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Abstract

Aims: Glioneuronal tumours (GNTs) are poorly distinguished by their histology and lack

robust diagnostic indicators. Previously, we showed that common GNTs comprise two

molecularly distinct groups, correlating poorly with histology. To refine diagnosis, we

constructed a methylation-based model for GNT classification, subsequently evaluating

standards for molecular stratification by methylation, histology and radiology.

Methods: We comprehensively analysed methylation, radiology and histology for

83 GNT samples: a training cohort of 49, previously classified into molecularly defined

groups by genomic profiles, plus a validation cohort of 34. We identified histological and

radiological correlates to molecular classification and constructed a methylation-based

support vector machine (SVM) model for prediction. Subsequently, we contrasted meth-

ylation, radiological and histological classifications in validation GNTs.
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Results: By methylation clustering, all training and 23/34 validation GNTs segregated

into two groups, the remaining 11 clustering alongside control cortex. Histological

review identified prominent astrocytic/oligodendrocyte-like components, dysplastic neu-

rons and a specific glioneuronal element as discriminators between groups. However,

these were present in only a subset of tumours. Radiological review identified location,

margin definition, enhancement and T2 FLAIR-rim sign as discriminators. When valida-

tion GNTs were classified by SVM, 22/23 classified correctly, comparing favourably

against histology and radiology that resolved 17/22 and 15/21, respectively, where data

were available for comparison.

Conclusions: Diagnostic criteria inadequately reflect glioneuronal tumour biology, leav-

ing a proportion unresolvable. In the largest cohort of molecularly defined glioneuronal

tumours, we develop molecular, histological and radiological approaches for biologically

meaningful classification and demonstrate almost all cases are resolvable, emphasising

the importance of an integrated diagnostic approach.
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dysembryoplastic neuroepithelial tumour, ganglioglioma, glioneuronal tumour, machine learning,
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INTRODUCTION

Glioneuronal tumours (GNTs) are the commonest epilepsy-associated

tumours arising in young children [1]. They present a significant diag-

nostic problem due to a lack of consistent discriminatory histological

features. Poor inter-observer correlation is common, particularly for

the two recognised subtypes comprising the majority of glioneuronal

tumours: ganglioglioma (GG) and dysembryoplastic neuroepithelial

tumour (DNET). In addition, many cases present with uninformative

or mixed histology that inhibits accurate segregation into either entity.

Illustrating this point, there is extensive geographical variability across

surgical series that cannot be explained by demographic factors, sug-

gesting differences in diagnostic practice and subjective interpretation

of histology (reviewed in Thom et al. [2]). This diagnostic problem also

extends to the radiological presentation of glioneuronal tumours. They

can structurally mimic—or be associated with—focal cortical dysplasia

and possess overlapping radiological features [3].

Molecular data are increasingly important for the classification

and diagnosis of CNS tumours. An example is the Molecular Neuropa-

thology Platform (MNP) CNS tumour classifier, which compares the

methylation profile of a sample against a reference dataset to recom-

mend a classification [4]. However, in practice, these tools perform

poorly for low-grade and glioneuronal tumours compared with more

well-defined tumours. In our recent evaluation of the MNP classifier

within routine clinical practice, only 28/85 (33%) of cases within the

low-grade glioma and glioneuronal spectrum could be classified confi-

dently [5]. Similarly, in a large multi-centre cohort of paediatric low-

grade glioma, MNP achieved a high confidence classification in only

44% of cases [6]. Moreover, in a recent cohort of glioneuronal

tumours, only 12/46 (26%) could be robustly classified with the same

tool [7]. This imprecision may reflect that low-grade glioneuronal ref-

erence cohorts for these systems were segregated and constructed

using inconsistent, and sometimes subjective, histological criteria. To

address this, molecularly informed systems for classification, based on

objective metrics, are necessary to accurately segregate entities based

on underlying biology. Subsequently, refined classification reflecting

tumour biology has the potential to facilitate improvements in diagno-

sis, targeted treatment and the development of meaningful trials and

Key Points

• Histological classification of glioneuronal tumours inade-

quately reflects their underlying biology, and characteris-

tic BRAF/FGFR1 variants are not always detected. As

such, a proportion of tumours remain unsolvable.

• In a large cohort of glioneuronal tumours, classified into

two groups by molecular profiling, we constructed a

methylation-based classification model that demonstrates

high fidelity for glioneuronal tumour molecular classifica-

tion and performs favourably against histological

classification.

• Through comprehensive histological and radiological

reviews, we identified features that meaningfully corre-

late with molecular subtype and demonstrated that com-

bined methylation, histological and radiological analyses

can resolve almost all glioneuronal tumours.

• Our study refines the standards for common glioneuronal

tumour classification, highlights the importance of an

integrated diagnostic approach for accurate stratification

and indicates the need for diagnostic terms and criteria

that reflect molecularly defined subtypes.
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therapeutic strategies, all areas where glioneuronal tumours are lack-

ing compared with other CNS tumours.

Previously, we used data from RNA expression sequencing and

DNA methylation arrays to show that the underlying molecular profiles

of glioneuronal tumours are not adequately captured by histological

classification [8]. We showed that rather than categorising by histologi-

cal criteria into ganglioglioma and DNET, glioneuronal tumours are bet-

ter split into two molecular groups by expression and methylation

profiles. These groups have different mutational profiles and are

enriched, although not completely, for BRAF (Group 1) or FGFR1

(Group 2) variants, respectively. The predominant cell-type expression

profiles align with this molecular classification, corresponding to an

astrocytic (Group 1) or an oligodendrocytic (Group 2) enrichment. Clini-

cally, molecular classification correlates with age at onset of seizures,

represented by significantly earlier onset in patients possessing Group

1 tumours. Lastly, this molecular classification was able to categorise

glioneuronal tumours that could not be classified by conventional his-

topathology, enhancing the number of tumours that could be resolved.

