left). Results are representative of N≥3 technical replicates in whole spines. (C) Detection of collagen a1(XI) 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.89762
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and developed spine deformity and kinks in the tail, as observed in other Pax1-deficient mice (Wilm 
et al., 1998). We next compared the expression of collagen α1(XI) protein in IVD and condensing 
bone of wild-type and Pax1-/- mice by performing IF staining in P28 spines (Figure 3A). In wild-type 
IVD, strong overlapping expression of collagen α1(XI) and PAX1 cells was observed, mostly within 
the CEP and chondro-osseous interface (Figure 3A). PAX1 staining was negative in Pax1-/- mice as 
expected, and collagen α1(XI) staining was dramatically diminished in CEP and the chondro-osseous 
vertebral borders. Moreover, the IVD in Pax1-/- mice was highly disorganized, without discernable NP, 
AF, and CEP structures as has been reported (Figure 3—figure supplement 2; Wallin et al., 1994). 
To test the effect of Pax1 on expression of Col11a1 and other AIS-associated genes during embryonic 
development, RNA was isolated from vertebral tissue dissected from the tails of embryonic stage 12.5 
(E12.5) wild-type and Pax1-/- mice and subjected to bulk RNAseq and quantitative real-time PCR (qRT-
PCR) (Figure 3B). Gene-set enrichment analysis of RNAseq was most significant for the gene ontology 
term ‘extracellular matrix’ (Figure 3C). By qRT-PCR analysis, expression of Col11a1, Adgrg6, and Sox6 
was significantly reduced in female and male Pax1-/- mice compared to wild-type mice (Figure 3D–G). 
These data show that loss of Pax1 leads to reduced expression of Col11a1 and the AIS-associated 
genes Adgrg6 and Sox6 in affected tissue of the developing tail.

Col11a1 regulates Mmp3 expression in chondrocytes
COL11A1 has been linked with ECM remodeling and invasiveness in some cancers (Wu et al., 2014). 
In solid tumors, COL11A1 has been shown to alter ECM remodeling by enhancing MMP3 expression 
in response to TGFΒ1 (Wu et al., 2014). MMP3 encodes matrix metalloproteinase 3, also known 
as stromolysin, an enzyme implicated in matrix degradation and remodeling in connective tissues 
(Mudgett et  al., 1998). We confirmed strong MMP3 mRNA expression, relative to COL11A1, in 
human spinal cartilage and bone, but minimal expression in spinal muscle (Figure 4—figure supple-
ment 1). We next cultured costal chondrocytes from P0.5 Col11a1fl/fl mice (Sun et  al., 2020) and 
subsequently removed Col11a1 by treating with Cre-expressing adenoviruses. After confirming 
Col11a1 excision (Figure 4A), we compared Mmp3 expression in these cells to cells treated with 
GFP-expressing adenoviruses lacking Cre activity. We found that Mmp3 expression was significantly 
increased in cells where Col11a1 mRNA expression was downregulated by about 70% compared 
to untreated cells (Figure  4B). Furthermore, western blotting in these cells demonstrated an ~2- 
to 5-fold increase in pro-, secreted, and active forms of Mmp3 protein when collagen α1(XI) was 
reduced. The proteolytic processing per se of precursor MMP3 into active forms (Sun et al., 2014) 
did not appear to be affected by Col11a1 expression (Figure 4C). These results suggest that Mmp3 
expression is negatively regulated by Col11a1 in mouse costal chondrocytes.

To test whether Col11a1 affects Mmp3 expression in vivo, we bred Col11a1fl/fl female mice with 
Col11a1fl/fl:ATC males carrying the Acan enhancer-driven, doxycycline-inducible Cre (ATC) transgene 
(Dy et al., 2012). ATC has been shown to harbor Cre-mediated recombination activity in most differ-
entiated chondrocytes and in NP within 2 days of treating pregnant mothers with doxycycline starting 
at E15.5 (Dy et al., 2012). ATC activity was confirmed by crossing this line to the R26td[Tomato] reporter 
that ubiquitously expresses the fluorescent gene Tomato after Cre recombination. Strong Cre activity 
was seen in P0 pups of mothers treated with doxycycline at E15.5 in the NP, CEP, and AF of the IVD 
and in chondrocytes of the growth plates (Figure  4—figure supplement 2). Pregnant Col11a1fl/fl 
females were treated with doxycycline water from E15.5 to induce Cre expression in differentiated 
chondrocytes. Excision of Col11a1 was confirmed in DNA from costal cartilage of Col11a1fl/fl:ATC-
positive offspring (Figure 4—figure supplement 3). Consistent with results obtained by in vitro exci-
sion of Col11a1, cartilage from mice deficient in Col11a1 showed  ~4-fold upregulation of Mmp3 
mRNA expression relative to Col11a1fl/fl mice (Figure 4D).

in P28 mouse spine. Negative antibody IHC control shown at left; antibody-positive IHC shown at right. Enlarged, rotated view of white boxed area 
shows a biphasic staining pattern. CEP – cartilage endplate; GP – growth plate. Results are representative of N≥3 technical replicates in whole spines.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Immunofluorescence (IF) staining using collagen a1(XI) antibody in P28 ribs (top).

Figure 2 continued

https://doi.org/10.7554/eLife.89762
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Figure 3. Assessing Pax1 regulation of Col11a1 expression. (A) Immunofluorescence (IF) staining of P28 intervertebral disc (IVD) from thoracic regions 
of Pax1-/- (bottom) and wild-type (WT) littermate (middle, top) mice using PAX1- (green) and collagen a1(XI)-specific (red) antibodies and DAPI nuclear 
counterstain. Antibody-negative controls are shown at top as (-ab). Results are representative of N≥3 technical replicates in whole spines. (B) Heatmap 
of differentially expressed genes (p-value <0.0001) in embryonic stage 12.5 (E12.5) tails of WT and Pax1-/- mice. (C) Gene ontology (GO) analysis of 

