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Abstract

Aims: To evaluate associations of metabolic profiles and biomarkers with brain atrophy,

lesions, and iron deposition to understand the early risk factors associatedwith dementia.

Materials and methods: Using data from 26 239 UK Biobank participants free from

dementia and stroke, we assessed the associations of metabolic subgroups, derived

using an artificial neural network approach (self-organizing map), and 39 individual

biomarkers with brain MRI measures: total brain volume (TBV), grey matter volume

(GMV), white matter volume (WMV), hippocampal volume (HV), white matter hyper-

intensity (WMH) volume, and caudate iron deposition.

Results: In metabolic subgroup analyses, participants characterized by high triglycer-

ides and liver enzymes showed the most adverse brain outcomes compared to the

healthy reference subgroup with high-density lipoprotein cholesterol and low body

mass index (BMI) including associations with GMV (βstandardized �0.20, 95% confi-

dence interval [CI] �0.24 to �0.16), HV (βstandardized �0.09, 95% CI �0.13 to �0.04),

WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and caudate iron deposition

(βstandardized 0.30, 95% CI 0.25 to 0.34), with similar adverse associations for the sub-

group with high BMI, C-reactive protein and cystatin C, and the subgroup with high

blood pressure (BP) and apolipoprotein B. Among the biomarkers, striking associa-

tions were seen between basal metabolic rate (BMR) and caudate iron deposition

(βstandardized 0.23, 95% CI 0.22 to 0.24 per 1 SD increase), GMV (βstandardized �0.15,

95% CI �0.16 to �0.14) and HV (βstandardized �0.11, 95% CI �0.12 to �0.10), and

between BP and WMH volume (βstandardized 0.13, 95% CI 0.12 to 0.14 for dia-

stolic BP).

Conclusions: Metabolic profiles were associated differentially with brain neuroimag-

ing characteristics. Associations of BMR, BP and other individual biomarkers may

provide insights into actionable mechanisms driving these brain associations.
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1 | INTRODUCTION

Alterations in brain structure and function can be detected long

before the symptoms of cognitive impairment are diagnosed.1,2

Understanding the metabolic factors and profiles associated with

dementia-related brain changes could help determine early risk factors

for dementia. Metabolic risk factors in an individual rarely present on

their own and may be accompanied and/or complicated by other pro-

tective and adverse risk factors. Population subgrouping can be a use-

ful method to assess risks associated with profiles of factors that

aggregate together in the population, and to provide information on

the preventative approach best suited to individuals with a particular

profile.

Using a data-driven, artificial neural network approach, a self-

organizing map [SOM] that detects multivariable patterns in complex

datasets, we recently stratified the White British contingent of the

UK Biobank population into six subgroups based on metabolic profil-

ing using the extensive data for biomarkers relating to cardiovascular

health, diabetes, kidney and liver function, bone and joints, cancer,

and obesity (Table 1).3,4 These markers clustered into subgroups in a

way that was strongly characteristic of later disease incidence. In com-

parison to Subgroup IV, selected as a reference based on its favour-

able status with regards to lipids and body fat and low risks of

cardiometabolic diseases and morbidity, the other five subgroups

showed differential risks of several age-related diseases including all-

cause dementia, cancer, diabetes, rheumatoid arthritis, and ischaemic

heart disease.3

In this study, we investigated the relationships between the

SOM-defined metabolic subgroups (and their biomarker components)

and neuroimaging markers of brain morphology and iron deposition.

We used MRI brain data from the largest investigation of its kind5

(N > 26 000) allowing us to focus on dementia-related measures at

the preclinical stage.