Here, we aimed to develop methods to apply a molecularly

informed classification of glioneuronal tumours, independent of histo-

logical archetype. Firstly, we used methylation data from our previous

cohort to train a methylation-based support vector machine (SVM)

model to predict classification of glioneuronal tumours into two

molecularly defined groups, identified previously. Secondly, we identi-

fied radiological correlates that align closely with molecular classifica-

tion to form a toolkit for incorporation into the early diagnostic

workflow. Lastly, we reviewed individual histological features of

molecularly classified glioneuronal tumours to identify features that

sensitively and specifically segregate them. We subsequently vali-

dated all data in a novel cohort of glioneuronal tumours, where both

methylation and radiological methods display high fidelity. Taken

together, we propose these methods can improve classification of

glioneuronal tumours in a manner faithful to the underlying biology as

part of an integrated diagnostic workflow.

METHODS

Cohorts

Training and validation cohorts were drawn from diagnostic archives

and the Children’s Cancer and Leukaemia Group Tissue Bank. For

methylation analysis, the training cohort consisted of cases with Illu-

minaHumanMethylation450K data that had classified by their methyl-

ation profile (n = 36) as Group 1 (n = 21) and Group 2 (n = 15) in our

previous cohort [8]. For radiological analysis the training cohort com-

prised 31 cases that classified as Group 1 (n = 15) or Group

2 (n = 16) by either methylation profile or RNA sequencing in the

same previous cohort. Radiological data at presentation for these

31 cases were reviewed to identify radiological features associating

with molecular class. In total the combined methylation/radiology

training cohorts consisted of 49 individual cases and partially over-

lapped, with 18 cases represented in both (Table S1).

To construct a validation cohort all tumours originally diagnosed

as DNETs, ganglioglioma or GNT NOS (glioneuronal tumours with

non-specific features) on their clinical reports over a four-year period

were retrieved. Cases were reviewed histologically according to WHO

criteria to confirm a glioneuronal tumour diagnosis and exclude the

possibility of alternative specific low-grade glioma diagnoses. Subse-

quently, cases were selected for inclusion where sufficient formalin-

fixed paraffin-embedded (FFPE) material was available to facilitate

methylation array analysis (n = 34). Thirty-one of these cases were

associated with radiological data that enabled validation of identified

radiological features.

Four tumours were represented in both the training and valida-

tion cohorts (total n = 8). These pairs represented material from sepa-

rate longitudinal operations for the same tumour. Data for these

samples are contained within Table S2.

DNA preparation

DNA was extracted from FFPE tissue using the Maxwell 16 FFPE Tis-

sue LEV DNA Purification Kit on a Maxwell 16 Research Instrument

(Promega, USA) according to manufacturer’s instructions. Two hun-

dred fifty nanograms of eluted DNA was subjected to bisulphite con-

version using the Zymo EZ DNA Methylation-Gold Kit (Zymo

Research, USA). Bisulphite converted DNA was additionally treated

using the Infinium FFPE DNA restore Kit prior to assay on the Illumina

HumanMethylationEPIC BeadChip platform (Illumina, USA).

Mutation screening by targeted panel sequencing

After aliquoting DNA for bisulphite conversion, the remainder was

used for targeted panel sequencing. DNA was screened against a

panel covering genes that are either clinically actionable or recurrently

altered in paediatric cancers [9]. Prior to sequencing, DNA was

assayed via Qubit 2.0 fluorometer (ThermoFisher, USA) and TapeSta-

tion 2200 (Agilent, USA) to determine quantity and degree of frag-

mentation. Library preparation, sequencing and variant calling were

performed as described in George et al. [9]. Additionally, FGFR1 tyro-

sine kinase domain duplications were visually confirmed by manual

inspection of sequence data in IGV (v2.5.3). For summary mutation

data of the validation cohort; see Table S1. Pathogenicity was deter-

mined as pathogenic, variant of uncertain significance (VUS), or likely

benign based on annotation within NCBI ClinVar and COSMIC data-

bases. Variants with no records in either database were recorded

as VUS.

Methylation array analysis

Methylation arrays were chosen for predictive model construction

and molecular analyses of the validation cohort due to their repro-

ducibility, ability to control batch variation via built in control probes
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and amenability to FFPE material. DNA from the training cohort had

previously been assayed on the Illumina HumanMethylation450

BeadChip platform according to manufacturer’s instructions [8]. For

the validation cohort, bisulphite converted DNA was assayed on the

Illumina HumanMethylationEPIC BeadChip platform (Illumina, USA)

in the same manner. Bioinformatic analysis of methylation data was

performed in R. Prior to analysis, raw data were imported into R

using minfi [10]. Samples where >10% of probes on the array had

failed to hybridise (n = 3) were flagged as suboptimal but were

retained for subsequent analysis, and 450 K and EPIC array data

were harmonised to produce a single unified dataset using the com-

bineArrays function and normalised with functional normalisation

method as implemented by minfi. Probes mapping to the X and Y

chromosomes were excluded. In addition, probes located within

50 bp of an SNP, probes with at least one cross-reactive target and

probes with a minor allele frequency >5% were excluded [11]. Fol-

lowing quality control, consensus clustering of methylation data was

performed using the ConsensusClusterPlus package according to the

‘Ward D2’ implementation of Ward’s clustering method [12]. For

clustering, the top 10,000 most variable probes within the training

cohort according to median absolute deviation were used; mirroring

our previous experiment [8]. Beta values for these CpGs were

extracted from the combined training and validation cohort data.

These were used for consensus clustering of the combined cohort.

For classification of samples with the MNP classifier, raw data were

read into minfi before being passed to MNP (version 11b6) for auto-

matic processing [4]. Version 11b6 represents the most recent ver-

sion of MNP available to us at the time these analyses were

performed. MNP classifications were recorded and considered

acceptable with a tumour class calibrated score ≥0.5. Classifications

below this score were recorded, but not considered robust as indi-

cated by the authors of the tool [13].