Figure 3 continued on next page
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AIS-associated variant in COL11A1 perturbs its regulation of MMP3
Although low-resolution structures currently available for collagen triple helices are not useful for 
modeling the effects of individual variants on protein stability, we noted that the AIS-associated 
variant P1335L occurs at the third position of a Gly-X-Y repeat and consequently could be structurally 
important in promoting stability of the triple helix, particularly if it is hydroxylated. We also noted that 
this variant is predicted to be deleterious by Combined Annotation Dependent Depletion (CADD) 
(Rentzsch et al., 2021) and Genomic Evolutionary Rate Profiling (GERP) (Cooper et al., 2005) anal-
ysis (CADD = 25.7; GERP = 5.75). Further, COL11A1 missense variants have been shown to evoke 
transcriptional changes in ECM genes in cancer cells (Lee et al., 2021). We therefore tested whether 
the COL11A1P1335L sequence variant alters its regulation of Mmp3 in chondrocytes. For this, SV40-
immortalized cell lines were established from Col11a1fl/fl mouse costal chondrocytes and transduced 
with lentiviral vectors expressing green fluorescent protein (GFP) and COL11A1wt, COL11A1P1335L, 
or vector alone. After transduction, GFP-positive cells were grown to 50% confluence and treated 
with Cre-expressing adenovirus (ad5-Cre) to remove endogenous mouse Col11a1 (Figure  5A). 
Using a human-specific COL11A1 qRT-PCR assay, we detected overexpression of COL11A1wt and 
COL11A1P1335L compared to untransduced cells regardless of Cre expression (Figure 5A). Western 
blotting with an antibody directed against the HA epitope tag confirmed overexpression of human 
collagen α1(XI) protein (Figure  5B). Endogenous Mmp3 mRNA and protein upregulation was 
evident by qRT-PCR and western blotting, respectively, in untransduced cells treated with Ad5-Cre, 
as expected. Overexpressing human wild-type COL11A1 suppressed Mmp3 expression, consistent 
with the negative regulation we previously observed (Figure 5A and B). However, the COL11A1P1335L 
mutant failed to downregulate Mmp3 expression despite being overexpressed (Figure 5A and B). 
Thus, regulation of Mmp3 appeared to be perturbed in the presence of the COL11A1P1335L variant in 
these cells.

Col11a1 and Mmp3 are responsive to estrogen receptor signaling in 
chondrocytes
The expression of Col11a1, and of other ECM genes, is known to be estrogen- responsive in certain 
tissues, such as ovarian follicular cells (Zalewski et al., 2012). Because of the suspected role of endo-
crine hormones in AIS, we investigated whether Col11a1 expression was responsive to estrogen 
receptor siRNA-mediated knockdown in cultured chondrocytes. We first validated that Mmp3 mRNA 
and protein levels were significantly increased after Col11a1 knockdown in wild-type chondrocytes, 
as observed by Cre-mediated deletion in Col11a1fl/fl chondrocytes (Figure 6A). Estrogen receptor 
2 (Esr2), but not estrogen receptor alpha (Esr1), was detected in mouse chondrocytes by qRT-PCR 
(data not shown). We therefore tested the consequences of Esr2 siRNA-mediated knockdown on 
gene expression in chondrocytes. After Esr2 knockdown, Col11a1 as well as Pax1 was significantly 
upregulated compared to scramble control, while Mmp3 expression was significantly downregulated 
(Figure 6B). We also performed Col11a1 knockdowns in these cells and noted upregulation of Pax1 
expression, suggesting a negative feedback loop between Pax1 and Col11a1 in these cells (Figure 6B). 
Simultaneous knockdown of Col11a1 and Esr2 expression reduced Mmp3 expression to normal levels, 
supporting a possible interaction between Col11a1 and Esr2 in regulating Mmp3. Treating chondro-
cytes with tamoxifen, an estrogen receptor modulator, also upregulated Col11a1 expression to similar 
levels as observed after Esr2 knockdown, compared to cells treated with DMSO carrier (Figure 6—
figure supplement 1). These results suggest that estrogen signaling suppresses Col11a1 expression. 
In cultured rat CEP cells, Esr2 mRNA was downregulated, and Mmp3 mRNA was upregulated after 

differentially expressed genes in E12.5 tail WT and Pax1-/- mice. (D–G) Gene expression levels dissected from E12.5 mouse tail from WT and Pax1-/- 
(knockout [KO]) mice as determined by quantitative real-time PCR (qRT-PCR). Each value represents the ratio of each gene expression to that of β-actin, 
and values are mean ± standard deviation. The expression value of WT female group was arbitrarily set at 1.0. Each dot represents one embryo and 
statistical differences were determined using a two-sided unpaired t-test (*p<0.05, **p<0.01, ***p<0.001).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Design and validation of Pax1 knockout in mouse using CRISPR-mediated gene targeting.

Figure supplement 2. HE staining of sectioned lumbar spines from wild-type (left) and Pax1-/- (right) mice.

Figure 3 continued
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Figure 4. Col11a1 regulation of Mmp3 expression in cartilage. (A) PCR assay of Col11a1 excision in Col11a1fl/fl cultured costal chondrocytes. (B) Gene 
expression levels from Col11a1fl/fl cultured costal chondrocytes transduced with green fluorescent protein (GFP) (Ad5-GFP, left) or Cre-expressing 
adenovirus (Ad5-cre, right) as determined by quantitative real-time PCR (qRT-PCR). Values represent the ratio of each gene expression to that of 
GAPDH, and values are mean ± standard deviation. The expression value of control Ad5-GFP results was arbitrarily set at 1.0. Statistical differences 

Figure 4 continued on next page
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Col11a1 knockdown, as observed in mouse chondrocytes (Figure 6C, Figure 6—figure supplement 
2). However, Esr2 knockdown did not significantly impact Col11a1 or Mmp3 expression in these cells 
(Figure 6C). Hence, we conclude that in cultured mouse chondrocytes, ESR2 signaling disrupts the 
suppression of Mmp3 by Col11a1.

Discussion
AIS has been described in the medical literature for centuries, yet its underlying etiology has remained 
enigmatic (Wise and Sharma, 2010). Given that AIS originates in children who appear to be other-
wise healthy, even its tissue of origin has been difficult to discern, and long debated (Wise et al., 
2020). The advent of powerful genotyping and sequencing methods in the last two decades has 
led to breakthrough discoveries of genetic loci associated with AIS, most in non-coding regions of 
the genome that are difficult to interpret biologically (Wise et al., 2020). Aggregating these results, 
however, provided supportive evidence that pathways of cartilage and connective tissue ECM devel-
opment are relevant in AIS etiology (Wise et al., 2020; Khanshour et al., 2018). Here, in the largest 
multi-ethnic human cohort studied to date, we elected to test the hypothesis that alterations in ECM 
proteins themselves contribute to AIS susceptibility. This approach yielded most significant evidence 
for a common protein-altering variant in the COL11A1 gene encoding collagen α1(XI), a minor yet 
critical component of cartilaginous ECM. Moreover, our studies define a COL11A1-mediated disease 
pathway (Figure 7) and point to the chondro-osseous junction of IVD and vertebrae spine as a rele-
vant cellular compartment in AIS etiology.

