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1  |  INTRODUC TION

Climate change is altering the distributions of many marine fish 
species, with widespread effects on biodiversity patterns (Hiddink 
& ter Hofstede,  2008; Magurran et al.,  2015) and on ecosystem 
functioning (du Pontavice et al.,  2020). Effects are predicted to 
increase (Fernandes et al.,  2020; Jones & Cheung,  2015), and po-
tentially jeopardise world food security (Pecl et al., 2017). Based on 
theory, modelling and empirical observations, climate change will 
favour smaller fish (Cheung et al., 2013; Daufresne et al., 2009). The 
incorporation of body size, a so called ‘super trait’ useful to assess 
change in food web structure and energy flux (Brose et al., 2019; 

Petchey et al., 2008), has improved model predictions of marine fish 
species distributions (Fernandes et al., 2013, 2020). Moreover, cate-
gorising fish using their species identity and body size into so called 
‘feeding guilds’ associated with different prey has provided empiri-
cal evidence of changes in ecosystem structure and functioning in 
response to a range of environmental and anthropogenic drivers 
(Garrison & Link,  2000b; Thompson et al.,  2020). Yet, predictions 
for how changes in species composition and size structure will af-
fect the diversity of feeding guilds in response to climate change 
have not been made. This is despite feeding guilds being widely ad-
vocated in support of environmental status assessment (ICES, 2018; 
Rombouts et al., 2013).
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Abstract
Many studies predict shifts in species distributions and community size composition 
in response to climate change, yet few have demonstrated how these changes will 
be distributed across marine food webs. We use Bayesian Additive Regression Trees 
to model how climate change will affect the habitat suitability of marine fish species 
across a range of body sizes and belonging to different feeding guilds, each with differ-
ent habitat and feeding requirements in the northeast Atlantic shelf seas. Contrasting 
effects of climate change are predicted for feeding guilds, with spatially extensive 
decreases in the species richness of consumers lower in the food web (planktivores) 
but increases for those higher up (piscivores). Changing spatial patterns in predator–
prey mass ratios and fish species size composition are also predicted for feeding guilds 
and across the fish assemblage. In combination, these changes could influence nutri-
ent uptake and transformation, transfer efficiency and food web stability, and thus 
profoundly alter ecosystem structure and functioning.
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Fish are key intermediate consumers in marine ecosystems be-
cause they link basal resources to top predators and occupy the 
majority of predatory roles above zooplankton, including the role 
of apex predator in many cases (Engelhard et al.,  2014; Lynam 
et al., 2017). Fish also typically have different habitat and feeding re-
quirements and thus occupy different roles in an ecosystem as they 
grow (Katara et al., 2021), starting in the planktivore feeding guild 
lower in the food web, with some developing into intermediate (ben-
thivores) and higher predators (piscivores) as they go through on-
togeny (Garrison & Link, 2000a; Thompson et al., 2020). Systematic 
differences in the response of typically smaller-bodied fish, feeding 
lower in the food web (planktivores) relative to those bigger, which 
utilise different resources (benthivores) and feed higher up the food 
web (piscivores), could profoundly alter ecosystem functioning. This 
is because changes in diversity and body sizes across the food web 
can influence nutrient uptake and the efficiency of communities in 
converting nutritional resources into biomass (Cardinale et al., 2012; 
Wang & Brose, 2018).

Global-scale studies which predict change in fish distributions 
in response to climate change typically focus on exploited species 
because of the wealth of distributional and biological data avail-
able for them via catch reports (du Pontavice et al., 2020; Jones & 
Cheung,  2015). Catch data, however, provide a skewed picture of 
biodiversity change because fishers target commercial species and 
sizes, under-sample or underreport others, and are not obliged to fol-
low consistent survey methods (Viana et al., 2013; Zhou et al., 2010). 
Internationally coordinated fisheries-independent surveys offer 
a complementary perspective and provide a more comprehen-
sive, albeit smaller-scale, picture of biodiversity change (Magurran 
et al., 2015; global fish survey data with body size information are not 
yet readily available). Such surveys can be complemented with highly 
resolved size, life history and stomach content data (Thompson 
et al., 2020). Together, such data provide empirical observations to 
underpin predictions of fish species and sizes useful to understand 
changes in food web structure and ecosystem functioning. They have 
the added advantage of being collected specifically to inform regional 
ecosystem-based management plans within which conservation ef-
forts are coordinated.

The scaling relationship between predator and prey mass, often 
measured using predator–prey mass ratios (henceforth PPMRs), 
constrains energy flow through ecosystems (Barnes et al.,  2010; 
Schneider et al.,  2012). Predators which have many weak inter-
actions by feeding on relatively small prey with high PPMRs can 
help to maintain stability in food webs (Otto et al.,  2007; Rooney 
et al., 2006) and ecosystem functioning (Schneider et al., 2012; Wang 
& Brose, 2018) because they dampen strong oscillatory dynamics. 
As such, high PPMR interactions tend to mitigate perturbations from 
climate change, among other stressors (Binzer et al., 2016). PPMR 
estimates show significant interspecies variation due to differing 
foraging strategies, such that change in the composition of fish spe-
cies can be the biggest driver of change in community-wide PPMR 
(Reum et al., 2019). The ability to detect systematic change in fish 
with relatively high PPMRs in response to climate change would 

therefore be useful to better understand how changes in the fish 
assemblage may affect ecosystem functioning. Yet, predictions for 
how climate change could affect community-wide PPMR via altered 
species and size composition have not been possible at large scales 
before because of insufficient data. Recent published inventories of 
stomach content information documenting predator and prey size 
and taxonomic information now contain the relevant data to make 
such predictions possible (e.g. Pinnegar, 2019).

