Skip to main content
. 2024 Mar 18;24:63. doi: 10.1186/s12880-024-01241-4

Table 5.

Transfer learning model incorporating ResNet-50, ResNet-101, and EfficientNet-B3 with the specified configurations

Layer (type) Output Shape Param # Connected to
input_image (InputLayer) (224, 224, 3) 0
resnet50_base (Functional) (7, 7, 2048) 23,587,712 input_image[0][0]
resnet101_base (Functional) (7, 7, 2048) 42,658,176 input_image[0][0]
efficientnetb3_base (Functional) (7, 7, 1536) 10,783,535 input_image[0][0]
global_average_pooling2d Global (2048) 0 resnet50_base[0][0]
global_average_pooling 2d_1 Global (2048) 0 resnet101_base[0][0]
global_average_pooling2d_2 Global (1536) 0 efficientnetb3_base[0][0]
dense_layer_1 (Dense) (128) 262,272 global_average_pooling2d[0][0]
dense_layer_3 (Dense) (128) 262,272 global_average_pooling2d_1[0][0]
dense_layer_5 (Dense) (128) 196,736 global_average_pooling2d_2[0][0]
dropout_1 (Dropout) (128) 0 dense_layer_1[0][0]
dropout_3 (Dropout) (128) 0 dense_layer_3[0][0]
dropout_5 (Dropout) (128) 0 dense_layer_5[0][0]
dense_layer_2 (Dense) (64) 8256 dropout_1[0][0]
dense_layer_4 (Dense) (64) 8256 dropout_3[0][0]
dense_layer_6 (Dense) (64) 8256 dropout_5[0][0]
dropout_2 (Dropout) (64) 0 dense_layer_2[0][0]
dropout_4 (Dropout) (64) 0 dense_layer_4[0][0]
dropout_6 (Dropout) (64) 0 dense_layer_6[0][0]
output_layer (Dense) (4) 260

dropout_2[0][0]

dropout_4[0][0]

dropout_6[0][0]

output_activation (Activation) (4) 0

output_layer[0][0]

output_layer[1][0]

output_layer[2][0]