The results of this study together with the previous observation of COL11A2 rare variant enrich-
ment in AIS support a role for the collagen α1(XI) heterotrimer itself in its pathogenesis (Haller 
et al., 2016). Collagen type XI, composed of three chains encoded by the COL11A1, COL11A2, 
and COL2A1 genes (OMIM #s 120280,120290, 120140, respectively), is a minor component of 
collagen type II fibrils that are abundant in cartilage. Collagen type XI is also broadly expressed in 
testis, trachea, tendons, trabecular bone, skeletal muscle, placenta, lung, brain neuroepithelium, 
the vitreous of the eye, and IVDs (Yoshioka et al., 1995). In the pericellular space, collagen α1(XI) 
initiates fibrillogenesis with collagen type II fibrils, maintaining regular spacing and diameter of the 
collagen fibrils, while organizing the pericellular surface by interaction with cartilage proteogly-
cans (Smith et al., 1989; Luo and Karsdal, 2019). Purified human collagen type XI, when added 
back to chondrocytes in in vitro culture, stimulates chondrogenesis while inhibiting hypertrophy, 
as measured by histological staining, proliferation assays, and relative expression of chondrogenic 
early marker genes (Li et al., 2018). In newborn and 1-month-old mice, we found that collagen 

were determined using a two-sided paired t-test (*p<0.05). Results shown for N≥3 biologic replicates, each including three technical replicates. (C) 
Western blot detection of collagen a1(XI), MMP3, and GAPDH loading control in cultured costal chondrocytes after Ad5-GFP or Ad5-cre transduction. 
Results are representative of N=4 biologic replicates. Protein size ladder is shown in lane 1. Quantification of bands detected by western blotting, where 
Ad5-GFP was set to 1.0, is shown at right. Statistical differences were determined using a two-sided paired t-test (*p<0.05). (D) Gene expression levels 
from dissected Col11a1fl/fl:ATC costal cartilage, analyzed as described in (A). Results shown for N=3 biologic replicates, each including three technical 
replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Original gel images of Col11a1 fl/fl excision PCR assay in Figure 4A.

Source data 2. Figure 4A and original gel images of Col11a1 fl/fl excision PCR assay with highlighted and labeled bands.

Source data 3. Original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) shown in Figure 4C.

Source data 4. Figure 4C and original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) with highlighted bands and labels.

Figure supplement 1. Relative expression of MMP3 compared to COL11A1 in human spinal tissues.

Figure supplement 2. Immunofluorescence microscopy of Rosa26+/-:ATC P0 spines, without doxycycline treatment (left) and after doxycycline treatment 
starting at embryonic stage 15.5 (E15.5) (right).

Figure supplement 3. PCR assays in DNA from costal cartilage.

Figure supplement 3—source data 1. Original gel images of Col11a1 fl/fl excision PCR assay in Figure 4—figure supplement 3.

Figure supplement 3—source data 2. Original gel images of Col11a1 fl/fl excision PCR assay in Figure 4—figure supplement 3 with highlighted and 
labeled bands.

Figure 4 continued
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Figure 5. Col11a1P1335L regulation of Mmp3 expression in lentiviral transduced mouse GPCs. (A) Quantitative real-time PCR (qRT-PCR) of human 
COL11A1 and endogenous mouse Mmp3 in SV40-immortalized mouse costal chondrocytes transduced with the lentiviral vector only (lanes 1,2), human 
wild-type (WT) COL11A1 (lane 3), or COL11A1P1335L. Values represent the ratio of each gene expression to that of GAPDH, and values are mean ± 
standard deviation. Significant quantitative changes (p≤0.05) relative to vector-only transfected cells as measured by unpaired t-tests are shown by *. 
Results shown for N=4 biologic replicates, each including three technical replicates. (B) Western blot corresponding to experiments shown in (A) using 
HA antibody to detect epitope-tagged human collagen a1(XI), COL11A1 antibody to detect mouse and human collagen a1(XI), MMP3 antibody to 
detect endogenous mouse MMP3, and GAPDH. Values are mean after normalization to GAPDH, ± standard deviation. Significant differences (p≤0.05) 
relative to vector-only, Ad5-negative transfected cells as measured by unpaired t-tests are shown by *.

The online version of this article includes the following source data for figure 5:

Source data 1. Original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) with highlighted bands and labels.

Source data 2. Figure 5B and original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) with highlighted bands and labels.

https://doi.org/10.7554/eLife.89762
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Figure 6. Effects of estrogen receptor beta on Col11a1-Mmp3 signaling axis. (A) RT-qPCR (left) of Col11a1 expression after siRNA-mediated knockdown 
as shown at left. Representative western blot (of N=4 biologic replicates) of cultured costal chondrocytes after scramble or Col11a1-specific siRNA 
knockdown is shown in middle. Protein size ladder is shown in lane 1. Quantification of bands detected by western blotting is shown at right, where 
scramble results were set to 1.0. Values are mean after normalization to GAPDH, ± standard deviation. (B) Gene expression levels of Col11a1, Mmp3, 

Figure 6 continued on next page
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α1(XI) was abundant in IVD and at the chondro-osseous junction of IVD and vertebrae, particu-
larly concentrated in pre-hypertrophic/hypertrophic chondrocytic cells. In long bone growth plates, 
Long et al., 2022, recently identified eight distinct cell clusters after unsupervised analysis of single 
cell (scRNAseq) of flow-sorted hypertrophic chondrocytes from Col10a1Cre;Rosa26fs-tdTomato 
mice. At E16.5, Col11a1 expression was highest in cells with signatures of pre-hypertrophic to 
hypertrophic transition, and lowest in cells with osteogenic signatures (M Hilton, personal commu-
nication) (Long et al., 2022). Taken together, these results suggest that collagen α1(XI) normally 
participates in maintaining growth plate cells in a hypertrophic, pre-osteogenic state, although 
little is known about its precise molecular function in that compartment, or in the IVD, during spinal 
development. Spines of Col11a1-deficient mice (cho/cho) show incompletely formed vertebral 

Pax1, and Esr2 mRNA in cultured costal chondrocytes showing fold change relative to the scramble control. dKD = double Col11a1-Esr2-specific 
siRNA knockdowns. Each value represents the ratio of each gene expression to that of GAPDH, and values are mean ± standard deviation. Results are 
representative of N≥3 biologic replicates, each including three technical replicates. (C) Gene expression levels from rat cartilage endplate (CEP) cells, as 
described in (B).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) with highlighted bands and labels.