SVM model construction and testing

Methylation data from the training cohort, where cases had previously

classified into two molecular groups, were used to construct a support

vector machine (SVM) classification model using the caret package in

R [8, 14]. The top 10,000 most variable probes across the training

cohort were selected, as above. This matrix, alongside corresponding

grouping labels, were passed to the train function implemented by

caret to construct a classification model. In brief, the data were

centred and scaled during pre-processing. A classification model was

constructed using a radial bias function kernel with ‘leave-one-out’
cross validation for internal testing. Up-sampling was performed dur-

ing model construction to mitigate differences between training class

sizes. Tuning parameters Sigma and Cost were trialled iteratively using

a grid search for optimal fit, determined by accuracy, before final

model construction.

To assess the model, corresponding data for the 10,000 CpG sites

within the model were extracted from the methylation profiles of the

validation cohort. This matrix was passed to the model for classifica-

tion and the output was recorded. Results were compared with con-

sensus clustering and variant data to gauge rationality of SVM

classification.

Radiological imaging protocol

All conventional imaging sequences available on the presentation scan

were included for analysis. As imaging had been undertaken in differ-

ent settings, imaging protocol and scanner type could not be standar-

dised. All cases had the following sequences as standard: T1 pre- and

post-contrast, T2, T2 FLAIR and DWI-ADC.

An unblinded imaging review of all 31 cases in the radiology train-

ing cohort was performed by two experienced consultant neuroradiol-

ogists (K. M. and A. P. T.) to identify features associated with each

molecular group. Five features were identified as potential discrimina-

tors between groups: margin of lesion, presence and characteristics of

contrast enhancement, presence of the FLAIR-rim sign on T2 FLAIR

[15], location of lesion (temporal vs. extra-temporal), extension to

ependymal surface. Each set of scans was evaluated, the results col-

lated and recorded (Table 2).

To validate results of the unblinded analysis, a third consultant

neuroradiologist (W. J.) was provided with a summary of the identified

radiological discriminators and performed a blinded classification of

the same cohort.

Histological review

Histological review was performed by an experienced paediatric neu-

ropathologist (T. S. J.) as described previously [8]. Descriptive defini-

tions for scoring specific histological features can be found in

Table S3. Control samples used in this study were archival temporal

cortex from patients that had undergone resections for hippocampal

sclerosis. Prior to inclusion, this material was assessed and confirmed

to be free from tumour and other structural pathology.

Statistical analysis

Fisher’s exact test was applied to evaluate the association of clinical,

radiological and histological features that correlated with molecular

group or diagnosis. In all cases, a p-value <0.05 was considered statis-

tically significant.

Code availability

R code used to pre-process methylation data, perform clustering, pro-

duce t-SNE plots and train the SVM model is available at https://

github.com/tj-stone/svmGNT.
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RESULTS

Characteristics of the validation cohort

Initial radiological analysis and SVM model construction was per-

formed on our previously reported cohort of glioneuronal tumours [8].

However, to validate any findings, we required a validation cohort. To

construct a validation cohort, tumours diagnosed as DNET, ganglio-

glioma, or GNT NOS over a 4-year period were retrieved (n = 34). In

total, we retrieved 14 DNET, 15 GG and 5 GNT NOS. Summary clini-

cal data are shown in Table S4. The cohort was equally split between

male and female. Mean ages at diagnosis and surgery were 67.3 and

111.7 months, respectively, and 32/34 (94%) patients presented with

seizures at diagnosis. Overall, the mean clinical follow up from last

surgery was 24.8 months and across the cohort 24/32 (75%) of

patients were seizure free (Engel Class I) at this point. There were no

significant associations between histological diagnosis and any of

these clinical features.

Unsupervised consensus clustering reiterates a two-
group dynamic for glioneuronal tumours

Having identified a validation cohort of 34 glioneuronal tumours, our

first aim was to perform clustering of the methylation array data to

identify outliers and resolve molecular classifications that could be

compared against our models. When the validation cohort was intro-

duced alongside the training cohort, we saw no changes in the classifi-

cations of our original cohort. Cases from the validation cohort

clustered into groups alongside those from the original methylation

cohort (Figure 1). In total, 23/34 validation cohort glioneuronal

tumours segregated this way. The remaining 11 cases clustered with

control temporal lobe tissue. This was likely caused by admixed

tumour/non-tumour cells in these samples resulting in low tumour

content and a weak methylation profile. This was an effect we noted

previously due to the diffuse nature of some glioneuronal tumours.

Taken together, this finding reiterates that the major glioneuronal

tumour types belong to two biological groups defined by underlying

molecular profiles.

SVM modelling predicts molecular classification for
individual glioneuronal tumours

With our combined cohort, we had been able to perform a consensus

clustering analysis to derive molecular classifications for 23 tumours

in our validation cohort. However, in clinical practice glioneuronal

tumours present as individual cases and a large cohort suitable for

clustering and classification is unavailable. To address this and allow

individual sample prediction, we constructed a model from the meth-

ylation profiles identified in our training cohort. To do this, we used

support vector machine (SVM) learning to construct a classification

model. We validated the model by assaying the 34 glioneuronal

tumours in our validation cohort, including the 23 whose classification

had been segregated by consensus clustering. In brief, the model clas-

sified 16 tumours as Group 1, 15 tumours as Group 2, and could not

distinguish 3 from controls (Table 1; Figure S1).

To estimate the accuracy of this classification, we compared the

SVM classification against the results of consensus clustering. In

22/23 (96%), the model predicted the correct classification. The single

misclassification was a DNET that clustered alongside Group 2 but

was called Group 1 by SVM. However, this sample had also been

flagged as suboptimal, with >10% methylation array probes failing to

hybridise. Thus, the data suggest the model delivers a correct classifi-

cation with high fidelity when the DNA has hybridised well to the

array.