We focus on the northeast Atlantic shelf seas where there 
are spatially and temporally extensive fisheries-independent sur-
veys (Lynam & Ribeiro,  2022), detailed feeding guild allocations 
(Thompson et al., 2020) and life history data (Thorson et al., 2017), 
complemented by model projections of changes in marine physics, 
biogeochemistry and the lower trophic levels of the marine food 
web (https://cds.clima​te.coper​nicus.eu/). We use Bayesian Additive 
Regression Trees (BART) to model the environmental requirements 
of species size classes which are grouped into feeding guilds and 
then test the following hypotheses: (i) climate change affects habitat 
suitability asynchronously for feeding guilds (i.e. change in species 
richness is unevenly distributed across the food web); (ii) changes 
in species and size composition are associated with widespread de-
creases in the mean maximum length indicator for fish and (iii) wide-
spread decreases in PPMRs. Testing these hypotheses allows us to 
identify those ecosystem components and geographical areas most 
vulnerable to climate change.

2  |  METHODS

2.1  |  Survey data

Observations of fish species and sizes published on ICES DATRAS 
(https://www.ices.dk/data/data-porta​ls/Pages/​DATRAS.aspx) were 
obtained for surveys of the Northeast Atlantic for the period 1983–
2020. These data have been processed into a data product by Lynam 
and Ribeiro (2022) that is available publicly. Specifically, we make use 
of otter trawl data from the Greater North Sea (OSPAR Region II, 
https://www.ospar.org/conve​ntion/​the-north​-east-atlantic) collected 
by international parties (i.e. International Bottom Trawl Survey, quar-
ters 1 and 3) and by France (quarter 4); and from the OSPAR Celtic 
Seas region (III), that encompasses the western side of the British Isles 
collected by Northern Ireland (quarter 1) and by France, Northern 
Ireland and Scotland (quarter 4). We also make use of beam trawl data 
for specific demersal taxa (Ammodytes, Limanda limanda, Microstomus 
kitt, Pleuronectes platessa, Scophthalmus maximus and Solea solea) 
from the Greater North Sea collected by the Netherlands, Germany 
and England (quarter 3) and Celtic Seas region collected by England 
(Western Channel, quarter 1, and Bristol Channel and Irish Sea, quar-
ter 3). Observations for those taxa were removed from the otter trawl 
data so as not to confound predictions with differences in gear-specific 
observation biases. There were 44,103 unique hauls spanning years 
1983–2020 with corresponding environmental data (see Table S1 for 
information on specific surveys and sample distributions).

https://cds.climate.copernicus.eu/
https://www.ices.dk/data/data-portals/Pages/DATRAS.aspx
https://www.ospar.org/convention/the-north-east-atlantic
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2.2  |  Feeding guilds

Feeding guilds were allocated based on classifications following 
Thompson et al.  (2020). In brief, a collation of trophic interactions 
spanning the northeast Atlantic shelf seas has been applied to define 
feeding guilds by grouping fish species size classes (we use the taxo-
nomic level of Gobiidae and Ammodytes for taxa that are not consist-
ently identified to species) that have prey taxa in common, and whose 
prey differentiate them from other predator guilds based on cluster 
analysis. Taxon-specific size categories were defined as: <3 cm as lar-
vae; small juvenile fish between 3 cm and half of length at maturity; 
juvenile-medium fish from half of length at maturity to length at ma-
turity; medium fish from length at maturity to half-maximum length; 
and all remaining larger fish as large. Taxon-specific length at matu-
rity and maximum length (i.e. asymptotic length at infinity) were esti-
mated using the R package Fishlife (Thorson et al., 2017). The stage of 
maturity, which has been shown to change in response to fishing and 
predation (Forestier et al., 2020) is not used here directly to inform 
our predictions; rather, each species was grouped into the above five 
size classes. Each species could thus shift guild through ontogeny, as 
many do (Thompson et al., 2020), but our results are not contingent 
on exactly when a species is mature.

PPMRs were based on directly observed predator and prey 
masses in stomach content data, where available (ICES,  1997; 
Pinnegar,  2019). Where predator mass was missing, this was esti-
mated using published length–mass relationships (Silva et al., 2013). 
Where fish prey mass was missing, we used typical fish prey length 
to estimate prey mass based on length–mass relationships (after 
Pinnegar, 2019). The typical prey length of fish is estimated as:

For prey other than fish, we used mean size information 
from survey data for prey taxa where available (i.e. contained in 

Pinnegar,  2019, and references therein). PPMR was estimated for 
each stomach sample by taking a mean of individual PPMR values 
(predator mass/individual prey mass), weighted by prey biomass, 
which is appropriate to assess energy flux (Reum et al., 2019). PPMR 
was then calculated for species within guilds by taking the mean of 
these biomass-weighted PPMR values across unique predator sam-
ples (Table S2). Because we are not modelling change in all prey spe-
cies and sizes (e.g. zooplankton), predicted changes in PPMR reveal 
whether fish species and sizes with systematically different PPMRs 
have contrasting responses to climate change, as opposed to a pre-
diction of community PPMR itself.