2 | MATERIALS AND METHODS

2.1 | Participants

The UK Biobank is a prospective cohort study of 503 000 participants

who were aged 37 to 73 years at recruitment between 2006 and

2010.4 Baseline information was collected at recruitment using ques-

tionnaires, verbal interviews, physical examination, and blood and

urine sampling, for an extensive range of demographic, lifestyle, physi-

cal and biochemical variables. Our analyses were restricted to unre-

lated White participants of British ancestry, with baseline information

recorded for metabolic biomarkers used for subgroup profiling

(Supplementary Figure 1). We identified and excluded individuals with

a history of dementia (n = 284) or stroke (n = 5169) at baseline based

on “first occurrence” disease information.6 Our target sample com-

prised participants with brain MRI imaging information available

through participation in an ongoing UK Biobank substudy initiative

that began in 2014 and aims to collect imaging data for 100 000

participants.5 After exclusion of participants with outlier values for

brain MRI data (±3 standard deviations [SD] from the mean), 26 239

participants remained for analyses involving total brain volume (TBV),

grey matter volume (GMV) and white matter volume (WMV), 26 228

for hippocampal volume (HV), 25 354 for white matter hyperintensity

(WMH) volume, and 23 603 for caudate iron deposition

(Supplementary Figure 1). Ethical approval for the UK Biobank was

granted by the National Information Governance Board for Health

and Social Care and North West Multicentre Research Ethics Commit-

tee (11/NW/0382), and our research study was conducted under

application 10 171. All participants provided electronic consent for

their anonymized data and samples to be used for health-related

research, and for being re-contacted for further substudies.

2.2 | Biomarker traits and stratification into
metabolic subtypes

Study participants were subdivided into six metabolic subgroups

based on biochemical and anthropometric traits using a SOM

approach, as previously described,3 an artificial neural network tech-

nique designed to detect multivariable patterns in complex datasets.7

Traits used to sort individuals into subgroups included markers relat-

ing to cardiovascular health (apolipoprotein A1 [ApoA1], apolipopro-

tein B [ApoB], high-density lipoprotein cholesterol [HDLC], direct

low-density lipoprotein cholesterol [LDLC], lipoprotein[a], total cho-

lesterol, triglycerides), diabetes (glucose, glycated haemoglobin),

inflammation (C-reactive protein [CRP]), kidney function (creatinine,

creatinine in urine, cystatin C, microalbumin, phosphate, potassium,

sodium, total protein, urate and urea), liver function (alanine amino-

transferase [ALT], aspartate aminotransferase [AST], gamma glutamyl-

transferase [GGT], albumin, direct bilirubin, total bilirubin), bone and

joint (alkaline phosphatase, calcium, 25-hydroxyvitamin D [25(OH)D],

rheumatoid factor), cancer (insulin-like growth factor 1 [IGF-1], oes-

tradiol, sex hormone-binding globulin [SHBG], testosterone), and

physiology (body fat percentage, body mass index [BMI], diastolic

blood pressure [BP], systolic BP). We assessed the relationships

between the metabolic subgroups and the individual biomarkers listed

above, with MRI brain outcomes. We also included basal metabolic

rate (BMR) as one of the physiological biomarkers, which is a UK Bio-

bank measure derived from body impedance, a component of the

SOM training variables. Further information regarding biomarker

assay methodology is described in Supplementary Methods. All com-

ponents of the SOM were standardized by age and sex for defining

the six subgroups with diverse multivariable metabolic profiles that

were not confounded by statins, antihypertensives or diabetic

medications.3

2.3 | Brain MRI outcomes

The UK Biobank-processed brain volume data8 collected between

2014 and 2019 were used for our analyses. Details on brain MRI data
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acquisition are provided in the Supplementary Methods. Volumetric

data included GMV, WMV, TBV (derived as the sum of GMV and

WMV), HV (sum of left and right HVs) and volume of WMHs. The

most common dementia type, Alzheimer's disease, is associated with

greater iron deposition in the basal ganglia (including the caudate,

putamen and globus pallidus).9,10 For estimation of iron deposition,

we selected the caudate as a representative region since iron depo-

sition in this region has shown some correlation with measures of

cognitive deficit.10 For caudate iron deposition analyses, median T2*

values (in milliseconds) for the left and right caudate were converted

to R2* (R2* = 1/T2*) such that a higher R2* value indicated greater

iron deposition, and a single caudate R2* value was calculated as the

mean of the left and right caudate R2* values. All brain volumes and

R2* data were normalized to total head size, and WMH volume data

were inverse normal transformed to approximate normal

distribution.