We also assayed our model against eight tumours with weak

methylation data that clustered alongside controls by consensus clus-

tering, but where we had detected BRAF/FGFR1 variants by targeted

sequencing (seven GG and one DNET). The identified variants were

used to estimate the correct molecular class for each tumour. Specifi-

cally, we previously showed BRAF V600E and FGFR1 mutations are

mutually exclusive and align strongly with Group 1 (BRAF) and Group

2 (FGFR1) [8]. Interestingly, in five cases with BRAF V600E variants,

the model concordantly predicted a Group 1 classification where con-

sensus clustering had failed to, suggesting the model may be able to

segregate cases with low-tumour content that typically cluster along-

side control brain. In the remaining three, no concordant classification

was seen.

Taken together, these data indicate the model faithfully repro-

duces molecular classification, calling almost all cases with consensus

classifications concordantly (96%). Additionally, the model showed

proficiency in classifying select cases with weak methylation profiles.

F I G U R E 1 Combined methylation training and validation cohorts
cluster into two groups by consensus clustering. tSNE visualisation
labelled according to cohort (shape) and consensus classification
(colour). Consensus clustering splits the combined cohort into two
tumour groups: Group 1 (red) and Group 2 (blue). A small number of
cases in the validation cohort cluster alongside temporal lobe controls
from the training cohort (green), suggesting low tumour content.
Three samples with >10% array probe failure are marked as
suboptimal.
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Radiological features correlate with molecular
classification

Having developed a working model for glioneuronal tumour classifica-

tion from methylation array data, we aimed to investigate whether

radiological data could factor into a combined diagnostic toolkit. Spe-

cifically, we aimed to identify radiological features that are associated

with the molecular class. These could feed into an integrated

diagnosis, either adding more evidence towards a diagnosis when

integrated with other data streams, or potentially informing classifica-

tion prior to surgery at a time point where molecular and histopatho-

logical methods have not been applied.

From our previous cohort of glioneuronal tumours, we retrieved

31 tumours (15 Group 2, 16 Group 2) and reviewed associated radiol-

ogy. Summary data for the imaging characteristics of these tumours

are presented in Table 2. We observed several features that

T AB L E 1 SVM model predicts tumour classification.

Sample Histology BRAF/FGFR1 Consensus clustering SVM

VAL1 GG BRAF V600E Group 1 Group 1

VAL2 GG BRAF V600E Group 1 Group 1

VAL3 GG - Group 1 Group 1

VAL4 GG - Group 1 Group 1

VAL5 GG - Group 1 Group 1

VAL6 GG - Group 1 Group 1

VAL7 GNT NOS BRAF V600E Group 1 Group 1

VAL8 GNT NOS - Group 1 Group 1

VAL34 DNET - Group 2 Group 1*

VAL16 DNET FGFR1-TACC1 Group 2 Group 2

VAL17 DNET FGFR1 TKD Group 2 Group 2

VAL18 DNET FGFR1 TKD Group 2 Group 2

VAL19 DNET FGFR1 TKD Group 2 Group 2

VAL20 DNET FGFR1 TKD Group 2 Group 2

VAL21 DNET FGFR1 TKD Group 2 Group 2

VAL22 DNET FGFR1 TKD Group 2 Group 2

VAL23 DNET FGFR1 TKD Group 2 Group 2

VAL24 DNET FGFR1 TKD Group 2 Group 2

VAL25 DNET FGFR1 TKD Group 2 Group 2

VAL26 DNET - Group 2 Group 2

VAL27 DNET - Group 2 Group 2

VAL28 GNT NOS - Group 2 Group 2

VAL29 GNT NOS - Group 2 Group 2

VAL10 GG BRAF V600E Control/Diffuse Group 1

VAL11 GG BRAF V600E Control/Diffuse Group 1

VAL12 GG BRAF V600E Control/Diffuse Group 1

VAL13 GG BRAF V600E Control/Diffuse Group 1

VAL32 GNT NOS - Control/Diffuse Group 1

VAL33 GG - Control/Diffuse Group 1

VAL9 GG BRAF V600E Control/Diffuse Group 1

VAL15 GG BRAF V600E Control/Diffuse Group 2

VAL14 GG BRAF V600E Control/Diffuse Control

VAL30 DNET FGFR1 TKD Control/Diffuse Control

VAL31 GG - Control/Diffuse Control

Note: Twenty-three tumours belonging to the validation cohort clustered alongside the training cohort by consensus clustering. The support vector model

(SVM) predicted concordant classification in 22/23 (96%).

*A single misclassification in a sample with >10% array probe failure.
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discriminated strikingly between Group 1 and Group 2 glioneuronal

tumours (Figure 2). Group 1 tumours were characterised by ill-defined

tumour margins (15/15), location within the medial temporal lobe

(12/15), and ill-defined or patchy (out-of-focus) contrast enhance-

ment (11/15). In contrast, Group 2 tumours were differentiated by cir-

cumscribed margins (16/16), presence of T2 FLAIR-rim (14/16), extra-

temporal location (12/16), and a tail-like extension to the ventricles

(11/16). All listed factors were statistically significant.

To test the reproducibility of radiological features, we recruited a

third neuroradiologist who was blinded to tumour classification.

Assessing only by the features listed above, 27/31 (87%) of tumours

in the radiology training cohort were classified in concordance with

the correct molecular classification. Taken together, the high rate of

agreement between unblinded and blinded reviewers indicates high

fidelity for the identified features.

Radiological features can prospectively classify
glioneuronal tumours

Having identified features that were strongly associated with molecu-

lar class in our radiology training cohort we tested these in our valida-

tion cohort, where 31 cases had corresponding radiological data.