We use a relatively simple set of feeding guilds where we take a 
higher split in the classification tree than those more complex guilds 
used by Thompson et al. (2020), and these can be described as plank-
tivores, benthivores and piscivores because of the mean relative % 
biomass contributions of those prey groups to their diets (Figure  1, 
Figure S1; Table S2). Prey were assigned to functional groups in R ver-
sion 4.02 (R Core Team, 2020) after Webb and Vanhoorne (2020) using 
the ‘worrms’ package (Chamberlain, 2019). Planktivores are typically 
smaller-bodied fish that feed on relatively small prey lower in the food 
web, whereas benthivores are intermediate in size, feed on interme-
diate sized prey and piscivores are the largest and feed on relatively 
large prey. All guilds have similar mean PPMRs. We used these simpli-
fied guilds so that we could elegantly capture a broad set of ecosystem 
components while also explore a complementary suite of responses 
and two different climate scenarios. Feeding guild classifications 
were applicable to 92.5% of the biomass observed in the otter trawl 
survey data which included 78 species (not including those targeted 
using beam trawls). However, many rare species observed in the sur-
veys, representing 7.5% of the biomass surveyed using otter trawls, 
remained unclassified due to limited stomach content information. 
Our perspective of fish biodiversity was therefore weighted towards 
predators contributing most to community biomass and ecosystem 
functioning.

Prey length = (0.2057 × predator length) + 1.618.

F I G U R E  1  Differences between 
feeding guilds in: % biomass contribution 
of zooplankton (a); benthos (b); and fish 
prey (c; see Figure S1 for remaining prey 
biomasses); predator length (d); individual 
prey mass (e); and biomass-weighted 
predator–prey mass ratio (f). Values are 
based on feeding guild-level means taken 
across species (Table S2), error bars 
represent standard error.
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2.3  |  Climate projections and environmental 
change gradients

Environmental projections from 2006 to 2100 were derived from 
the coupled marine ecosystem models POLCOMS/NEMO-ERSEM. 
ERSEM v15.06 (European Regional Seas Ecosystem Model; 
Butenschön et al., 2016). This is a complex lower trophic-level marine 
ecosystem model that simulates bacteria, four phytoplankton and 
three zooplankton functional groups, and includes a fully resolved 
diurnal cycle, variable carbon to chlorophyll ratios and independ-
ent nutrient pools for carbon, nitrogen, phosphorous and silicate. 
ERSEM was coupled to the ocean circulation model POLCOMS 
(Proudman Oceanographic Laboratory Coastal Ocean Modelling 
System; Holt & James, 2001; Holt et al., 2001) running at a resolu-
tion of 0.1°, and together providing projections of changes in marine 
physics, biogeochemistry and the lower trophic levels of the marine 
food web for our study area (Kay, 2020). These datasets are publicly 
available to download from the online catalogue of the Copernicus 
Marine Environment Monitoring Service at https://cds.clima​te.coper​
nicus.eu/cdsap​p#!/datas​et/sis-marin​e-prope​rties.

We focus on two emission scenarios (representative concen-
tration pathways, RCPs) developed for the Intergovernmental 
Panel on Climate Change (IPCC)'s fifth phase of the Coupled Model 
Intercomparison Project (CMIP5): RCP 4.5, the ‘stabilization sce-
nario’, characterised by medium emissions and high mitigations, and 
the ‘no mitigation policy’ scenario RCP 8.5, derived from high fossil 
fuel emission and low mitigations. Together they provide informa-
tion on the implications of stabilising emissions versus inaction on 
climate change. Global Earth System models are also available, but 
these require statistical downscaling using regional models so that 
they capture specific regional processes (Holt et al., 2014). Here we 
use a specifically developed model for the region that provides the 
range of environmental data required for the study.

We use projections of temperature, salinity, pH, nitrate, phos-
phate, dissolved oxygen, current velocity, chlorophyll, gross pri-
mary production, non-living organic carbon, zooplankton carbon 
concentration and secondary carbon production by zooplankton in 
our predictive habitat models. For temperature, salinity, current ve-
locity, dissolved oxygen and pH both surface and bottom mean an-
nual averages were considered, and in the case of temperature, also 
the difference between bottom and surface values to account for 
stratification. For chlorophyll, gross primary production, non-living 
organic carbon, phosphate, nitrate, zooplankton carbon concen-
tration and secondary carbon production by zooplankton the total 
across the water column was used, rather than surface or bottom 
values. We also include depth (from the General Bathymetric Chart 
of the Oceans GEBCO; www.gebco.net, at 15 s resolution), distance 
to coast and substrate composition (median grain size and percent-
ages of mud, sand and gravel from Wilson et al., 2018) to capture 
key spatial gradients that affect habitat suitability for fish. Data on 
fishing at sufficiently high spatial resolution are only available for 
recent periods starting circa 2009 which corresponds with only 45% 
of the survey data. Hence, we chose not to include fishing pressure 

information and include all survey data available to increase the 
power of our statistical approach with the caveat that impacts of 
fishing on the ranges of species within guilds were not accounted 
for. This also influenced our decision to model distributions (i.e. pres-
ence/absence data, see below) as opposed to abundance, since the 
impact of fishing is more pronounced in terms of abundance, with 
many species whose populations have been depleted by fishing still 
regularly observed in surveys, albeit in lower numbers (e.g. North 
Sea cod; Horwood et al., 2006).