2.4 | Covariates

As covariates we included information on age, sex, assessment cen-

tre, socioeconomic factors (education, Townsend deprivation index,

employment), and lifestyle factors (smoking, alcohol consumption,

physical activity, stress, diet) to account for potential confounding. A

dietary iron covariate was included as a lifestyle factor for caudate

iron deposition analyses only. Covariates were based on self-

reported data from the baseline assessment, except for the Town-

send deprivation index which was derived from participants' post

codes as recorded in the National Health Service primary care trust

registries.11 Categories for education, employment, physical activity,

stressful events in the past 2 years, and smoking status are outlined

in the Supplementary Methods, as is the derivation of the healthy

diet score, and dietary iron covariate.

2.5 | Statistical analysis

For metabolic subgroup and biomarker analyses, linear regression

was used to evaluate differences in standardized brain MRI out-

comes. For subgroup analyses, differences are in comparison to Sub-

group IV (high HDLC and low BMI), selected based on having low

adiposity and low burden of a number of common age-related dis-

eases.3 This subgroup also had most preserved overall brain vol-

umes. A binary variable was generated for each of the six metabolic

subgroups, creating five indicator variables and the reference group.

For the main biomarker analyses, and for restricted biomarker ana-

lyses in individuals aged 60 years and above, differences in stan-

dardized brain MRI outcomes are presented per 1-SD change in

biomarker level. Biomarker measures were first sex-standardized,

and log-transformed except for oestradiol, microalbumin and rheu-

matoid factor, which were analysed without log transformation due

to many zero values (below detection). To account for multiple test-

ing across 39 biomarkers included in the analyses, we applied T
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TABLE 2 Summary of grey matter, hippocampal and white matter hyperintensity volumes and caudate iron deposition levels, stratified by
baseline characteristics of the UK Biobank participants in this study

n (%)

GMV, cm3

Median (IQR)

HV, cm3

Median (IQR)

WMH volume, cm3

Median (IQR)

C-Fe, s�1

Median (IQR)

Total 26 239 (100) 792.6 (760.6-825.2) 7.69 (7.14-8.24) 3.64 (1.96-7.34) 18.3 (16.7-20.2)

Sex

Male 12 492 (47.6) 776.8 (746.9-806.5) 7.94 (7.35-8.51) 3.79 (2.02-7.70) 19.8 (18.3-21.4)

Female 13 747 (52.4) 806.9 (776.2-839.2) 7.50 (7.00-7.99) 3.50 (1.90-7.04) 17.1 (16.0-18.5)

P <1.0 � 10�300 <1.0 � 10�300 0.003 <1.0� 10�300

Age

40-49 years 6902 (26.3) 829.5 (802.1-855.7) 7.92 (7.41-8.49) 2.00 (1.20-3.41) 18.0 (16.6-19.7)

50-59 years 10 889 (41.5) 795.0 (768.8-821.5) 7.75 (7.23-8.26) 3.56 (2.07-6.46) 18.2 (16.7-20.1)

60-70 years 8448 (32.2) 760.8 (734.4-787.1) 7.39 (6.86-7.92) 6.53 (3.54-12.39) 18.7 (17.0-20.6)

P <1.0 � 10�300 <1.0 � 10�300 <1.0 � 10�300 1.7 � 10�31

Education

None 1644 (6.3) 777.8 (749.4-807.8) 7.39 (6.89-7.93) 5.47 (2.89-10.4) 18.0 (16.4-19.9)

NVQ/CSE/A-levels 8183 (31.2) 796.3 (762.1-829.9) 7.65 (7.09-8.19) 3.59 (1.95-7.10) 18.2 (16.6-20.1)

Degree/professional 16 352 (62.3) 792.4 (760.9-824.3) 7.73 (7.20-8.29) 3.52 (1.89-7.12) 18.4 (16.8-20.2)

Missing 60 (0.2) 782.1 (754.4-809.4) 7.45 (6.76-8.01) 5.99 (3.35-10.91) 18.7 (16.9-21.0)

P 0.01 3.7 � 10�31 8.7 � 10�4 3.2 � 10�13

Employment

No 1530 (5.8) 803.5 (772.7-835.7) 7.57 (7.07-8.13) 3.28 (1.84-6.27) 17.6 (16.3-19.4)

Retired 6606 (25.2) 764.2 (736.9-792.4) 7.41 (6.88-7.97) 6.19 (3.34-11.9) 18.6 (16.9-20.6)