Segregated by radiology, the cohort was classified into 11 Group

1 and 20 Group 2 tumours (Table 3). Mirroring the training cohort, the

most frequent features in predicted Group 1 tumours were ill-defined

margins (10/11) and temporal location (10/11). However, the third

previously identified feature, ill-defined or patchy (out-of-focus) con-

trast enhancement, could only be identified in a minority of these

cases (4/11). In contrast, all radiological features that were associated

with Group 2 tumours in the training cohort were seen in the majority

of predicted Group 2 validation tumours. The most frequent of these

were a well-defined or circumscribed margin (19/20), T2 FLAIR-rim

sign (17/20), and a tail-like extension to the ventricle (16/20)

(Table S1).

As with our SVM model, to estimate the fidelity of radiological

predictions, we compared these against consensus clustering classifi-

cation and variant data. Twenty-eight validation cohort tumours that

had been classified by radiology possessed a consensus clustering

classification or detectable BRAF/FGFR1 variant. Of these, 22 (78%)

radiological classifications were concordant with the molecular

T AB L E 2 Radiological correlates with molecular classification in
the radiology training cohort.

Group 1 Group 2 p

Circumscribed margin 0/15 (0%) 16/16 (100%) <0.005

CE absent 4/15 (27%) 8/16 (50%) 0.273

Well-defined CE 0/15 (0%) 8/16 (50%) <0.005

Patchy CE 11/15 (73%) 0/16 (0%) <0.005

FLAIR rim 0/15 (0%) 14/16 (88%) <0.005

Temporal location 12/15 (80%) 4/16 (25%) <0.005

Ventricular tail 0/15 (0%) 11/16 (69%) <0.005

Note: Ill-defined margins, temporal location and ill-defined or patchy (out-

of-focus) contrast enhancement are the strongest Group 1 correlates.

Circumscribed margins, T2 FLAIR-rim, extra-temporal location, and a tail-

like ventricular extension associate with Group 2.

Abbreviation: CE, contrast enhancement.

F I GU R E 2 T1 post-contrast, T2 and
T2 FLAIR sequences for example Group
1 (A–C) and Group 2 (D–F) tumours. The
Group 1 tumour displays ill-defined (out-
of-focus) contrast enhancement (A), is

visible with poorly marginated high T2
signal (B) and is located within the medial
temporal lobe (A–C). The Group 2 tumour
is circumscribed on T1 (D) and T2
(E) sequences, displaying well marginated
high T2 signal in the latter. The Group
2 tumour is extra-temporal and possesses
an extension towards the ventricular
surface (E) plus a characteristic T2 FLAIR-
rim sign (F), seen as a well-defined rim of
hyperintense signal around the tumour.

INTEGRATED MOLECULAR CLASSIFICATION OF GLIONEURONAL TUMOURS 7 of 13



findings. The remaining six cases were classified discordantly as Group

1 (n = 1) or Group 2 (n = 5) tumours by radiology. Of those misclassi-

fied as Group 2, all had radiological features associated with Group

2 and lacked consistent Group 1 identifiers. All five had circumscribed

margins; three displayed a T2 FLAIR-rim sign, and three possessed a

tail-like extension to the ventricle. The single case misclassified as

Group 1 had ill-defined margins and a temporal location, associated

with Group 1. However, there were no other Group 1 or Group

2 associated features present, suggesting this case lacked specific

indicators.

In most cases radiological classification successfully identified the

correct classification, suggesting a positive role for radiological classifi-

cation in early diagnosis, particularly pre-operatively when other

diagnostic data may be limited. However, this approach should be

used with caution in instances with limited radiological data. Our anal-

ysis shows a small potential for misclassification, skewed towards

Group 2. This seems to be led by features with overlap between

groups (e.g., location) or those that are interpreted more subjectively

(e.g., the circumscription of margins). This could be partially mitigated

by favouring more specific features, such as a T2 FLAIR-rim or ven-

tricular tail, which occurred less frequently in tumours discordantly

called Group 2. Additionally, although radiology may not be

completely reliable for early classification in all cases, radiological fea-

tures may serve as useful indicators to form an integrated classifica-

tion alongside other data later in the clinical timeline, such as

molecular or variant data.

T AB L E 3 Radiological classification of validation cohort glioneuronal tumours.

Sample Histology BRAF/FGFR1 Consensus clustering Radiology

VAL1 GG BRAF V600E Group 1 Group 1

VAL5 GG - Group 1 Group 1

VAL7 GNT NOS BRAF V600E Group 1 Group 1

VAL2 GG BRAF V600E Group 1 Group 2*

VAL3 GG - Group 1 Group 2*

VAL4 GG - Group 1 Group 2*

VAL6 GG - Group 1 Group 2*

VAL8 GNT NOS - Group 1 Group 2*

VAL16 DNET FGFR1-TACC1 Group 2 Group 1*

VAL17 DNET FGFR1 TKD Group 2 Group 2

VAL18 DNET FGFR1 TKD Group 2 Group 2

VAL19 DNET FGFR1 TKD Group 2 Group 2

VAL20 DNET FGFR1 TKD Group 2 Group 2

VAL21 DNET FGFR1 TKD Group 2 Group 2

VAL22 DNET FGFR1 TKD Group 2 Group 2

VAL23 DNET FGFR1 TKD Group 2 Group 2

VAL24 DNET FGFR1 TKD Group 2 Group 2

VAL26 DNET - Group 2 Group 2

VAL27 DNET - Group 2 Group 2

VAL28 GNT NOS - Group 2 Group 2

VAL29 GNT NOS - Group 2 Group 2

VAL34 DNET - Group 2 Group 2

VAL10 GG BRAF V600E Control/Diffuse Group 1

VAL12 GG BRAF V600E Control/Diffuse Group 1

VAL13 GG BRAF V600E Control/Diffuse Group 1

VAL14 GG BRAF V600E Control/Diffuse Group 1

VAL15 GG BRAF V600E Control/Diffuse Group 1

VAL31 GG - Control/Diffuse Group 1

VAL9 GG BRAF V600E Control/Diffuse Group 1

VAL32 GNT NOS - Control/Diffuse Group 2

VAL33 GG - Control/Diffuse Group 2

Note: Twenty-eight tumours could be assessed by radiology alongside consensus clustering or BRAF/FGFR1 data for comparison. Twenty-two (78%)

classified concordantly. Misclassifications are marked by *.
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Individual histological features do not robustly
replicate molecular classification

Glioneuronal tumour classification by conventional histopathological

techniques is impaired by uninformative histology, interpreted subjec-

tively, with poor inter-observer agreement (reviewed in Thom et al.