All environmental data were processed onto a 10 × 10 km2 grid, 
and because an annual mean of, for example, temperature, does not 
capture the environmental variability that ultimately determines the 
thresholds within which biota must survive; for temperature, salin-
ity, pH, oxygen and current speed we also include the standard de-
viation of the 12 monthly means in each year, for all locations within 
a radius of 75 km of each grid cell, in order to provide a measure 
of spatio-temporal heterogeneity. For the environmental variables 
where surface and bottom values were extracted, we use sea sur-
face values to model habitat suitability for planktivores, which are 
largely pelagic species, and seabed values for the benthivores and 
piscivores which are largely demersal species. Pairwise Pearson 
correlation coefficients were computed for the set of environmen-
tal variables used to model the habitat of planktivores and of non-
planktivores separately, to assess multicollinearity. Variables were 
removed if they correlated with another >0.7 (Figure S2, also show-
ing the final set of variables used to train the models).

2.4  |  Habitat suitability modelling and estimating 
uncertainty

The beam and otter trawl survey data were processed using the 
10 × 10 km2 study grid. This grid resolution was used because  
the hindcast of the environmental data (CERES, 2018) and the 
forecast data from Copernicus have a resolution of approxi-
mately 11 km, whereas the bathymetry data have a higher resolu-
tion (<10 km). Our outputs were therefore limited by the climate 
projections made by general circulation models. Grid cells where 
species size classes classified into guilds (henceforth ‘species-
guild’; see Table S3) were observed on a particular year were clas-
sified as ‘presence’ sites and ‘absences’ were assumed where and 
when a survey using the same gear (beam or otter trawl) had failed 
to find the species-guild (i.e. our models use and predict the pres-
ence or absence of species-guilds as opposed to abundance or bio-
mass). Models for the sandeels (Ammodytes) and flatfish L. limanda,  
M. kitt, P. platessa, S. maximus and S. solea were trained using pres-
ences and absences from surveys using beam trawls, while those 
for other species were trained solely with otter trawl survey data. 
Since data from different gears were not combined it was not 
necessary to account for differences in catchability. All gridded 
environmental data were extracted to match the grid cell and year 
that the survey data were collected, meaning each haul had unique 
environmental information (Figure 2 provides a visual schematic 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-marine-properties
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-marine-properties
http://www.gebco.net
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outlining the steps we took). The environmental requirements of 
each species-guild are assessed using BART (Chipman et al., 2012). 
BART is a method based on an ensemble of classification tree mod-
els, each built by sequentially splitting the data into two groups 
based on the value of the explanatory variables. BART can account 
for nonlinear relationships and interactions between explanatory 
variables, much like all tree-based techniques. However, it dif-
fers from other frequently used tree ensemble models, such as 
Random Forest or Boosted Trees, in that the sequence of trees is 
built relying on a Bayesian probability model, with the tree struc-
ture dictated by priors and a likelihood for the data in the termi-
nal nodes of the trees. The sequential process of building BART 
trees means each new tree has an increasingly weaker effect on 
the final predictions. While the application of BART for species 
distribution modelling is relatively novel and not widely extended 
yet, it has been shown to have similar or better performance than 
the majority of more popular machine learning techniques, includ-
ing Random Forest Analysis (Chipman et al., 2012). The Bayesian 
approach of the BART method also allows for an estimation of 
prediction error, which is lacking for most traditional species 
distribution modelling techniques. The models were trained in R 
using the ‘embarcadero’ package (Carlson, 2020).

We train models for all combinations of species-guild for which 
at least 40 presences were available in the training dataset, result-
ing in 71 different models (see Table S3 for a full list of the models 
and the number of presences available for each). We assess model 

performance in both space and time. Spatial performance was anal-
ysed via eightfold block cross validation using the R library ‘blockCV’ 
(Valavi et al., 2019). In this approach, the study region is divided into 
a coarse grid, with the resolution of the grid taking into account the 
spatial autocorrelation of the environmental variables (we used data 
for the year 2000 to assess this). These spatial blocks were then as-
signed numbers from 1 to 8. For each species-guild, eight additional 
models were trained, using data from blocks from all numbers ex-
cept one, leaving a different number out each time. Each model is 
then used to predict on the blocks with the number that was ex-
cluded when training that particular model (called ‘validation’ data). 
Each model is therefore predicting to a ‘novel area’, outside the spa-
tial boundaries where it was trained. Prediction data of all the eight 
models cover the entire study region and were pulled together to 
assess model performance. Temporal performance of the models 
was assessed by training a new model that excluded the last 5 years 
of survey data (2015–2019), using the resulting model to predict to 
those 5 years, a ‘novel time period’ for that model. It was additionally 
required that at least 10 presence records fell within the validation 
period. This was easily achieved by a majority of our models (e.g. 
67 of the 71 models we trained had at least 400 presence records 
and the majority had many more, see Table S3), but for three of the 
models (Anguilla anguilla—Benthivore, Belone belone—Planktivore 
and Scophthalmus rhombus—Benthivore) the year for the split had to 
be lowered to 2007, 2013 and 2006 respectively in order to achieve 
10 presence records.

