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Abstract
Poor fit between models of sequence or trait evolution and empirical data is known to cause biases and lead to spuri
ous conclusions about evolutionary patterns and processes. Bayesian posterior prediction is a flexible and intuitive 
approach for detecting such cases of poor fit. However, the expected behavior of posterior predictive tests has never 
been characterized for evolutionary models, which is critical for their proper interpretation. Here, we show that the 
expected distribution of posterior predictive P-values is generally not uniform, in contrast to frequentist P-values 
used for hypothesis testing, and extreme posterior predictive P-values often provide more evidence of poor fit 
than typically appreciated. Posterior prediction assesses model adequacy under highly favorable circumstances, be
cause the model is fitted to the data, which leads to expected distributions that are often concentrated around inter
mediate values. Nonuniform expected distributions of P-values do not pose a problem for the application of these 
tests, however, and posterior predictive P-values can be interpreted as the posterior probability that the fitted model 
would predict a dataset with a test statistic value as extreme as the value calculated from the observed data.
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Introduction
Statistical models are mathematical abstractions of 
reality that employ simplifying assumptions to capture 
important features of complex systems. As long as such as
sumptions do not depart from reality too strongly, statistic
al models can provide important insights into the systems 
they represent. However, if assumptions violate reality in 
meaningful ways, models lose both utility and reliability 
(Gelman et al. 2014; Brown and Thomson 2018).

Applied statistical fields, including phylogenetics and 
molecular evolution, need tools to assess when their mod
els fail as meaningful abstractions of reality. The use of 
these tools is often referred to as testing absolute model 
fit or testing model adequacy. In a Bayesian framework, 
one way to test a model’s absolute fit is through posterior 
prediction (Rubin 1984; Bollback 2002).

Posterior prediction involves fitting a Bayesian model with 
parameters θ to observed data y. We then draw S values of θ 
from the posterior distribution, p(θ | y), and based on these 
posterior draws ( θ1 · · · θS), we simulate S predictive datasets 

( yrep
1 · · · y

rep
S ) of the same size as y. To perform a posterior pre

dictive check of our model, we start by selecting a test statis
tic, T(y), that can be calculated on the observed and 
predictive datasets in order to compare them. One way to 
summarize the comparison between T(y) and T(yrep

1···S) is to 
calculate the fraction of predictive datasets that have test 
statistic values smaller or larger than the observed. If smaller, 
we can define the posterior predictive P-value as Pr(T(yrep) < 
T(y) | y) and, if larger, Pr(T(yrep) > T(y) | y) (see Höhna et al. 
2018, for a description of different posterior predictive 
P-values). In either case, particularly large or small P-values in
dicate poor fit between the model and data.

The steps outlined above describe the mechanics of per
forming posterior prediction, but the more formal math
ematical description of the quantity being estimated by 
this procedure is given by

p =∫T(y)− ∞ ∫∞− ∞ p(T(yrep) | θ)p(θ | y) dθ
􏼐 􏼑

dT(yrep). (1)

Here, integration inside the parentheses describes the pos
terior predictive distribution of test statistic values, T, 
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based on the posterior distribution of θ, while the outer 
integration describes calculation of the lower tail-area 
probability of this distribution with an upper limit defined 
by the empirical test statistic value, T(y).

Despite statistical literature discussing the behavior 
of posterior predictive tests in general (e.g. Meng 
1994), expected distributions have never been charac
terized for posterior predictive P-values in phyloge
netics and molecular evolution. Therefore, we aim to 
characterize the expected distributions of posterior 
predictive P-values for phylogenetics, compare such 
distributions across different types of test statistics, 
and understand how different parameters affect these 
expectations. To do so, we performed a broad set of si
mulations and posterior predictive analyses. We used 
the same model for simulation and analysis, and we 
drew parameter values for simulation from the prior 
distributions of the model parameters.