Source data 2. Figure 6A and original western blot images (anti-COL11A1, anti-MMP3, anti-GAPDH) with highlighted bands and labels.

Figure supplement 1. Quantitative real-time PCR (qRT-PCR) of Col11a1 and Col11a2 mRNA in cultured costal chondrocytes treated with DMSO carrier 
or tamoxifen (N≥3 independent experiments).

Figure supplement 2. Quantitative real-time PCR (qRT-PCR) of Sfrp2, Krt19, and Mmp12 mRNA to validate expression of these marker genes in 
cultured rat nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplate (CEP) cells.

Figure 6 continued

Figure 7. Cartoon depiction of a collagen XI-mediated signaling axis in chondrocytes. Collagen XI is held in the pericellular space by integrins and 
DDR2. COL11A1, under the regulation of ESR2 and PAX1, signals through unknown mechanisms and inhibits MMP3 transcription.

https://doi.org/10.7554/eLife.89762
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bodies, spinal curvatures, and decreased separation between vertebrae, which are themselves less 
mineralized than in wild-type mice (Hafez et al., 2015). Notably, common COL11A1 variants also 
have been associated with adult lumbar disc herniation and lumbar disc degeneration, as well as 
DXA-measured bone size, spinal stenosis, and spondylolisthesis (Jiang et  al., 2017; Mio et  al., 
2007; Styrkarsdottir et al., 2019). Although gain-of-function or dominant-negative effects of the 
rs3753841 variant would not have been revealed in our assays, the spinal deformity noted in the 
cho/cho loss-of-function model, and failure of missense variants in Col11a2 to rescue congenital 
scoliosis (Rebello et al., 2023), leads us to surmise that reduction in the components of collagen 
type XI disrupts spinal development.

Pax1 is a well-described marker of early spine development, where it activates a gene expression 
cascade starting at E12.5–13.5 in mouse development (Wilm et  al., 1998; Rodrigo et  al., 2003; 
Sivakamasundari et al., 2017). Our data showed that loss of Pax1 leads to decreased expression 
of Col11a1, Sox6, and Adgrg6 in E12.5 tails of both male and female mice. The downregulation of 
Col11a1 is consistent with a prior study of gene expression in flow-sorted GFP-labeled Pax1-/- embry-
onic IVD cells (Sivakamasundari et al., 2017). However, from these experiments we cannot discern 
if Pax1 directly regulates Col11a1 in cis, or by an indirect effect. It is likely, however, that Col11a1 
expression in developing tail is directly activated by binding SOX transcription factors, as a prior 
genomic study using chromatin immunoprecipitation and sequencing in rat chondrosarcoma cells 
identified super enhancers near the Col11a1 gene that were bound multiple times by SOX9 and SOX6 
(Liu and Lefebvre, 2015). The SOX5/6/9 trio is known to regulate many of the same genes as PAX1 
(Sivakamasundari et al., 2017), but whether this includes Col11a1 is unknown.

In mouse postnatal spines, we observed co-localization of collagen α1(XI) and PAX1 proteins specif-
ically within the cartilaginous endplate-vertebral junction region that includes the vertebral growth 
plate. The endplate, which is important as the site allowing diffusion of nutrients from the circulation 
into the avascular inner IVD, harbors subpopulations of cells expressing type II collagen presumably 
organized by collagen type XI (Chan et al., 2014; Smith et al., 2011). While the endplate is contin-
uous with the vertebral growth plate in mice, it is important to note that in humans the endplate and 
vertebrae become distinctly separate structures with closure of the growth plates at puberty (Chan 
et al., 2014). This is also the site of the ring apophyses that form the insertion of the IVD into verte-
brae (Costa et al., 2021). Lagging maturity of the ring apophysis, combined with mechanical forces 
across the IVD in the horizontal plane, has been proposed as an initiating factor leading to rotatory 
decompensation in the adolescent spine in AIS (Costa et al., 2021; Castelein et al., 2020). Recently, 
Sun et al. reported the discovery of a vertebral skeletal stem cell (vSSC) residing in the endplate and 
marked by expression of the genes Zic1 and Pax1, along with other cell surface markers (Sun et al., 
2023). These vSSCs also express high levels of Col11a1 (M Greenblatt, personal communication). It is 
interesting to consider that AIS-associated variation in collagenα1(XI), perhaps together with mechan-
ical forces, could alter the differentiation trajectory of this cell niche. Altogether, extant data and our 
results strongly suggest that cell populations at the IVD-vertebral junction region are relevant in AIS 
pathogenesis. Further investigation is warranted to understand the developmental programs of cells 
in this region of the spine.

Matrix metalloproteinase 3, also known as stromolysin, is a secreted enzyme expressed in connec-
tive tissues and in regions of endochondral ossification (Ortega et al., 2004). MMP3 has degrada-
tive activity toward a variety of ECM components, including proteoglycans, fibronectin, laminin, but 
notably not type I collagen (Sellers and Murphy, 1981). Additionally, in chondrocytes MMP3 also 
has been shown to translocate to the nucleus, where it activates transcription of connective tissue 
growth factor (CTGF/CCN2) by binding to an element known as transcription enhancer dominant in 
chondrocytes (TRENDIC) (Eguchi et al., 2008; Cui et al., 2017). Our observations of a Col11a1-Mmp3 
signaling axis in chondrocytes and CEP cells raise the possibility that Col11a1 variation may have 
consequences for both MMP3 enzymatic activity levels and MMP3-mediated transcriptional program-
ming in these cells. COL11A1 missense variants, usually altering glycine or proline in Gly-X-Y repeats 
in the collagen α1(XI) helical domain as with COL11A1P1335L, are reported to be frequent in cutaneous 
squamous cell carcinomas and have been linked to transcriptional changes and tumor invasiveness 
(Lee et al., 2021). The mechanisms by which chondrocytes or other cells sense such single amino acid 
changes in collagen α1(XI) and induce subsequent transcriptional responses are unknown but may 
involve direct interaction with integrins in the pericellular space (Lee et al., 2021).

https://doi.org/10.7554/eLife.89762
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We found that Col11a1 expression is sensitive to estrogen receptor blockade or knockdown in 
chondrocytes. Type XI collagen is also a key player in organizing the pericellular space, which is critical 
for transmitting mechanical forces from the ECM to the cell (Xu et al., 2016). Thus, it is interesting to 
consider that type XI collagen may effectively act as a receptor for environmental cues, i.e., mechan-
ical forces and estrogen signaling, in the adolescent spine. Our study provides new insights into the 
regulation and signaling role of Col11a1 in chondrocytes, and it suggests potential mechanisms by 
which its genetic variation contributes to AIS susceptibility.