F I G U R E  2  A step-by-step guide showing how different data were combined and analysed to predict species-guild distributions.
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For both the spatial and temporal validations (Valavi et al., 2019) 
we computed three measures of model performance: the area under 
the curve (AUC) of the receiver operating characteristic (ROC) 
plot, the AUC of the Precision–Recall (PR) plot (He & Garcia, 2009)  
and the Miller slope (Miller et al., 1991; Table S3). We required that 
models achieved AUC scores of the ROC curves of 0.65, for both the 
temporal and spatial validation. All of the 71 trained models met this 
requirement. Our results therefore represent change in the compo-
sition of feeding guilds based on species and sizes that are observed 
in the trawl surveys and whose distribution can be modelled with 
a sufficient level of confidence. Table S3 lists species and sizes by 
feeding guild with their respective model performance scores and all 
modelled projections can be found in Couce and Thompson (2023). 
For each model, a presence/absence threshold was chosen as the 
value that maximised each model's sensitivity plus specificity in the 
test data of the spatial eightfold block cross validation. We chose 
to model species-guilds, as opposed to species size classes, because 
feeding guilds are a data-driven approach to determining key shifts 
in species life history. Variable importance for each BART model was 
assessed as the proportion of times each variable was used in the 
split of the branches across all individual tree models, and was then 
averaged for all models in each feeding guild to reveal which predic-
tors best explained the distributions of species within guilds.

Future projections were based on the predicted presence of 
species-guilds at each grid cell under specific RCPs and years. 
Species richness was estimated by summing species within feed-
ing guilds to assess specific components of the food web or across 
guilds for a community-wide perspective. Species-level maximum 
length estimates made by Thorson et al. (2017) were used to assess 
change in fish size composition by taking the mean maximum length 
across all species present. PPMR estimates were determined by 
taking a mean across species within each feeding guild and across 
feeding guilds for a guild-level and community-wide perspective of 
change, respectively.

We then test our hypotheses in two ways to assess large-scale 
and fine-scale temporal change respectively. First, using Kruskal–
Wallis tests between cell-level values in 2020 compared with those 
in 2095 to assess whether change in each response, for example, 
planktivore species richness, was significant across the study area. 
Second, we asses finer scale temporal correlations using Kendall's 
τ trend analysis based on the relationship between the various re-
sponses and year across each grid cell (n = 13,318 cells over 5-year 
intervals from 2020 to 2095). Kendall's τ scores are presented for 
each grid cell to show regions of temporal change and thus explore 
contrasting directions of change which may go undetected at the 
scale of the study area. Kendall's τ scores of −1 to +1 represent a 
100% probability of a decreasing or increasing trend respectively. 
Both statistical approaches we use to test our hypotheses are rank 
based and nonparametric because our response variables were not 
normally distributed and could not be readily transformed to meet 
parametric model assumptions. Using Kendall's τ has the added ben-
efit of detecting correlations which may be nonlinear, since tempo-
ral change in the responses we measure could take any smoothly 

varying (curving) function. We focus these tests and much of our 
results on RCP 4.5 because our hypotheses are not associated with 
the differences caused by the different scenarios, but rather the 
contrasting effects of climate change across the food web. We then 
compare spatial patterns of change between RCP 4.5 and RCP 8.5 
to draw attention to the level of change expected between different 
mitigation options.

3  |  RESULTS

3.1  |  Change in species richness

Substantial change in the spatial distribution of fish species richness 
in response to climate change is predicted, with contrasting direc-
tions of change across feeding guilds (Figures  3–5). At the large-
scale, planktivore species richness will decrease (χ2 = 3.93; Df = 1;  
p = .047), increase for benthivores (χ2 = 13.58; Df = 1; p = <.001) and 
increase for piscivores (χ2 = 246.79; Df = 1; p = <.001) under RCP 4.5 
by 2095 (Figure. 4d). At finer scales however, all feeding guilds show 
contrasting directions of change in species richness with more cells 
showing significant positive trends than significant negative trends 
(Figure. 5). In general, change is predicted to be driven by range con-
traction of more northerly distributed species and range expansion 
of those more southerly distributed, with more species expanding in 
range, moving north and east, than contracting (Figure 4a–c). Variable 
importance across our models shows that temperature, distance to 
coast, bathymetry (i.e. depth) and the % of different substrates were 
generally important predictors, while current speed, total non-living 
carbon concentration and nutrients were often least important 
(Figure  S3; see also Figure  S2 for covarying predictors which were 
excluded). Decreases in planktivore richness were most notable in the 
central North Sea with up to 80% declines (−6 species; Figures 3 and 
5) with increases of up to 300% (+5 species) also evident, particularly 
in southern and western areas of the study region, where species rich-
ness was previously low. In contrast, under those same projections, 
spatially extensive increases in piscivore richness were predicted, 
with the largest increases of up to 250% (+12 species) in the eastern 
and central North Sea, and some localised and more minor declines 
largely occurring in the west of the study region of up to 60% (−8 
species). Benthivore richness showed large areas of change in each 
direction, with increases of up to 400% (+6 species) in deeper waters 
in the Atlantic and Norwegian trench, and in the English Channel, and 
decreases of up to 75% (−6 species) off the west coast of Ireland and 
more broadly across shelf-sea areas of the Celtic Sea. Prediction er-
rors revealed that uncertainty in our predictions was higher on aver-
age for planktivores relative to other guilds in 2020, and higher for 
planktivores and piscivores relative to benthivores in 2095 (Figure S4).