Our results convincingly demonstrate that posterior 
predictive P-values should not be interpreted like 
P-values from frequentist hypothesis tests. If misinter
preted in this way, posterior predictive tests will not be 
used to greatest effect and the strength of evidence for 
poor model fit will be underestimated because the ex
pected distributions of posterior predictive P-values are, 
in many cases, highly nonuniform with a concentration 
of values near 0.5.

Definition and Comparison of P-values
While posterior predictive P-values are called P-values be
cause they involve the calculation of tail-area probabilities, 
they are distinct from several other types of P-values that 
we describe here for clarity.

The traditional frequentist P-value used in a hypothesis 
testing framework is defined as the probability of obtaining 
a test statistic value, T(yrep) that is as or more extreme than 
the observed test statistic value, T(y), if the null hypothesis 
(with a value of θ fixed a priori) is true. If we focus on the 
probability of obtaining observations that are smaller than 
the observed, the frequentist hypothesis testing P-value 
can be described by the cumulative distribution function,

p =∫T(y)− ∞ p(T(yrep) | θ) dT(yrep). (2)

Note that θ, and correspondingly the distribution of T(yrep), 
does not depend at all on y in this case.

The parametric bootstrap P-value is similar in formula
tion to the frequentist P-value for testing a null hypothesis, 
but with estimated parameter θ̂. That is, instead of assum
ing a value of θ that is fixed a priori, we use the maximum- 
likelihood estimate, θ̂, based on y:

p =∫T(y)− ∞ p(T(yrep) | θ̂) dT(yrep) (3)

Parametric bootstrapping is a frequentist analog to poster
ior predictive model checking, but does not involve prior 
distributions or integration across different values of θ. 

The estimated value of θ̂ and the distribution of T(yrep)

do depend on y in this case.
The prior predictive P-value (Box 1980) is the Bayesian 

equivalent of the traditional frequentist hypothesis test, 
in the sense that the (probabilities of) parameter values 
defining the model are fixed a priori and do not depend 
on the observed data, y. The main difference is that, in 
the case of the prior predictive P-value, the cumulative 
distribution function is computed while integrating over 
different values of θ weighted by the prior probability of 
each, p(θ),

p =∫T(y)− ∞ ∫∞− ∞ p(T(yrep) | θ)p(θ) dθ
􏼐 􏼑

dT(yrep). (4)

A graphical depiction of the similarities and differences 
across P-values is given in Fig. 1.

Results
The expected distribution of posterior predictive P-values 
varies by both test statistic and simulation condition, but 
is typically nonuniform (Figs. 2 and 3). Instead, these distri
butions are more concentrated around intermediate values, 
with fewer values near 0 or 1. This expectation has gone un
appreciated in the discussion and applications of these tests 
to phylogenetics and molecular evolution (e.g. Bollback 
2002; Brown 2014; Brown and Thomson 2018), but has im
portant consequences for how results are interpreted.

In this study, we investigated the expected behavior of 
both data- and inference-based test statistics. Briefly, data- 
based test statistics can be calculated directly based on the 
properties of sequence alignments (e.g. the variance in GC 
content across sequences), while inference-based test statis
tics are calculated based on the properties of inferences con
ditional on those alignments and a model (e.g. the 99th 
percentile in the ordered vector of RF distances describing dis
tances between trees sampled from the posterior distribu
tion). Despite these differences, both types of test statistics 
have expected distributions that exhibit the same concentra
tion of posterior predictive P-values near intermediate values.

While most test statistics have nonuniform expected 
distributions, ancillary test statistics (those statistics whose 
probability distributions do not depend on model para
meters) should have uniform expected distributions 
(Meng 1994; Gelman 2013), because fitting the model 
has no effect for these statistics. This expectation explains 
the distributions of P-values for statistics based on GC con
tent in our results (Fig. 2). Mean GC content is an ancillary 
statistic of the Jukes–Cantor model (JC), since this model 
assumes equal nucleotide frequencies, and we see roughly 
uniform expected distributions for Mean GC when using 
JC. However, Mean GC content is not ancillary for the 
GTR+I+G model, so the expected distribution is more con
centrated around 0.5 in this case (bottom right of Fig. 2). 
Variance in GC content across sequences is ancillary for 
both models, since both assume that GC content does 
not vary across the tree. These distributions are roughly 
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uniform for both models and far more dispersed than the 
distributions for other, nonancillary statistics.