1st quartile (lowest work

hours)

4096 (15.6) 801.3 (769.5-835.3) 7.62 (7.11-8.13) 3.40 (1.81-6.99) 17.6 (16.3-19.3)

2nd quartile 2983 (11.4) 807.5 (775.3-839.7) 7.74 (7.23-8.26) 3.01 (1.67-5.73) 17.9 (16.4-19.7)

3rd quartile 5742 (21.9) 804.6 (773.6-835.0) 7.82 (7.28-8.37) 2.95 (1.65-5.40) 18.3 (16.8-20.2)

4th quartile (highest work

hours)

5034 (19.2) 797.1 (768.3-826.2) 7.96 (7.41-8.51) 2.96 (1.68-5.56) 19.0 (17.4-20.7)

Missing 248 (0.9) 797.4 (764.2-831.5) 7.70 (7.14-8.24) 3.80 (2.12-8.42) 18.0 (16.5-20.0)

P 1.0 � 10�24 3.2 � 10�26 3.8 � 10�22 0.002

Smoking

Never 16 146 (61.5) 797.5 (766.5-829.8) 7.70 (7.23-8.31) 3.36 (1.82-6.73) 18.1 (16.6-19.9)

Ex-smoker 8490 (32.4) 782.5 (750.4-815.9) 7.64 (7.16-8.21) 4.16 (2.21-8.34) 18.6 (16.9-20.5)

Current 1557 (5.9) 790.6 (756.2-825.2) 7.73 (7.19-8.26) 3.80 (2.11-8.37) 18.9 (17.2-20.9)

Missing 46 (0.2) 780.7 (748.1-800.1) 7.44 (7.08-8.01) 4.31 (2.14-8.41) 18.3 (16.5-20.2)

P 1.1 � 10�47 1.8 � 10�9 4.7 � 10�18 3.2 � 10�24

Physical exercise

None 823 (3.1) 799.7 (767.0-831.5) 7.52 (7.02-8.04) 4.02 (2.07-7.32) 17.6 (1.3-19.6)

Light/moderate 21 277 (81.1) 791.2 (758.8-823.7) 7.66 (7.12-8.21) 3.79 (2.03-7.70) 18.3 (16.7-20.1)

Strenuous activity 4010 (15.3) 798.9 (768.6-829.8) 7.92 (7.35-8.48) 2.91 (1.63-5.54) 18.7 (17.1-20.3)

Missing 129 (0.5) 782.4 (745.2-821.6) 7.52 (6.98-8.17) 3.50 (1.66-7.43) 18.4 (16.9-20.2)

P 8.6 � 10�5 3.6 � 10�15 0.0002 0.003

Stressful events in last 2 years

None 15 462 (58.9) 789.7 (756.4-823.0) 7.69 (7.14-8.24) 3.72 (1.99-7.54) 18.4 (16.8-20.2)

Serious illness, injury, or

assault

1581 (6.0) 789.3 (764.2-823.0) 7.67 (7.14-8.24) 4.07 (2.07-8.39) 18.6 (17.0-20.4)

Family death or illness 7402 (28.2) 796.9 (777.6-837.9) 7.67 (7.14-8.23) 3.54 (1.92-7.12) 18.1 (16.6-20.0)

Marital separation or

divorce

519 (2.0) 804.5 (770.6-836.0) 7.79 (7.26-8.35) 2.99 (1.65-5.82) 18.1 (16.6-20.1)

124 LUMSDEN ET AL.



Bonferroni correction, with a threshold of P < 0.0013. Sex interac-

tions with the biomarker-brain MRI associations were assessed using

an interaction term, and a Bonferroni-adjusted threshold of

P < 0.0013. Where an interaction was detected, the population was

then stratified by sex and associations were evaluated in males and

females separately.