Predicted increases in species richness across feeding guilds 
(χ2 = 195.09; df = 1; p < .001; Figure  S5) were largely driven by 
change in the most species rich piscivore guild (Figures 3–5). Species 
richness increases were greatest in the northeast (up to +100%; 
+17 species), particularly in the deeper waters around Norway, and 
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south-central and western areas of the North Sea, with less nota-
ble decreases in species richness in the north-central North Sea, the 
Irish Sea and off the west coast of Ireland (up to -36%; -9 species) 
by 2095 under RCP 4.5. When assessing community-wide richness, 
increases in the piscivore guild largely obscured regionally contrast-
ing patterns of change, including widespread losses of planktivore 
and benthivore species that are critical to maintaining ecosystem 
functioning.

Compared with RCP 4.5, the patterns of change in the richness 
within and across feeding guilds under RCP 8.5 were broadly similar by 
2095, but the magnitude was greater (Figure 3 and Figure S5). Change in 
planktivore richness ranged from −83% (−5 species) to +400% (+7 spe-
cies), in benthivore richness from −80% (−7 species) to +233 (+7 species), 
in piscivore richness from −58% (−8 species) to +300% (+13 species) and 
changes in overall species richness ranging from −53% (−10) to +106% 
(+17).

F I G U R E  3  Feeding guild species richness in 2020 (a, d, g) and % change in richness between 2020 and 2095 based on RCP 4.5 (b, e, h) and 
RCP 8.5 (c, f, i) generated using BART species distribution models. Particularly high values of increase by >100% are highlighted in dark red.
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F I G U R E  4  Predicted change in the distribution of species assigned to feeding guilds, feeding guild species richness, mean maximum 
length (MML) and predator-prey mass ratios (PPMR) from 2020 to 2095 based on RCP 4.5. Top row: species are ordered along the y-axis by 
feeding guild and then their mean latitudinal values (in parentheses). Change in range (a) represents change in the number of cells occupied 
across the study region, each cell corresponding to an area of 100 km2. Latitudinal (b) and longitudinal (c) change represent shifts in the mean 
latitudinal and longitudinal values of cells occupied by species respectively. Species which appear multiple times on the y-axis switch guilds 
through ontogeny, such as juvenile planktivorous dab (Limanda limanda) which develop into benthivores at larger size classes and can have 
differing habitat requirements (note contrasting latitudinal changes). Bottom row: mean cell-level change in feeding guild species richness 
(d), MML (e) and PPMR (f), with error bars showing standard error and * indicating significant change between 2020 and 2095 values based 
on Kruskal–Wallis tests.
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F I G U R E  5  Temporal correlations in feeding guild species richness (a, d, g), mean maximum length (MML; b, e, h) and predator–prey mass 
ratio (PPMR; c, f, i) over 5-year intervals from 2020 to 2095 under RCP 4.5. Temporal increases are shown by red cells (Kendall's τ correlation 
values between 0 and +1), declines by blue cells (correlation values between 0 and −1), and cells with significant correlations have a black 
border. The bottom row shows the % of cells with a significant increasing (red) or significant decreasing (blue) correlation in species richness 
(j), MML (k) and PPMR (l).
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3.2  |  Change in MML and PPMR

Changes in the spatial distributions of species within guilds were 
predicted to affect the species composition of feeding guilds and 
community composition overall (i.e. as characterised by the MML 
indicator) and PPMR by 2095 under RCP 4.5 (Figures  4, 5 and 
Figure S5). Large-scale decreases in MML were highest for plank-
tivores (χ2 = 736.20; Df = 1; p = <.001), followed by benthivores 
(χ2 = 15.18; Df = 1; p = <.001), with no overall change for piscivores 
(χ2 = 1.54; Df = 1; p = .215; Figure 4). At finer spatial scales, there 
were widespread declines in MML for planktivores and piscivores, 
with roughly equal areas of contrasting change for benthivores 
(Figure  5). Across feeding guilds, there was no overall direction 
of change in MML (χ2 = 0.00; df = 1; p = .961), but large areas of 
change are predicted in each direction, with increases of up to 
58% (+29 cm) in the southeast and western North Sea but de-
creases of up to 36% (−29 cm) most notable in the central-eastern 
North Sea (Figure S5).