Inference-based test statistics, by definition, depend on 
parameters of the model and cannot be ancillary. As a re
sult, expected distributions of posterior predictive P-values 

for these statistics are never uniform (Fig. 3) and are always 
more concentrated near 0.5 than 0 or 1. Expected distribu
tions for inference-based statistics tend to be more con
sistent than for data-based statistics, although some 
become markedly more peaked when dataset size 

Fig. 1. Schematic of workflows to estimate expected distributions for different types of P-values. The depictions of expected distributions are 
generalizations, intended to highlight important differences among different types of P-values.
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increases either in terms of number of sites or number of 
taxa.

Several statistics, both data- and inference-based, have 
expected P-value distributions that are essentially fixed 
at 0.5 for some conditions (e.g. the effect of more taxa 
on the number of invariant sites or the topological en
tropy; Figs. 2 and 3). Posterior predictive P-values can be 
interpreted as the posterior probability of observing a 
test statistic value that is as extreme as the observed value 
(Gelman 2013), so these (nearly) invariant distributions 
may indicate that fitted models almost always predict da
tasets with (nearly) the same test statistic value as the ob
served. This interpretation makes sense for both the 
number of invariant sites and entropy test statistics with 
large numbers of taxa in our simulations (“Setting 2” in 
Table 1, “More Taxa” in Figs. 2 and 3). For datasets 

simulated with these conditions, nearly every site in the 
alignment will have some variation, causing the number 
of invariant sites to be approximately 0 for all observed 
and posterior predictive datasets. Similarly, these condi
tions lead to very diffuse posterior distributions of phylo
genetic topologies, such that every topology sampled 
from the posterior distribution is unique and the esti
mated entropy is the same across datasets.

Expected P-value distributions for some test statistics 
are multimodal (e.g. the minimum pairwise difference stat
istic; Fig. 2). Multimodal distributions typically occur with 
discrete test statistics that adopt a small number of pos
sible values. Such distributions are not unique to phyloge
netics and molecular evolution and present no particular 
difficulties for interpretation (Gelman 2013). However, 
these expected distributions are worth bearing in mind 
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Fig. 2. Distributions of posterior predictive P-values for data-based test statistics. The conditions for simulation and analysis are shown above 
each relevant portion of the figure as: Model/Number of Taxa/Number of Sites/Mean Branch Length. Results from the baseline setting (Setting 1 
in Table 1) are shown in the middle. The other settings modified one condition of the baseline, indicated by the labels next to arrows. The Mean 
GC Content test statistic is ancillary for the JC model, while the Variance in GC Content test statistic is ancillary for both the JC and GTR+I+G 
models. The labels for these statistics are emphasized and the relevant distributions are marked with an asterisk.
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when interpreting such values in empirical studies. In these 
cases, small changes in test statistic values can lead to 
seemingly large changes in P-values.

While P-values have received the most attention as a 
way to summarize the results of posterior predictive tests, 
an alternative approach is the use of effect sizes (Doyle 
et al. 2015; Höhna et al. 2018). Briefly, effect sizes measure 
the distance between the empirical test statistic value and 
the median of the posterior predictive distribution, 

normalized by the standard deviation of the posterior pre
dictive distribution. Effect sizes are useful for understand
ing the magnitude of the discrepancy between the 
observed and predicted values, even when the observed 
value is highly improbable given the model. We used the 
same set of simulations and analyses to characterize the 
expected distributions of effect sizes (Figs. 4 and 5). 
These expected effect size distributions make sense in light 
of the expected distributions of P-values, although there is 
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Fig. 3. Distributions of posterior predictive P-values for inference-based test statistics. The labels and layout are the same as in Fig. 2.