For analyses of metabolic subgroup associations with brain MRI

outcomes, we made adjustments for covariates in four models. Model

1 adjusted for basic covariates (age, sex and assessment centre), Model

2 for basic plus socioeconomic-related covariates (education, Townsend

deprivation index, and employment), Model 3 for basic plus lifestyle fac-

tors (smoking, alcohol consumption, level of physical activity, recent

stress, and healthy diet, and, for caudate iron deposition analyses only,

a dietary iron variable), and Model 4 for all covariates. For biomarker

analyses, we adjusted for basic covariates, socio-economic-related cov-

ariates, and lifestyle factors (including the dietary iron covariate for ana-

lyses of caudate iron deposition). Adjustment for sex was omitted in the

sex-stratified association analyses. In all analyses, we applied a complete

case strategy given only approximately 2% of covariate information was

missing. Analyses were carried out using Stata/SE 16.1 (StataCorp) and

R 3.5.0 software (R Foundation for Statistical Computing).

3 | RESULTS

3.1 | Population characteristics

The study sample consisted of up to 26 239 participants of whom

52% were female. Brain MRI variables were associated with a range

of health and lifestyle covariates (Table 2, Supplementary Table 1).

Younger age, higher education level, having never been a smoker,

greater number of working hours, and higher level of physical exer-

cise showed expected associations with greater HV, and lower

WMH volume. Caudate iron deposition levels tended to increase

with age, as expected, and were higher in current and ex-smokers,

but also in those with higher education level, greater number of

working hours, and more strenuous exercise levels. Those who

reported experiencing recent stress due to serious illness, injury or

assault tended to have lower GMV and higher WMH volume. The

average (± SD) time from baseline to neuroimaging data collection

was 8.7 (± 1.7) years.

3.2 | Associations between metabolic subgroup
and brain MRI parameters

Metabolic subgroup associations with neuroimaging markers after full

covariate adjustment are shown in Figure 1, and data for all adjust-

ment models are presented in Supplementary Table 2. Adiposity-

related subgroups II (high triglycerides and liver enzymes) and III (high

BMI, CRP and cystatin C) showed the most adverse brain outcomes

compared to the reference Subgroup IV (high HDLC and low BMI).

Subgroup II was associated with greater caudate iron deposition

(βstandardized 0.30, 95% confidence interval [CI] 0.25 to 0.34) and

WMH volume (βstandardized 0.22, 95% CI 0.18 to 0.26), and lower GMV

(βstandardized �0.20, 95% CI �0.24 to �0.16) and HV (βstandardized
�0.09, 95% CI �0.13 to �0.04), with similar associations observed

for Subgroup III. Subgroup I (high ApoB and BP without hyperglycae-

mia) was associated with lower GMV, WMV and TBV, and higher

WMH volume and caudate iron deposition, while Subgroup VI (high

urinary excretion without kidney stress) was associated with lower

GMV and higher caudate iron deposition. Subgroup V (high sex hor-

mones and low calcium) was associated with lower HV, lower WMH

volume, and slightly more caudate iron deposition than the reference

Subgroup IV (ie, second to lowest caudate iron deposition overall).

3.3 | Associations between serum and
physiological biomarkers and brain MRI parameters

We assessed associations between biomarkers and brain MRI vari-

ables across the entire study population, to assess which biomarkers

might be driving the subgroup associations. Results from fully

adjusted analyses of biomarker-brain outcome associations are pre-

sented in Figure 2 (heat map) and Supplementary Table 3

(extended data).

Higher BMR, a trait of Subgroups II and III, was associated with

striking brain outcomes including greater caudate iron deposition

(βstandardized 0.23, 95% CI 0.22 to 0.24, per 1-SD increase in bio-

marker), lower TBV mainly reflective of lower GMV (βstandardized
�0.15, 95% CI �0.16 to �0.14), lower HV (βstandardized �0.11, 95% CI

�0.12 to �0.10), and greater WMH volume (βstandardized 0.06, 95% CI

0.05 to 0.07). Higher BMI and body fat percentage showed similar

associations. Additional metabolic features that also cluster in

TABLE 2 (Continued)

n (%)

GMV, cm3

Median (IQR)

HV, cm3

Median (IQR)

WMH volume, cm3

Median (IQR)

C-Fe, s�1

Median (IQR)

Financial difficulties 1235 (4.7) 802.2 (757.5-834.4) 7.75 (7.23-8.35) 3.13 (1.76-6.36) 18.4 (16.8-20.2)

Missing 30 (0.1) 789.5 (767.1-818.2) 7.67 (7.04-8.01) 4.41 (2.38-6.26) 17.5 (16.1-19.7)

P 0.02 0.17 0.001 0.15

Note: P values were from likelihood ratio comparisons of linear regression models and included adjustments for sex, age and assessment centre. Standard

deviations for brain MRI markers are 46.95 cm3 for GMV, 1.06 cm3 for HV, 8.21 cm3 for WMH volume, and 2.45 s�1 for caudate iron (R2*).