At the large-scale, PPMR increased for planktivores (χ2 = 13.51; 
Df = 1; p = <.001) but decreased for benthivores (χ2 = 75.09; Df = 1; 
p = <.001) with no overall change for piscivores (χ2 = 0.00; Df = 1; 
p = .985; Figure 4). At the finer spatial scale, PPMR decreased over 
more cells than it increased for all feeding guilds, revealing that spe-
cies richness increases were typically driven by fish with relatively 
low PPMR (Figure 5). PPMR across feeding guilds changed in each 
direction showing no overall direction of change (χ2 = 1.01; df = 1; 
p = .315; Figure S5), with decreases in the eastern North Sea of up to 
90%, (−20,267) and increases in parts of the central North Sea of up 
to 1301% (+21,247). Under RCP 8.5, the magnitude and patterns of 
change across feeding guilds predicted by 2095 were largely similar 
compared to RCP 4.5 but with more widespread declines in MML 
and PPMR (Figure S5), with change in MML ranging from from −46% 
(−27 cm) to +71% (+24 cm) and change in PPMR from −91% (−19192) 
to +1040% (+19584).

4  |  DISCUSSION

While it is widely acknowledged that climate change is impacting 
marine fish species distributions and size compositions (Fernandes 
et al., 2013; Hiddink & ter Hofstede, 2008; Jones & Cheung, 2015), 
this study is the first to demonstrate that changes in the spatial pat-
terns of species richness will be different across feeding guilds in 
response to climate change. Species within feeding guilds that are 
predicted to increase in range do not simply occupy space left by 
species within the same guild decreasing in range (Figures  3 and 
4). Instead, those increasing in range are predicted to prosper in 
other areas of the ecosystem, with some regions experiencing con-
trasting directions of change in species richness across the food 
web (Figures 3 and 5). These changes will deplete species in some 
areas where they perform critical ecosystem functions (e.g. plank-
tivorous herring, Clupea harengus and Norway pout, Trisopterus es-
markii), while bolstering others (e.g. planktivorous anchovy, Engraulis 

encrasicholus and Atlantic horse mackerel, Trachurus trachurus; 
Figure 4, Figure S6), and thus fundamentally alter how and where 
energy fluxes through the system.

Trophic transfer efficiency (du Pontavice et al.,  2020) and the 
number of feeding links, especially for predators (i.e. predator 
generality; Albouy et al.,  2014) have been predicted to decrease 
in marine ecosystems under climate change. Evidence from meta-
analyses also shows that biodiversity loss impairs both nutrient 
uptake and the efficiency of communities in converting nutritional 
resources into biomass (Cardinale et al., 2012; Worm et al., 2006). 
Contrasting directions of change in responses across the food web 
could therefore have profound effects on ecosystem structure and 
functioning. For the first time, our study provides evidence for 
decreasing species richness and change in size structure in a key 
energy pathway, planktivory by fish, over large areas which could 
undermine energy transfer between basal resources and top pred-
ators. Conversely, the efficiency of energy uptake and biomass 
production could be elevated for piscivores where richness and, in 
some cases, ultimate body size, is anticipated to increase (Figure 5; 
Wang & Brose, 2018). Planktivores with high PPMR (which typically 
feed on relatively small prey, e.g., herring; Table S2) are predicted to 
increase in some areas, but across much of the study region and all 
feeding guilds PPMR is predicted to decrease (predators typically 
feeding on relatively larger prey; Figure 5). Similarly, the composi-
tion of fish will largely shift towards those with decreased ultimate 
body size. Spatially extensive reductions in PPMR and body size 
across the food web could strengthen oscillatory dynamics between 
interacting fish species and thereby undermine food web stability 
(Otto et al., 2007; Rooney et al., 2006) and ecosystem functioning 
(Schneider et al., 2012; Wang & Brose, 2018). Future research could 
explore the consequences of these contrasting changes in species 
richness, PPMR and MML across the food web, for example, via 
dynamical spatio-temporal food web modelling, to help understand 
how food web dynamics might affect biotic responses to these en-
vironmental change drivers.

Community-wide increases in species richness (Figure  S5; 
Hiddink & ter Hofstede, 2008) will be largely driven by piscivores 
(Figures 3–5), but this obscures widespread declines in more north-
erly distributed planktivorous fish with relatively large ultimate 
body size (i.e. compared to those planktivore species expanding in 
range) that play a critical role in regulating ecosystem dynamics and 
functioning across the northeast Atlantic shelf seas (Figures  3–5;  
Engelhard et al.,  2014; Lynam et al.,  2017). This is partly caused 
by diminishing suitable habitat for juvenile planktivorous gadoids 
that develop into piscivores as they mature (Merlangius merlangus 
and Pollachius virens), but also sandeels, sprat, herring and Norway 
pout, for instance, which remain planktivorous through ontogeny 
(Figure 4; Figures S6 and S7, the latter showing maps of temporal 
change in planktivorous fish MML where only species with adult 
planktivorous life stages are considered). Given planktivores tend to 
be smaller (Figure 1), and warming favours smaller fish (Daufresne 
et al., 2009), this finding is counterintuitive, and suggests that forag-
ing strategies, as well as body size and habitat usage, play a central 
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role in determining diversity patterns and organismal response to 
climate change (Siqueira et al., 2021).

There was no uniform response to climate change, with con-
trasting directions of change within and across feeding guilds. For 
instance, contrasting regional directions of change in benthivore spe-
cies richness were equally widespread (Figure 5j). There were also ap-
parent contradictions in the direction of change across spatial scales. 
For instance, increases in planktivore species richness were more 
spatially extensive than decreases (Figure 5j), but planktivore species 
richness decreased overall (Figure 4d). Similarly, decreases in plankti-
vore PPMR were more spatially extensive than increases (Figure 5l), 
but increased overall (Figure 4f). These are the result of differences 
in the quantity (level of change) and the direction of change in space, 
that is, relatively large change in a small area with relatively minor 
change in the opposite direction over larger areas. Assessment across 
spatial scales was key to detect these nuances which are important to 
understand because different management may be needed in areas 
with contrasting directions and magnitudes of change.