Table 1 Settings for simulations and posterior predictive analyses

Setting Substitution Model Number of taxa Number of sites Mean branch length

1 (Baseline) JC 16 100 0.1
2 JC 64 100 0.1
3 JC 16 1,000 0.1
4 JC 16 100 0.02
5 GTR +Γ+ I 16 100 0.1

Interpreting Posterior Predictive P-values · https://doi.org/10.1093/molbev/msae051 MBE

5



a preponderance of values near 0 rather than near 0.5. Due 
to the way effect sizes are calculated, their expected distri
bution is not uniform even when the expected distribution 
of P-values is uniform. As an example, see the distributions 
of expected effect sizes for Mean GC content for any of the 
analyses employing a JC model (Fig. 4). As with expected 
distributions of P-values, many of the distributions of ef
fect sizes are multimodal, due to the discrete nature of 
many test statistics. However, in all cases, these values 
are nearly always < 2.0. This result stands in contrast to 
our experiences analyzing empirical data sets, where effect 
sizes are frequently ≫ 10.0 (Doyle et al. 2015).

Discussion and Conclusions
P-values by definition represent the probability, conditional 
on the model, of observing data that are more extreme 
than what has actually been observed. A P-value that is 
very small or very large indicates that the observed dataset 
is an outlier relative to model expectations and possibly 

reflects poor absolute model fit. In a standard frequentist 
hypothesis test, the model corresponds to the null hypoth
esis and poor model fit would lead to its rejection. 
Frequentist P-values for hypothesis testing are explicitly 
constructed to have uniform distributions in order to con
trol false positive rates. Importantly, this uniformity of 
P-values stems from the use of fixed (i.e. not fitted) param
eter values.

Posterior predictive P-values, on the other hand, use 
model parameter values that have been fitted to the ob
served data (Fig. 1). The probability that the observed 
data are more extreme than expected is always reduced 
relative to tests using fixed values, because the model is gi
ven the opportunity to explain the data as well as possible. 
Thus, expected distributions of posterior predictive 
P-values tend to be concentrated around 0.5 (Meng 
1994, Figs. 2 and 3), although the precise shape can vary 
by both test statistic and analysis condition. In practice, 
nonuniform distributions can be precisely what we want 
if our goal is to assess the ability of our model to capture 
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Fig. 4. Distributions of effect sizes for data-based test statistics. The labels and layout are the same as in Fig. 2.
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certain aspects of our observed data (Gelman 2013). If our 
model always does a good job of predicting these features, 
then the expected distribution of posterior predictive 
P-values should reflect that.

We focused here on posterior predictive P-values, com
puted in a Bayesian framework, but similar considerations 
apply to P-values from parametric bootstrapping analyses 
(Fig. 1) conducted in a frequentist framework. Since para
metric bootstrapping also involves fitting a model to a da
taset, it should also produce expected distributions of 
P-values that are nonuniform. In fact, expected distribu
tions from parametric bootstrapping may be much more 
concentrated than those from posterior prediction, be
cause the effect of posterior uncertainty keeps the ex
pected distributions from becoming too peaked in a 
Bayesian setting.

If posterior predictive P-values are misinterpreted as fre
quentist hypothesis testing P-values, the evidence for poor 
model fit will usually be underestimated. A posterior pre
dictive P-value of 0.05 typically has a <5% probability of 
occurring when the assumptions of an analysis exactly 
match the data-generating process. However, again, it is 
best to avoid framing posterior predictive tests in frequen
tist hypothesis testing terms. The goal of posterior predict
ive tests should not be to reject a model as “true” (Gelman 
et al. 2014), since we know that none of the models fully 
represent the complexity of real evolutionary processes. 
Rather, these tests indicate the extent to which the mod
el’s simplifications are problematic for explaining import
ant features of the data.

In the course of this study, we simultaneously character
ized expected distributions of posterior predictive P-values 
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for multiple test statistics and our results demonstrate that 
many of these test statistics are correlated. Strong correla
tions mean that a count of the number of statistics with small 
P-values is not an effective way to measure the overall degree 
of fit between model and data. Small P-values for posterior 
predictive tests with two uncorrelated test statistics would 
provide more insight than small P-values for many such tests 
with highly correlated test statistics.