Methods
Discovery study
The cases in the discovery stage (USA TX: n=1358) were recruited at Scottish Rite for Children. 
Informed consent to participate in this research was obtained as approved by the Institutional Review 
Board of the University Texas Southwestern Medical Center, protocol STU 112010-150. Subjects 
were genotyped on the Illumina HumanCoreExome BeadChip (Illumina, San Diego, CA, USA). For 
controls, we utilized 12,507 non-AMD GRU (non-age-related macular degeneration general research 
use) subjects of the European ancestry downloaded from dbGaP website (https://www.ncbi.nlm.nih.​
gov/gap/) from the International Age-Related Macular Degeneration Genomics Consortium study 
(IAMDGC: phs001039.v1.p1.c1). The subjects from the IAMDGC study were also genotyped on the 
Illumina HumanCoreExome Beadchip-24v1.0 platform (Fritsche et al., 2016). We merged cases and 
controls and applied quality controls to the genotypes for 468,801 overlapping SNPs using PLINK.1.9 
(Chang et al., 2015) as described in Khanshour et al., 2018. In summary, samples with sex inconsis-
tencies or from duplicated or related individuals or ancestral outliers as identified by principal compo-
nent analysis (PCA) were removed, leaving 13,865 samples in the analysis. Genotypes were corrected 
for strand direction, and SNPs with call-rate per marker <95%, deviating from Hardy-Weinberg equi-
librium (cutoff p-value = 10–4), or with significant missingness rate between cases and controls (cutoff 
p-value = 10–4) were removed, leaving 341,759 SNPs in the analysis. Genotypes for SNPs across auto-
somal chromosomes were imputed using Minimac3 with the 1000G-Phase3.V.5 reference panel as 
described in the instructions available from the software website (Das et al., 2016). Protein-coding 
changes were annotated with ANNOVAR using RefSeq-based transcripts (Wang et al., 2010). External 
databases included allele frequencies from gnomAD (Karczewski et al., 2020) variant pathogenicity 
in Clinvar (Landrum et al., 2018); CADD scores (Rentzsch et al., 2019) GERP scores (Davydov et al., 
2010), and protein domains in IntroPro (Blum et al., 2021). Only bi-allelic common (MAF > 0.01) 
protein-altering SNPs with imputation quality Rsq ≥ 0.3 within matrisome genes (Naba et al., 2016) 
were included for further analysis. Matrisome genes used can be found in the Molecular Signature 
Database (MsigDB) (Subramanian et al., 2005; Liberzon et al., 2015; https://www.gsea-msigdb.org/​
gsea/msigdb/cards/NABA_MATRISOME). Genetic association for the imputed allele dosages in the 
discovery cohort (USA TX) was performed in Mach2dat (Li et al., 2009) using logistic regression with 
gender and 10 principal components (PCs) as covariates. The genomic regions of the associated loci 
were visualized with LocusZoom software (Pruim et al., 2010) utilizing linkage disequilibrium informa-
tion from 1000 Genomes EUR populations.

Meta-analysis study
For the meta-analysis stage we utilized four cohorts – USA MO: n=2951 (1213 cases and 1738 controls), 
Swedish-Danish populations (SW-D: n=4627 [1631 cases and 2996 controls]), Japan (JP: n=79,211 
[5327 cases and 73,884 controls]), and Hong Kong (HK: n=3103 [990 cases and 2113 controls]) – to 
check significant candidates from the discovery study. Summary statistics across the discovery study 
and the four replication cohorts (total N=103,757 [10,519 cases and 93,238 controls]) were combined 
as previously described (Khanshour et al., 2018) using METAL (Willer et al., 2010).

SW-D cohort
All patients provided written informed consent. Patients were recruited according to protocols 
approved by the institutional review boards in Stockholm (protocol #290/202906, #2009/1124-31/2, 
#2012/1595-31/2), Lund (protocol #LU 200-95, #LU 280-99, #LU 363-02, #567/2008, #2014/804), and 
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Southern Denmark (protocol #S-2011002). Genotyping and analyses were performed as described in 
Khanshour et al., 2018; Ameur et al., 2017.

USA MO cohort
Whole exome sequencing data from 1213 unrelated idiopathic scoliosis cases of European ancestry 
with spinal curvature greater than 10-degree Cobb angle were derived from the Adolescent Idio-
pathic Scoliosis 1000 Exomes Study (dbGAP accession number: phs001677), and patients recruited 
from St. Louis Children’s Hospital, and St. Louis Shriners Hospital for Children. Patients and/or parents 
provided consent to participate in the study, and IRB approval was obtained from Washington Univer-
sity (protocol #201102118). For controls, exome data from 1738 unrelated samples of European 
ancestry were provided by investigators at Washington University School of Medicine in St. Louis, 
MO (dbGAP accession numbers: phs000572.v8.p4 and phs000101.v5.p1), and Oregon Health & 
Science University in Portland, OR (https://gemini.conradlab.org/). Exome data were aligned to the 
human genome reference (GRCh37) using BWA-MEM (v0.7.15). Variant calling of single nucleotide 
variants and insertion and deletion variants were generated first for each single sample in cases and 
controls and then combining all samples with joint genotyping method, described in GATK Best-
Practices (Genome Analysis Toolkit [GATK v3.5] https://gatk.broadinstitute.org/hc/en-us/sections/​
360007226651-Best-Practices-Workflows). All cases and controls samples were classified as unrelated 
and of European ancestry using relationship inference (Manichaikul et al., 2010) and PCA (Chang 
et al., 2015). Association analysis of variants rs3753841 and rs1042704 were performed using logistic 
regression adjusting for sex and PCs in PLINK (Chang et al., 2015).