[2]). Having investigated two systems for predicting glioneuronal

tumour classification, we aimed to compare these against histology.

To facilitate this, we first reviewed the histological features in our

combined training cohorts, where sufficient tissue was available for a

detailed analysis (n = 46/49), to identify those significantly associated

with the molecular class (Table 4; Figure S2). Descriptive definitions

for all features assessed can be found in Table S3.

We found that although individual histological features correlated

with molecular classification, they did not entirely replicate it

(Table 4). Additionally, some features were represented in both

groups, limiting discriminative utility. Features associated with Group

1 (n = 27) were the presence of a prominent astrocytic population

(23/27), dysplastic neurons (22/27), inflammation (15/27) and

eosinophilic granular bodies (13/27). Features associated with Group

2 (n = 19) were the presence of a prominent oligodendrocyte-like cell

population (17/19), a specific glioneuronal element (10/19) and

floating neurons (6/19). The strongest correlates for each group—

oligodendrocytic/astrocytic prominence—lacked specificity and each

was present in the opposing group to a moderate extent. Thus, the

discriminative utility of these is limited. For more specific features,

such as the presence of dysplastic neurons or a specific glioneuronal

element, their occurrence was limited to only a subset of tumours.

Dysplastic neurons were only present in 81% of Group 1 cases,

whereas a specific glioneuronal element was only seen in 53% of

Group 2 tumours. Taken together, these data highlight the difficulty in

classifying glioneuronal tumours by conventional histology. Broader

features lack specificity and are seen across groups, whereas more

specific features are restricted to only a subset of cases. Additionally,

the presence of some features in both groups suggests that histology

is only partially reflective of the underlying molecular profiles.

SVM model classification shows greater sensitivity
than histological classification

Having identified the strongest histological correlates to molecular

classification in our training cohort, we contrasted these against con-

sensus clustering, SVM and radiological predictions in our validation

cohort. To predict classification by histological features, we used the

presence of the top 2 histological correlates for each group. This com-

bination was chosen to mediate sensitive and specific features against

each other. For Group 1 these features were a prominent astrocytic

component and dysplastic neurons. For Group 2, a prominent

oligodendrocyte-like component and specific glioneuronal element

were required.

Twenty-two tumours within the validation cohort had both suffi-

cient material for histological review and methylation data sufficient

for classification by consensus clustering into one of the two molecu-

larly defined groups. This sub-cohort contained 8 Group 1 and

14 Group 2 tumours as defined by consensus clustering (Figure 3).

Consensus classification was utilised as a ‘ground truth’ in this com-

parison, against which other classifications were contrasted. As we

had only included cases with sufficient histological material for a

T AB L E 4 Histological features versus molecular classification in
the training cohort.

Group 1 Group 2 p

Astrocytic component 23/27 (85%) 8/19 (42%) <0.005

Dysplastic neurons 22/27 (81%) 4/19 (21%) <0.005

Inflammation 15/27 (55%) 2/19 (11%) <0.005

EGB 13/27 (48%) 1/19 (5%) <0.005

Oligodendrocyte-like cells 9/27 (33%) 17/19 (89%) <0.005

Glioneuronal element 1/27 (4%) 10/19 (53%) <0.005

Floating neurons 2/27 (7%) 6/19 (32%) 0.051

Microvascular proliferation 2/27 (7%) 3/19 (16%) 0.635

Calcification 14/27 (52%) 7/19 (37%) 0.377

Anaplasia 3/27 (11%) 1/19 (5%) 0.632

Rosenthal fibres 4/27 (15%) 2/19 (11%) 1

Note: A prominent astrocytic component, dysplastic neurons,

inflammation, and eosinophilic granular bodies (EGB) associate with Group

1. Oligodendrocyte-like cells, a specific glioneuronal element, and floating

neurons associate with Group 2.

F I GU R E 3 Comparison of
histological, SVM, and radiological
classifications. Twenty-two tumours

possessed methylation and histological
data. Twenty-one of these also possessed
radiological data. SVM and histology
perform near equally for Group
1 tumours. However, in Group 2 tumours,
histology lacks sensitivity compared to
SVM. Radiology predicts most Group
2 tumours but may be biased towards this
outcome as indicated by misclassification
of Group 1 tumours.
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detailed analysis, to realise a fair comparison, we excluded cases with

weak methylation profiles. These cases were those that clustered

alongside controls during the initial consensus clustering analysis, an

occurrence that frequently coincides with sparse tumour content in

our previous experience. Of the 22 cases with histological and methyl-

ation data, 21 possessed assessable radiological data.

Interestingly, we found that histological classification and SVM

performed almost equally for Group 1 tumours. SVM predicted all

Group 1 tumours correctly, whereas histology failed to classify one

tumour, which possessed mixed astrocytic/oligodendrocytic features

and lacked dysplastic neurons or a specific glioneuronal element. Con-

versely, radiological classification performed poorly for Group

1 tumours in this comparative analysis, only concordantly calling 3/8

(37%) of tumours, with the remainder discordantly called as Group

2. Of the five discordant classifications, all possessed circumscribed

margins, three possessed tail-like extensions to the ventricles, and

three displayed a T2 FLAIR-rim. These features were strong Group

2 predictors in the training cohort.

In contrast to Group 1, we observed a greater reduction in sensi-

tivity for histological classification versus SVM when identifying

Group 2 tumours. Histological classification concordantly identified

10/14 (71%) Group 2 tumours, compared with 13/14 (93%) for SVM.