Empirical application of posterior predictive tests in phy
logenetics and molecular evolution has frequently resulted 
in extremely small P-values across many different datasets 
using a variety of different test statistics (e.g. Foster 2004; 
Lartillot et al. 2007; Zhou et al. 2010; Doyle et al. 2015; 
Duchêne et al. 2016; Höhna et al. 2018; Richards et al. 
2018). Based on the nature of the expected distributions 
that we have characterized here, these empirical results of
ten represent even stronger evidence than has been appre
ciated that commonly applied models in phylogenetics are 
seriously inadequate. Depending on which particular test 
statistics exhibit poor fit for a given study, we may take dif
ferent actions depending on the goals of the analysis. For in
stance, previous work has shown that inadequately 
accounting for variation in substitution rates across sites 
can have detrimental consequences on phylogenetic accur
acy (Yang 1996), and so poor fit for the number of invariant 
sites test statistic might motivate exploration of alternative 
types of distributions or models for characterizing rate vari
ation. Poor fit for other test statistics, for instance the max 
invariant block length, may have less of an impact on phylo
genetic accuracy, but still indicate interesting patterns of 
molecular evolution that are worth exploring further (e.g. 
highlighting striking spatial patterns of constraint, like 
those found in ultraconserved elements).

An important future direction for this work will be to 
more comprehensively characterize the aspects of empiric
al datasets that consistently exhibit poor fit under com
monly employed models of sequence and trait evolution. 
These results would highlight which aspects of the molecu
lar evolutionary process are most likely to lead to analytical 
issues and that are least well captured by available models, 
thereby helping to prioritize and guide the efficient devel
opment of more effective new models. Such information 
would also help identify interesting and widespread pat
terns of genomic evolution still in need of explanation.

To our knowledge, this paper is the first characterization 
of the expected distribution of posterior predictive P-values 
for models commonly used in phylogenetics and molecular 
evolution. Our hope is that the results presented here clarify 

the interpretation of empirical assessments of absolute 
model fit using posterior predictive tests. These tests can 
highlight important mismatches between model assump
tions and the actual biological processes that shape genome 
sequences. Critical thought must be given to how models 
are applied in order to gain insight into evolutionary pat
terns and processes (Brown and Thomson 2018).

Materials and Methods
Data Simulation
To understand the expected distributions of posterior pre
dictive P-values when analysis conditions precisely match 
those under which the data were generated, we first simu
lated alignments of DNA sequences using a baseline set of 
conditions: a JC model (Jukes and Cantor 1969) of sequence 
evolution, a 16-taxon tree from a uniform distribution, 
alignments with 100 sites, and exponentially distributed 
branch lengths with a mean of 0.1 (Table 1, Setting 1). We 
then simulated alignments under four additional sets of con
ditions that varied each baseline setting individually. We in
creased the size of the tree to 64 taxa (Setting 2), increased 
the length of the alignment to 1,000 sites (Setting 3), reduced 
the mean branch length to 0.02 (Setting 4), and used the 
General Time-Reversible model (GTR) (Tavaré 1986) with 
Gamma-distributed rate variation among sites as four dis
crete rate categories (Γ) (Yang 1994, 1996) and a proportion 
of invariable sites (I) (Adachi and Hasegawa 1995; Gu et al. 
1995) (Setting 5). For each setting, we simulated 10,000 align
ments in RevBayes (Höhna et al. 2016) by randomly drawing 
parameter values from the prior distribution associated with 
each parameter (see Table 2 for details about the parameters 
and their prior distributions). Parameter values were drawn 
separately for each dataset.

Once datasets were simulated, we conducted Bayesian 
Markov chain Monte Carlo (MCMC) analyses using 
RevBayes (Höhna et al. 2016) to estimate posterior distri
butions of tree topologies and model parameter values 
for each simulated dataset. We then drew samples from 
these posterior distributions to generate posterior predict
ive datasets and compared each original dataset to its cor
responding posterior predictive distribution using a variety 
of test statistics (Höhna et al. 2018). Details of these ana
lyses are provided below.