Rather than using fisheries catch data, we use fisheries-
independent survey data to reveal changes in the distribution of 
specific life stages of a broad range of species (i.e. including but not 
exclusively commercially fished species) which feed at different lev-
els in the food web. Our findings can help identify (i) species whose 
habitat conditions are changing at different rates between juvenile 
and adult life stages (e.g., dab, Limanda limanda; Figure 4a-c) and 
(ii) regions where species richness and ecosystem functioning are 
predicted to change most in response to climate change and where 
environmental protection may be most warranted and most effec-
tive. This may include, for example, areas in the northern North Sea 
which are predicted to be a thermal refuge for many species in the 
future (Figure 3 and Figure S5), or more stable areas such as Atlantic 
facing coastal waters of the United Kingdom and Ireland where spa-
tial protections could cover areas of high biodiversity into the future.

The species richness of planktivores was more sensitive to 
change in individual species because they had low overall species 
richness compared to the other feeding guilds. Community PPMR 
was also sensitive to change in a few planktivorous species with 
particularly high PPMR (Table S2). Relative to the other guilds, this 
highlights: (i) that planktivores, which represent the most prominent 
intermediate consumers (both numerically and in terms of biomass) 
that support higher predator populations in the region (Engelhard 
et al., 2014; Lynam et al., 2017; Wilson & Hammond, 2019), tend to 
be more vulnerable to climate change relative to other feeding guilds 
and; (ii) the directions of change in planktivore species richness 
and PPMR are less certain, given these are contingent on changes 
in relatively few species with generally higher uncertainty in their 
modelled distributions (Figure S4). Some small planktivorous species 
(e.g. pilchard, Sardina pilchardus) are poorly sampled by the scientific 
trawl surveys we make use of, as are the small planktivorous juve-
niles of species that later grow into benthivores or piscivores (e.g. 
pollack, Pollachius pollachius; Table S3; Thompson et al., 2020). Our 
results therefore represent changes in those species or life stages 
that are well-sampled in the surveys, and whose distribution can 

be modelled with a sufficient level of confidence. In future, inter-
nationally coordinated stomach content sampling and survey effort 
directed towards small species and juvenile life stages will be needed 
to improve our understanding of the habitat requirements of fish 
critical to maintaining ecosystem functioning.

We predict substantial change across the fish component of 
the food web within each RCP scenario with greater magnitudes of 
change in species richness and more widespread declines in MML 
and PPMR under RCP 8.5 relative to RCP 4.5 (Figure 3 and Figure S5). 
Future work could consider more stringent climate mitigation sce-
narios, for example, RCP 2.6 for which projections from Copernicus 
do not currently exist, and multi-model ensemble outputs as they 
become available. Categorising fish contained in global catch data-
sets into feeding guilds using stomach content datasets from marine 
ecosystems not considered here could also be attempted to test how 
changes across the food web will affect fisheries worldwide. Recent 
rapid advances in joint species distribution modelling could be ap-
plied to study how interactions between fish affect the distribution 
of diversity across the food web (Tikhonov et al., 2020), with careful 
consideration for how including size with species information could 
affect results. Furthermore, modelling guild-level biomass, as op-
posed to the presence or absence of species and size classes alone, 
could pave the way for estimates of biomass distribution and energy 
flux that were not possible here and still represent a major challenge 
when predicting ecosystem change at finer spatial scales (Fernandes 
et al., 2020). Another significant future challenge, particularly rele-
vant when predicting fish abundance and biomass, is the incorpora-
tion of fishing pressure which could be done via reconstructing effort 
where data are lacking (Couce et al., 2020) or using fisheries catches 
(Watson, 2017), for example, which cover the survey time series but 
are recorded at a coarse spatial scale.

Assessing change in functionally distinct feeding guilds has 
been widely advocated to support environmental status assessment 
(ICES, 2018; Rombouts et al., 2013), but not yet applied to predict 
change in the distribution of diversity across the food web in re-
sponse to climate change. Using a suite of complementary responses 
across species within feeding guilds, we predict that there will be 
clear regions of change in species richness across the food web and 
community-wide measures of species composition, size structure 
and predator–prey interactions. Such insights represent valuable in-
formation to help anticipate and mitigate climate change effects on 
marine ecosystems.

5  |  CONCLUSION

By modelling climate change effects on the habitat suitability of fish 
with different diets, we reveal that species richness will change at dif-
ferent rates and even in different directions across the food web over 
large areas. We therefore expect profound and complex changes in 
ecosystem structure and functioning, as shifts in the distributions of 
species performing critical ecosystem functions fundamentally alter 
how and where energy fluxes through the system. Importantly, our 
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results show that regional increases in community-wide species rich-
ness can mask the loss of species life stages that are critical to main-
taining ecosystem functioning. These changes add to the evidence 
base that world food security could be jeopardised by climate change.
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