JP cohort
Informed consents were obtained from all the subjects or their parents, and the ethics committee of 
the Keio University Hospital, Tokyo, approved the study protocol (approved protocol #20080129). 
5327 case subjects were recruited from collaborating hospitals (Japanese Scoliosis Clinical Research 
Group) as previously described (Kou et  al., 2019). For controls, 73,884  subjects were randomly 
selected from the BioBank Japan Project, and subjects were genotyped on Illumina Human BeadChips 
as previously described (Ogura et al., 2015, Kou et al., 2013). Imputation and association analyses 
in JP were performed as previously described (de Klerk et al., 1988).

HK cohort
3103 subjects were recruited at The Duchess of Kent Children’s Hospital. Informed consent to partici-
pate in research was obtained as approved by the Institutional Review Board of the University of Hong 
Kong/Hospital Authority Hong Kong West Cluster (IRB approval number: UW 08-158). All 990 cases 
were characterized by Cobb angles greater than 40 degrees with onset age between 10 and 18 years. 
Congenital, neuromuscular, and syndromic scoliosis samples were excluded. We used 2113 controls 
from the Chinese population with no spinal deformities on MRI scans (Song et al., 2013). Cases and 
controls were genotyped using the Illumina Infinium OmniZhongHua-8 BeadChip and analyzed with 
GenomeStudio 2.0 software. The quality control approach adopted the GWA tutorial developed by 
Marees et al., 2018. The filtered genotyping data of cases and controls was phased and imputed 
using SHAPEIT (Delaneau et  al., 2011) and IMPUTE2 (Howie et  al., 2009), respectively. Logistic 
model association analysis was performed using PLINK 1.9 (Chang et al., 2015).

Stratification-by-sex test
To investigate sex specificity in the COL11A1 and MMP14 loci, we performed stratification-by-sex 
analysis in the discovery study (USA_TX). Association for the imputed allele dosages in rs3753841 and 
rs1042704 was computed separately for females (1157 cases and 7138 controls) using logistic regres-
sion with 10 PCs as covariates in Mach2dat (Li et al., 2009).

RNAseq of human tissues
RNAseq was performed as previously described (Makki et al., 2021). Read counting and transcript 
quantification were performed using HTSeq (Anders et  al., 2015). Finally, reads were normalized 
using DESeq2 tools (Love et al., 2014) and TPM values were generated using the Kalisto pipeline 
(Bray et al., 2016).

https://doi.org/10.7554/eLife.89762
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Animal studies
Mouse and rat work was conducted per IACUC approved protocols at University of Texas South-
western Medical Center (approved protocol #2016-101455) and University of California San Francisco 
(approved protocol #AN181381) and was in accordance with AALAC and NIH guidelines.

Generation of Pax1 knockout mice
Two gRNAs were designed to target the 5′ and 3′ ends of Pax1 gene (gRNA sequence shown in 
Figure 3—figure supplement 1) using the gRNA design tool on the Integrated DNA Technologies 
(IDT, Newark, NJ, USA) website and selected based on low off-target and high on-target scores. The 
knockout allele was generated using i-GONAD (Gurumurthy et al., 2019) as previously described 
(Ushiki et al., 2021).

To validate proper generation of the knockout, mice were analyzed by genotyping (with primers 
shown in Appendix 1), Sanger sequencing of PCR-amplified DNA, and southern blot (Figure  3—
figure supplement 1). For southern blot analyses, genomic DNA were treated with NcoI (Cat #R0193, 
New England Biolabs, MA, USA) and fractionated by agarose gel electrophoreses. Following capillary 
transfer onto nylon membranes, blots were hybridized with digoxigenin (DIG)-labeled DNA probes 
(corresponding to chr2:147,202,083–147,202,444; mm9) amplified by the PCR DIG Probe Synthesis 
Kit (Cat #11636090910, Sigma-Aldrich, MO, USA). The hybridized probe was immunodetected with 
antidigoxigenin Fab fragments conjugated to alkaline phosphatase (Cat #11093274910, Sigma-
Aldrich, MO, USA) and visualized with a CDP star (Cat #11685627001, Sigma-Aldrich, MO, USA) 
according to the manufacturer’s protocol. Chemiluminescence was detected using the FluorChem E 
(Cat #92-14860-00, ProteinSimple, CA, USA).

Col11a1fl/fl and ATC mice
The Col11a1fl/fl mouse line (Sun et al., 2020) was kindly provided by Dr. Lou Soslowsky with permission 
from Dr. David Birk. ATC mice (Dy et al., 2012) were kindly provided by Dr. Ryan Gray, with permission 
from Dr. Veronique Lefebvre.

Other mice
Cartilage was harvested from C57B/6 wild-type mice for siRNA-mediated knockdown experiments.

Histological methods
For thin cryostat sections, P0.5 mouse whole body was fixed in 4% paraformaldehyde (PFA) for 6 hr 
followed by 10% sucrose for 12  hr, then transferred to 18% sucrose for 24  hr. Tissues were then 
embedded in optimal cutting temperature compound (OCT) and sectioned using low-profile blades 
on a Thermo Shandon Cryostar NX70 cryostat and all sections were lifted on APES clean microscope 
slides. For whole mount images, samples were treated similarly with the addition of 2% polyvinylpyr-
rolidone (PVP) during the cryoprotection step and frozen in 8% gelatin (porcine) in the presence of 
20% sucrose and 2% PVP. Samples were sectioned at a thickness of 10 μm. Slides were stored at 
–80°C until ready for use. For P28 and older mice, spines were removed then fixed, decalcified, and 
embedded in OCT. Spines were processed by making 7 µm thick lateral cuts the length of the spine.