This is partially explained by the lack of specific histological features.

Although all Group 2 tumours contained a prominent oligodendrocytic

component, four cases lacked a specific glioneuronal element to con-

firm histological classification. Moreover, two of these cases had

mixed histological features and possessed a prominent astrocytic

component. The single misclassification by SVM corresponded to a

tumour with >10% methylation array probe failure that had been

flagged as suboptimal. Turning to radiology, 13/14 cases had radiolog-

ical data. A concordant classification was reached for 12 (92%). How-

ever, taken together with the misclassification of most Group

1 tumours above, this high calling rate may represent a bias towards

Group 2.

Overall, analysis of these methods indicates comparable perfor-

mance for prediction by histology and SVM in Group 1 tumours, with

a marked increase in relative performance for SVM in Group

2 tumours. This emphasises the utility of methylation array classifica-

tion, where optimal data are available, compared with conventional

histology for glioneuronal tumours. Conversely, at least in this cohort,

the radiological prediction should be approached conservatively as

the criteria for classification may bias towards a Group 2 outcome.

SVM model classification synergises with existing
methylation-based tools for classification

Methylation profiling to predict tumour diagnosis has expanded along-

side the development of tools to analyse and interpret these data. The

most notable example for CNS tumours is the Molecular Neuropathol-

ogy Platform (MNP), a machine learning trained tool based upon ran-

dom forest classification (https://www.molecularneuropathology.org/

mnp) [4, 13]. Previously, we noted this platform performed poorly for

low-grade and glioneuronal tumours, assigning robust classifications

to only 33% [5]. This lack of confidence for low-grade glioma and glio-

neuronal tumours is aligned with the experiences from other centres

[6, 7]. Having compared our SVM model to conventional histopathol-

ogy, we aimed to assess its competence against this alternative tool,

which differs from our model in both underlying classification algo-

rithm and case inclusion criteria. For this, we recorded the classifica-

tion produced by MNP and whether the calibrated score (a measure

of confidence) was ≥0.5, the threshold below which the tool’s authors

discard classifications [13]. MNP gives classifications according to his-

tological paradigm; thus, we interpreted a GG classification as equiva-

lent to Group 1; likewise, DNET for Group 2 (Table 5).

In 23 validation cohort tumours with methylation data that could

be segregated into the two molecularly defined groups by consensus

clustering, we found that 13 (56%) were concordantly called GG

(�Group 1) or DNET (�Group 2) by MNP. If the calibrated score was

ignored this rose to 16 (69%). This compared with 22 (96%) that were

correctly called by SVM. MNP performed comparably for DNET/

Group 2 but struggled with GG/Group 1 tumours, misclassifying 6/8.

When we analysed eight samples with methylation data that did not

segregate from controls by consensus clustering but had detectable

BRAF/FGFR1 variants, MNP and SVM also performed comparably.

MNP called 5/8 tumours correctly with a calibrated score above the

cut-off, rising to 7/8 if the threshold was ignored. All were samples

with a BRAF V600E alteration and classified as GG by MNP. This com-

pared to 5/8 that SVM classified as Group 1 in concordance with

BRAF alteration. Taken together, these findings indicate comparable

sensitivity between the two methods for detection and classification

of DNET/Group 2 tumours. MNP performs poorly for GG/Group

1 tumours but was able to call cases with weak methylation data.

However, SVM was also able to segregate samples with weak methyl-

ation profiles in concordance with BRAF/FGFR1 variant data. Notably,

when both approaches are used together, they overlap and almost all

samples can be classified correctly. As both rely on methylation array

data, once an array is run it should be trivial to perform both for a

given sample. Lastly, it should be noted that MNP is not a static entity

but rather a versioned tool under continuing development. This analy-

sis represents a snapshot using the latest version available at the time

of writing. As such, these comparisons are prone to change as existing

entities are refined and novel ones incorporated into MNP.

DISCUSSION

Glioneuronal tumour classification is confounded by reliance on histo-

logical features that are frequently uninformative and prone to subjec-

tivity. In our histological analysis, we identified features correlating

with molecular classification but none completely replicating it. The

most common features were broad cell types, whereas more specific

features like dysplastic neurons or a specific glioneuronal element

were absent in a significant proportion. Histological classification suf-

fers from a lack of inter-observer agreement, including between spe-

cialist centres, as indicated by widely variable figures for the reported
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incidence of the main histologically defined glioneuronal archetypes

(reviewed in Thom et al. [2]). Outside these centres, glioneuronal

tumours are encountered infrequently and recognition is compli-

cated by lack of experience. Difficulty with accurate and reproduc-

ible classification extends to research; cohorts may represent a

clinically complex mix of tumours segregated by unreliable criteria

that do not reflect the underlying molecular biology, impacting the

resolving power of downstream analyses. These problems highlight a

lack of objective and reproducible ‘gold standards’ for glioneuronal

tumours. Addressing this diagnostic problem with biologically

informed metrics has the potential to facilitate better diagnosis and

the development of meaningful trials and targeted therapeutic

strategies. Likewise, robust classification and biological characterisa-

tion represents important groundwork towards understanding the

heterogeneous survival and morbidity outlook for glioneuronal

tumour patients [16–20].

T AB L E 5 MNP and SVM model display contrasting performance for classification of glioneuronal tumours.