Markov Chain Monte Carlo Analyses
We performed MCMC analyses in RevBayes (Höhna et al. 
2016) for each simulated dataset using the same 

Table 2 Parameters of phylogenetic models and their associated prior distributions

Parameter Description Prior distribution Parameters of the distribution

Ψ Topology of the tree Uniform Num. of Taxa=16 or 64
bl Branch lengths Exponential λbl = 10 or 50
π Equilibrium base frequencies Dirichlet απ = (1, 1, 1, 1)
er Exchangeabilities Dirichlet αer = (1, 1, 1, 1, 1, 1)
α Shape of the Gamma distribution Exponential λα = 0.05
I Proportion of invariant sites Beta (αI, βI) = (10, 20)
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conditions under which they were simulated (see Table 1). 
Prior distributions were the same as those from which par
ameter values were drawn for simulation (Table 2). For all 
analyses, we estimated the tree topology and branch 
lengths. For analyses of datasets simulated under Setting 
5 with a GTR+Γ+I model, we also estimated the equilib
rium base frequencies, the exchangeabilities, the shape 
parameter of the Γ distribution, and the proportion of in
variable sites (I; Table 2). Each analysis involved a burn-in 
phase of 200 iterations, followed by MCMC sampling for 
10,000 iterations. The moves used for each parameter, 
and their associated weights, are provided in Table 3. A 
subset of runs from different conditions were spot checked 
to ensure that the MCMC settings were sufficient to 
achieve good convergence of both scalar parameter values 
and tree topologies. MCMC analyses conducted for use 
with posterior predictive analyses involving data-based 
test statistics used two independent replicate analyses 
and automatic tuning of moves every 200 generations dur
ing both the burn-in and sampling phases. Analyses con
ducted for use with posterior predictive analyses 
involving inference-based test statistics used a single repli
cate and only used automatic tuning during the burn-in 
phase.

Posterior Predictive Analyses and P-values
To perform posterior predictive analysis on each of the si
mulated datasets, we used the P3 (Phylogenetic Posterior 
Prediction) workflow implemented in RevBayes (Höhna 
et al. 2018). Phylogenetic posterior predictive analyses in
volve four steps: (1) estimating posterior distributions of 
phylogenetic trees and model parameters from input 
data (see above), (2) simulating new (posterior predictive) 
data using parameter values drawn from the estimated 
posterior distributions, (3) computing test statistics for 
both the original and simulated data, and (4) calculating 
P-values and effect sizes to summarize the (dis)similarity 
between original and simulated data. Some test statistics, 
known as inference-based (see below), may depend on 
characteristics of the inferences drawn from data. To cal
culate these, an additional step (3a) is necessary that in
volves running MCMC analyses on each simulated, 
posterior predictive dataset. For step (2), we simulated 
1,001 posterior predictive datasets when using data-based 
test statistics and 501 posterior predictive datasets when 
using inference-based test statistics.

The P3 workflow has a number of test statistics (Tables 4
and 5) available that summarize characteristics of align
ments. Some of these statistics (data-based, Table 4) are 

Table 4 Descriptions of data-based test statistics

Test Statistic Description Reference

Number of invariant 
sites

Number of columns in the alignment that show no variation in nucleotide 
content

Höhna et al. (2018)

Max invariant block 
length

The maximum number of consecutive sites with no variation

Max pairwise 
difference

The scaled number of mismatches between the pair of sequences with the 
greatest number of mismatches

Höhna et al. (2018)

Max variable block 
length

The maximum number of consecutive sites with variation

Min pairwise 
difference

The scaled number of mismatches between the pair of sequences with the 
fewest number of mismatches

Höhna et al. (2018)

Mean GC content GC content averaged across all sequences Höhna et al. (2018)
Variance in GC 

content
Variance in GC content across sequences in an alignment Höhna et al. (2018)

