Skip to main content
. 2024 Mar 18;24:63. doi: 10.1186/s12880-024-01241-4

Table 7.

Comparison of dense dropout deep learning models for cancer detection performance

Model Precision
Adenocarcinoma Large-Cell Normal Squamous cell Average
EffiecientNetB3-Dense-Dropout 0.87 0.76 0.85 1.00 0.87
ResNet-50-Dense-Dropout 0.91 0.9 0.92 1.00 0.93
ResNet-101-Dense-Dropout 0.96 0.8 1.00 1.00 0.94
Score-level fusion model 0.92 0.9 0.92 1.00 0.94
Model Recall
Adenocarcinoma Large-Cell Normal Squamous cell Average
EffiecientNet-B3-Dense-Dropout 0.91 1.00 1.00 0.65 0.89
ResNet-50-Dense-Dropout 1.00 0.90 1.00 0.83 0.89
ResNet-101-Dense-Dropout 0.95 1.00 1.00 0.79 0.93
Score-level fusion model 1.00 1.00 1.00 0.75 0.94
Model F1-Score
Adenocarcinoma Large-Cell Normal Squamous cell Average
EffiecientNet-B3-Dense-Dropout 0.89 0.86 0.92 0.79 0.87
ResNet-50-Dense-Dropout 0.95 0.9 0.96 0.91 0.87
ResNet-101-Dense-Dropout 0.96 0.89 1 0.88 0.93
Score-level fusion model 0.96 0.95 0.96 0.86 0.93