Collagen α1(XI) was detected by IHC staining using affinity-purified antisera against peptide (C) 
YGTMEPYQTETPRR-amide (Genescript, NJ, USA) as described (Sun et  al., 2020), and secondary 
horseradish peroxidase (HRP)-conjugated affinity-purified secondary antibody (Cat #AP187P, Milli-
poreSigma Aldrich, MO, USA). Briefly, frozen sections were equilibrated to room temperature for 
1 hr, then fixed with 4% PFA in PBS at 4°C for 20 min. Slides were washed, treated with 3% H2O2 in 
methanol for 10 min to block endogenous peroxidase, washed, and transferred to PBS with 0.05% 
Tween 20 (Cat #P3563-10PAK, Sigma-Aldrich, MO, USA) pH 7.4. Slides were blocked with 0.5% goat 
serum in PBS mix with 0.2% Triton 100 (Cat #T8787, Sigma-Aldrich, MO, USA) at room temperature 
for 1.5 hr. The primary collagen α1(XI) affinity-purified antibody was applied at 0.40 mg/ml and slides 
were incubated overnight at 4°C. Afterward slides were washed in PBS Tween 20 for three times and 
treated with goat anti-rabbit-HRP for 1.5 hr, then washed three times in PBS Tween 20. After applying 
3,3’-diaminobenzidine solution, slides were washed and counterstained with Mayer’s hematoxylin 
(Cat #MHS80, Sigma-Aldrich, MO, USA), washed, dehydrated, and mounted.

https://doi.org/10.7554/eLife.89762
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For collagen α1(XI) and PAX1 IF studies, P0.5 mice, P28 spine, and ribs sections were fixed 
in 4% PFA for 20 min then washed with PBS + 0.1% Triton three times, before incubation with 
10% normal goat serum in PBS + 0.1% Triton for 30 min to block the background. Slides were 
incubated with goat anti-mouse collagen α1(XI) antibody at 1:500 dilution and mouse anti-rat 
PAX1(Cat #MABE1115M, Sigma-Aldrich, MO, USA), in PBS + 0.1% Triton + 1% normal goat serum 
at 4°C overnight. Secondary antibodies used were 1:5000 anti-rat Alexa488 and anti-mouse 
Alexa594-conjugated antibodies (Cat #A32740 Invitrogen, CA, USA). The sections were mounted 
using ProLong Gold with DAPI (Cat #S36964 Invitrogen, CA, USA) for imaging as described (Yu 
et  al., 2018). All images were taken with Carl Zeiss Axio Imager.M2 fluorescence microscope 
(Zeiss, Oberkochen, DE).

Rib cartilage and IVD cell culture
All cell culture experiments utilized primary cells. Cell cultures were negative for mycoplasma contam-
ination as determined by random, monthly testing. Mouse costal chondrocytes were isolated from the 
rib cage and sternum of P0.5 mice. Rat IVD was removed intact from 1-month female rats and imme-
diately separated into NP, AF, and CEP isolates. Subsequently, tissues were incubated and shaken 
with 2 mg/ml Pronase solution (Cat #10165921001 Sigma-Aldrich, Inc, St. Louis, MO, USA) for 1 hr, 
followed by 1.5 hr digestion with 3 mg/ml Collagenase D solution (Cat #11088882001 Sigma-Aldrich, 
Inc, St. Louis, MO, USA), then 5 hr digestion with 0.5 mg/ml Collagenase D solution before three times 
PBS wash. Filtered, dissociated cells were seeded in Dulbecco’s modified Eagle’s medium (DMEM; Cat 
#MT15017CV Thermo Fisher Scientific, MA, USA) containing 10% fetal bovine serum (FBS), 100 μg/
ml streptomycin, and 100 IU/ml penicillin. Remaining cartilage tissues underwent further digestion in 
86 U/ml type 1 collagenase (Cat #SCR103 Sigma-Aldrich, Inc, St. Louis, MO, USA) overnight. Cells 
were collected and cultured in DMEM with 10% FBS plus 100 μg/ml streptomycin and 100  IU/ml 
penicillin.

SV40 immortalization and transfection of primary chondrocytes
Col11a1fl/fl mouse costal chondrocytes were isolated from the rib cage and sternum of P0.5 mice. The 
cells were transduced with pRRLsin-sv40 T antigen-IRES-mCherry lentivirus (Jha et al., 1998) for 48 hr, 
then sorted for mCherry-positive cells by flow cytometry. mCherry-positive cells were then infected 
with plv-eGFP, plv-eGFP-COL11A1-HA, plveGFP-COL11A1P1335L-HA constructs. After expansion, GFP-
positive cells were sorted by flow cytometry and seeded in 24-well plates.

Adenovirus treatment
SV40-induced Col11a1fl/fl mouse costal chondrocytes were grown to 50% confluency. Afterward, cells 
were treated with 2  µl Ad5-CMV-cre adenovirus (titer 1.8×1011 pfu/ml) and Ad5-CMV-eGFP (titer 
1.65×1010 pfu/ml) as control. Both virus strains were from the Gene Vector Core facility, Baylor College 
of Medicine. After 48 hr the cells were harvested for mRNA and protein lysate.

RNAseq and qRT-PCR
For Pax1 knockout studies, total RNA was collected from E12.5 tails using TRIzol (Cat #15596026, 
Thermo Fisher Scientific, MA, USA) and converted to cDNA using ReverTra Ace qPCR-RT master mix 
with genomic DNA remover (Cat #FSQ-301, Toyobo, Osaka, Japan). Sequencing was done using an 
Illumina Novaseq platform and the data were analyzed using Partek Flow (version 10.0) and gene 
ontology (Ashburner et  al., 2000). qPCR was performed using SsoFast EvaGreen supermix (Cat 
#1725205, Bio-Rad, CA, USA). Primer sequences used for qPCR are shown in Appendix 1.

To quantify the expression level of Col11a1, Mmp3, and marker genes in IVD compartments and rib 
cartilage, cultured cells were collected in RNeasy (QIAGEN, Inc) for RNA purification. Taqman Reverse 
Transcription Kit (Cat #4387406 Thermo Fisher Scientific, MA, USA) was used to reverse-transcribe 
mRNA into cDNA. Following this, RT-qPCR was performed using a Power SYBR Green PCR Master 
Mix Kit (Cat #1725271, Bio-Rad, CA, USA). The primer sequences for the genes used in this study are 
listed in Appendix 1. Gene expression was calculated using the ΔΔCT method after normalizing to 
GAPDH.

https://doi.org/10.7554/eLife.89762
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siRNA knockdown
Mouse rib cartilage cells seeded in six-well plates were 60–80% confluent at transfection. Lipofect-
amine RNAiMAX reagent (Cat #13778030 Thermo Fisher, Waltham, MA, USA) was diluted (9 µl in 
500 µl) in Opti-MEM Medium (Cat #31985070 Thermo Fisher, MA, USA). 30 pmol siRNA was diluted 
in 500 µl Opti-MEM medium, then added to diluted Lipofectamine RNAiMAX Reagent. siRNA-lipid 
complex was added to cells after 5 min incubation at room temperature. Cells were harvested after 
72 hr.