Sample Histology BRAF/FGFR1 Consensus clustering SVM MNP

VAL1 GG BRAF V600E Group 1 Group 1 CONTR, REACT*

VAL2 GG BRAF V600E Group 1 Group 1 CONTR, REACT*

VAL3 GG - Group 1 Group 1 CONTR, REACT*

VAL4 GG - Group 1 Group 1 PLEX, PED B*

VAL5 GG - Group 1 Group 1 MNG*

VAL6 GG - Group 1 Group 1 PLEX, PED B*

VAL7 GNT NOS BRAF V600E Group 1 Group 1 LGG, PA/GG ST

VAL8 GNT NOS - Group 1 Group 1 LGG, PA/GG ST

VAL34 DNET - Group 2 Group 1 MB, G3*

VAL16 DNET FGFR1-TACC1 Group 2 Group 2 LGG, DNT

VAL17 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT*

VAL18 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL19 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL20 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL21 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL22 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL23 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL24 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL25 DNET FGFR1 TKD Group 2 Group 2 LGG, DNT

VAL26 DNET - Group 2 Group 2 LGG, DNT

VAL27 DNET - Group 2 Group 2 LGG, DNT*

VAL28 GNT NOS - Group 2 Group 2 LGG, DNT*

VAL29 GNT NOS - Group 2 Group 2 LGG, DNT

VAL10 GG BRAF V600E Control/Diffuse Group 1 LGG, GG

VAL11 GG BRAF V600E Control/Diffuse Group 1 LGG, GG*

VAL12 GG BRAF V600E Control/Diffuse Group 1 LGG, GG

VAL13 GG BRAF V600E Control/Diffuse Group 1 LGG, GG*

VAL32 GNT NOS - Control/Diffuse Group 1 LGG, GG

VAL33 GG - Control/Diffuse Group 1 LGG, GG

VAL9 GG BRAF V600E Control/Diffuse Group 1 LGG, GG

VAL15 GG BRAF V600E Control/Diffuse Group 2 LGG, GG

VAL14 GG BRAF V600E Control/Diffuse Control LGG, GG

VAL30 DNET FGFR1 TKD Control/Diffuse Control CONTR, HEMI*

VAL31 GG - Control/Diffuse Control LGG, GG

Note: Of the 23 tumours segregated by consensus clustering, MNP classifies 13/23 (56%) concordantly, rising to 16/23 (69%) when confidence threshold

is ignored. MNP performs comparably with SVM for Group 2/DNET, whereas Group 1 sensitivity is lower. Both methods perform comparably for cases

with weak methylation data, concordantly classifying 5/8 cases alongside adjuvant variant data. MNP column represents classification as listed in MNP

reference.

*Misclassifications and classifications below confidence threshold 0.5.
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Recently, methylation arrays have shown significant utility for

molecular segregation of CNS tumours through classification tools [4].

These perform well for high-grade and molecularly well-defined

tumours but are limited for low-grade and glioneuronal tumours [6, 7]

(reviewed in Pickles et al. [5]). To assess the utility of classifying glio-

neuronal tumours by methylation profiles, we constructed a support

vector machine model. We compared this against histological, radio-

logical, variant and molecular consensus clustering data, in addition to

classification via another methylation-based CNS tumour classifier.

Our model demonstrated high classification fidelity (96%) when pre-

sented with methylation data of suitable quality. Against histological

features, we noted comparable, potentially improved, performance

with enhanced classification for many samples. Moreover, the model

worked synergistically with existing molecular and methylation-based

tools to resolve classifications for almost all samples analysed. Insights

into the molecular biology of CNS tumours have promoted an inte-

grated diagnostic approach, incorporating multiple histo-molecular

data streams. Rather than replacing or replicating existing methods,

we view methylation profiling as additive to an integrated diagnosis,

contributing confidence and objective resolving power in the absence

of absolute standards for glioneuronal tumours.

In addition to our SVM model, we identified radiological features

associated with molecular classification. To our knowledge, no detailed

radiological study of discriminators between molecularly defined glio-

neuronal tumours has been undertaken. We noted good inter-observer

agreement between independent reporters when using lesion margins,

location, enhancement characteristics, T2 FLAIR-rim and presence of a

tail-like extension to the ventricles as discriminators. Some features are

potentially explicable by the underlying biology. For example, T2

FLAIR-rim enrichment for Group 2 tumours may reflect predominance

of DNET-like tumours in this group, for which the sign is documented

[15]. Additionally, differences in tumour margin definition and enhance-

ment potentially highlight underlying cell type enrichments in each

group. Group 1 tumours display an enrichment for astrocytic cell types

and present in a diffuse pattern, whereas Group 2 are predominantly

oligodendrocytic, nodular and circumscribed.

The performance of radiology suffered slightly in our validation

cohort compared with other methods and potentially demonstrates a

bias towards Group 2. However, to allow a fair comparison, this

cohort subset excluded tumours without a consensus clustering classi-

fication and those without detailed histological data. Within the

excluded cases were seven where radiology predicted concordantly

alongside BRAF V600E or FGFR1 variants (Table 3), demonstrating

utility in the absence of other data. Moreover, among all radiologically

assessable cases 78% could be classified concordantly alongside the

available data. As such, we propose that radiological features repre-

sent a worthwhile tool for early classification and can guide onward

diagnostic testing, improving efficiency by streamlining the early diag-

nostic pipeline and downstream test selection. Although we focused

on conventional imaging, in future studies, it would be worthwhile

interrogating advanced imaging sequences to further explore the dif-

ferences between molecular groups and establish additional imaging

biomarkers.

Taken together, our analysis suggests methylation and radiologi-

cal classification can add significant utility to integrated diagnostic

workflows for glioneuronal tumours. Both utilise data that in many

centres are standard practice. Pre-surgical radiological assessment is

standard for CNS tumours and methylation array profiling is increas-

ingly common at major centres [5, 13, 21, 22]. As such, application of

these methods frequently involves interrogation of existing data with

few additional barriers to entry. Moreover, in the context of recent

shifts towards the incorporation of molecular data into WHO criteria

for specific diagnoses, we expect that molecular classification for

glioneuronal tumours will represent an important step towards

correct stratification [23]. Indeed, considering the disconnect

between histological paradigm and molecular biology for these

tumours, we question the continued utility of DNET and ganglio-

glioma as diagnostic terms, as opposed to identifiers that more accu-

rately reflect a modern understanding of the tumour biology. As

such, we propose these terms are abandoned in favour of molecu-

larly defined subtypes.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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