Theta Watterson’s θ measures the genetic diversity in a given population Watterson (1975)
Tajima’s D Accounts for how much the variability observed is due to chance Tajima (1989)
Tajima’s π Average number of pairwise differences across sequences in an alignment Nielsen and Slatkin (2013) and King 

et al. (2018)
Multinomial likelihood Measures the ability of the model to account for different site pattern 

frequencies
Goldman (1993)

Table 3 Moves used during Markov chain Monte Carlo (MCMC) analyses

Function in RevBayes Description Parameter to change Weight

mvNNI Nearest-neighbor interchange move Ψ num. of taxa (e.g. 16, 64)
mvSPR Subtree prune-and-regraft move Ψ num. of taxa x 0.1 (e.g. 1.6, 6.4)
mvBranchLengthScale Scaling move on the branch lengths bl num. of taxa (e.g. 16, 64)
mvBetaSimplex Scaling move on nucleotide frequencies π 2.0
mvDirichletSimplex Scaling move on nucleotide frequencies π 1.0
mvBetaSimplex Scaling move on exchangeabilities er 3.0
mvDirichletSimplex Scaling move on exchangeabilities er 1.5
mvScale Scaling move on shape parameter α 2.0
mvBetaProbability Scaling move on proportion of invariable sites I 2.0

JC analyses used only the first three moves
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calculated directly from the alignment itself, while others 
(inference-based, Table 5) are calculated based on character
istics of inferences drawn from the alignment. We used all 
test statistics currently implemented in P3 in RevBayes. For 
any of these statistics, P-values can be used to assess whether 
the “observed” alignment is similar to the posterior predict
ive alignments (Doyle et al. 2015; Höhna et al. 2018). P-values 
indicate what percentage of posterior predictive test statistic 
values are more extreme than the observed value.

P-values near 0 or 1 indicate that the observed value 
falls in a tail of the posterior predictive distribution. 
Midpoint P-values are particularly useful for discrete test 
statistics, where ties can be observed between posterior 
predictive and observed values. In such a case, the mid
point P-value will consider half of the tied posterior pre
dictive values to be more extreme than observed and 
half to be less extreme than observed. In this study, we spe
cifically focused on the lower, one-tailed, midpoint P-value. 
All 10,000 simulated datasets were analyzed to character
ize the behavior of posterior predictive analyses for data- 
based test statistics, while 1,000 datasets were analyzed 
for inference-based test statistics due to their more com
putationally intensive calculation.

Effect Sizes
While we have largely focused our attention in this study 
on the distribution of posterior predictive P-values, be
cause such values have received the most attention in 
the statistical literature, an alternative measure of absolute 
model fit is the posterior predictive effect size (PPES; Doyle 
et al. 2015; Höhna et al. 2018). Complementary to 

posterior predictive P-values, posterior predictive effect 
sizes capture the magnitude of differences between ob
served and expected test statistic values on a broader scale. 
While posterior predictive tests using two different test 
statistics for the same dataset may both produce 
P-values of 0, one observed value may fall just outside 
the tails of the corresponding posterior predictive distribu
tion, while the other observed value may be very, very far 
away from its predicted values. Effect sizes differentiate be
tween these two situations, and are calculated as

PPES =
|T(y) − M(p(T(yrep) | y))|

σ(p(T(yrep) | y))
(5)

where y is the observed dataset, yrep is a posterior predict
ive dataset, T(y) is a test statistic calculated with y, 
p(T(yrep) | y) is the posterior predictive distribution of T, 
M is the median of a distribution, and σ is the standard de
viation of a distribution. In other words, a posterior pre
dictive effect size is the absolute value of the difference 
between the observed test statistic value and the median 
of the posterior predictive distribution of test statistic va
lues, normalized by the posterior predictive distribution’s 
standard deviation. Using the same simulations and ana
lyses that we used to understand the expected behavior 
of posterior predictive P-values, we also examined the ex
pected distributions of posterior predictive effect sizes.
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