Western blotting
For MMP3 western blotting, a total of 30 µg protein mixed with SDS-PAGE buffer was loaded on 
12% SDS-polyacrylamide gel for electrophoresis. For collagen α1(XI) western blotting, 50 µg protein 
mixed with SDS-PAGE buffer was loaded on 4–20% SDS-polyacrylamide gel. The separated proteins 
were then transferred to nitrocellulose membranes (Cat #77010 Thermo Fisher Waltham, MA, USA) 
at 100 V for 2–3 hr. The membrane was first incubated with blocking buffer containing 5% defatted 
milk powder, and then exposed to 0.1  mg/ml mouse anti-rabbit Mmp3 (Cat #ab214794 Abcam, 
Cambridge, MA, USA) or anti-rabbit Col11a1 (Cat #PA5-38888 Thermo Fisher, Waltham, MA, USA) 
overnight. The samples were then washed thoroughly with TBS buffer, followed by incubation with 
HRP-labeled anti-rabbit IgG secondary antibodies 1:5000 (Cat #32460 Thermo Fisher, Waltham, MA, 
USA) overnight. The membranes were then washed with TBS buffer. GAPDH was detected by a rabbit 
anti-mouse antibody (Cat #14C10 Cell Signaling, MA, USA) and used as the internal loading control.
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Appendix 1
siRNA and primer sequences

Appendix 1—table 1. RNA and DNA oligonucleotide primers used for siRNA knockdown, RT-qPCR, 
and genotyping experiments.

Mouse Esr2 siRNA CAAG​UGUU​ACGA​AGUA​GGAd​T

Mouse Col11a1 siRNA GAAA​GAAG​GUGC​AAAG​GGUd​T

Mouse Mmp3 F ​CTCT​​GGAA​​CCTG​​AGAC​​ATCA​​CC

Mouse Mmp3 R ​AGGA​​GTCC​​TGAG​​AGAT​​TTGC​​GC

Mouse Col11a1 F ​AGGA​​GAGT​​TGAG​​AATT​​GGGA​​ATC

Mouse Col11a1 R ​TGGT​​GATC​​AGAA​​TCAG​​AAGT​T

Mouse Col11a2 F ​CTCA​​TCTT​​CCTG​​CATC​​AGAC​

Mouse Col11a2 R ACTT​GGAA​AGCG​AGGT​CCT

Mouse Adgrg6 F ​AGAG​​GATG​​GACT​​GAGG​​CTGT​​GT

Mouse Adgrg6 R ​CCAG​​GCTT​​GTTT​​GGAC​​ATGG​​TTG

Mouse Sox6 F ​GCAT​​AAGT​​GACC​​GTTT​​TGGC​​AGG

Mouse Sox6 R ​GGCA​​TCTT​​TGCT​​CCAG​​GTGA​​CA

Mouse Mmp14 F GCCT​TCTG​TTCC​TGAT​AA

Mouse Mmp14 R CCAT​CCTT​CCTC​TCGT​AG

Mouse Pax1 F ​AACC​​AGCA​​CGGA​​GTAT​​ACAG​C

Mouse Pax1 R ​TGTA​​AGCT​​ACCG​​AGTG​​CATC​C

Mouse Esr2 F ​GGTC​​CTGT​​GAAG​​GATG​​TAAG​​GC

Mouse Esr2 R ​TAAC​​ACTT​​GCGA​​AGTC​​GGCA​​GG

Mouse Gapdh F ​CATC​​ACTG​​CCAC​​CCAG​​AAGA​​CTG

Mouse Gapdh R ​ATGC​​CAGT​​GAGC​​TTCC​​CGTT​​CAG

Rat Sfrp2 F CGTG​AAAC​GGTG​GCAG​AAG

Rat Sfrp2 R CGGA​TGCT​GCGG​GAGA​T

Rat Krt19 F ​AAGA​​CACA​​CTGG​​CAGA​​AACG​

Rat Krt19 R ​GATT​​CTGC​​CGCT​​CACT​​ATCA​

Rat Mmp12 F ​TTGG​​CCAT​​TCCT​​TGGG​​GCTG​C

Rat Mmp12 R ​TGTT​​GGTG​​GCTG​​GACT​​CCCA​​GG

Mouse Pax1 F (Figure 5) ​CCGC​​ACAT​​TCAG​​TCAG​​CAAC​

Mouse Pax1 R (Figure 5) ​CATC​​TTGG​​GGGA​​GTAG​​GCAG​

Mouse Col11a1 F (Figure 5) ​CACA​​AAAC​​CCCT​​CGAT​​AGAA​​GTG

Mouse Col11a1 R (Figure 5) ​CCTG​​TGAT​​CAGG​​AACT​​GCTG​​AA

Mouse Adgrg6 F (Figure 5) ​TCCT​​GTCC​​ATCT​​CTGG​​CTCA​

Mouse Adgrg6 R (Figure 5) ​CACA​​AGAC​​AGAG​​CTGC​​TCCA​

Mouse Sox6 F (Figure 5) ​TGCG​​ACAG​​TTCT​​TCAC​​TGTG​G

Mouse Sox6 R (Figure 5) ​CGTC​​CATC​​TTCA​​TACC​​ATAC​G

Mouse β-Actin F (Figure 5) ​GGCA​​CCAC​​ACCT​​TCTA​​CAAT​G

Mouse β-Actin R (Figure 5) ​GGGG​​TGTT​​GAAG​​GTCT​​CAAA​C

Appendix 1—table 1 Continued on next page
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Pax1-genotyping F ​CAGA​​ACCT​​GGAA​​TGCT​​GTGC​​TC

Pax1-genotyping R ​AAAG​​GGTT​​GCAG​​TGCC​​TTCA​C

Appendix 1—table 1 Continued

https://doi.org/10.7554/eLife.89762
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Appendix 2
Clinical groups
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Akron, Ohio, USA
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10.	 University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA

Japan Scoliosis Clinical Research Group
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1.	 Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
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Kobe, Japan
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13.	 Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
14.	 Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
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19.	 Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan

https://doi.org/10.7554/eLife.89762


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Yu, Khanshour, Ushiki et al. eLife 2023;12:RP89762. DOI: https://doi.org/10.7554/eLife.89762 � 34 of 34

20.	 Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa, Japan
21.	 Department of Orthopaedic Surgery, Dokkyo Medical University Koshigaya Hospital, Koshigaya, 

Japan
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