Abbreviations: C-Fe, caudate iron (R2*); GMV, grey matter volume; HV, hippocampal volume; IQR, interquartile range; WMH, white matter hyperintensity;

WMV, white matter volume.
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liver-stressed Subgroup II such as higher diabetes markers (glycated

haemoglobin and glucose), liver enzymes (GGT, ALT and AST) and tri-

glycerides, and lower 25(OH)D and IGF-1, were also associated with

lower GMV and TBV, higher WMH volume, and for some, higher cau-

date iron deposition. Lower levels of IGF-1 were also associated with

lower WMV.

Higher diastolic BP was associated with greater WMH volume

(0.13, 0.12 to 0.14), as was higher systolic BP, in accordance with sub-

groups with high BP (Subgroups I and II) having greater volume, and

low BP Subgroup V having lower volume of WMHs.

Higher testosterone level was associated with higher GMV (0.02,

0.01 to 0.03), WMV (0.02, 0.01 to 0.04) and TBV (0.03, 0.02 to 0.04)

and lower WMH volume (�0.03, �0.04 to �0.02), while higher oes-

tradiol level was associated with lower HV (�0.02, �0.03 to �0.01).

Higher SHBG level was associated with higher GMV, lower WMH vol-

ume and lower caudate iron deposition. The associations of these

individual sex hormone-related factors concur with those observed

for ‘high hormones’ Subgroup V, in which these factors cluster;

although low BP may be the main driver of the association with low

WMH volume for this subgroup. Additionally, lower albumin was

associated with lower HV and may be related to the lower HV in

Subgroup V.

Several kidney biomarkers, as well as the inflammation marker

CRP, showed brain MRI associations consistent with the lower GMV,

higher WMH volume and higher caudate iron deposition observed in

Subgroup III, the subgroup with characteristic inflammation and kidney

stress. Most notable were associations of urinary microalbumin with

WMH volume (0.08, 0.05 to 0.10), and urate and cystatin C with cau-

date iron deposition (0.07, 0.05 to 0.08 for each). Kidney marker associ-

ations with higher caudate iron deposition and lower GMV were also

consistent with the associations of Subgroup VI (which has high kidney

excretion but lacks signs of inflammation or urinary microalbumin). Not

all kidney markers were associated with adverse brain outcomes; higher

serum creatinine level was associated with greater HV, GMV and TBV,

while higher urea level was associated with greater WMV.

High-density lipoprotein cholesterol was inversely associated with

caudate iron deposition (�0.07, �0.09 to �0.06) and WMH volume

(�0.04, �0.05 to �0.03), as was ApoA1. High HDLC is a trait of refer-

ence Subgroup IV and may contribute to the relatively low caudate iron

deposition and WMH volume of this group. Conversely, low levels of

these biomarkers in adiposity-related Subgroups II and III may be related

to their higher caudate iron deposition levels and WMH volumes.

Weaker or no associations were observed for other cholesterol-related

markers (direct LDLC, ApoB, total cholesterol, lipoprotein[a]).

3.4 | Biomarker-brain MRI sensitivity analyses

Because brain atrophy, iron deposition and WMH volume are mea-

sures that become more pronounced with age, we evaluated whether

biomarker-brain MRI associations were maintained if the population

was restricted to older participants (aged 60 years and above; Supple-

mentary Figure 2, and Supplementary Table 4). For these analyses, we

had 8281 participants for TBV, GMV and WMV, 8276 for HV, 7979

for WMH volume, and 7419 for caudate iron deposition. The findings

in the older age group were generally similar to the analysis conducted

in the full sample. Furthermore, an additional three associations were

exposed in the 60+ age group; higher BMI and lower SHBG were

associated with higher WMV (βstandardized 0.05, 95% CI 0.02 to 0.07,

and �0.05, �0.07 to �0.03, respectively, per 1-SD increase in bio-

marker), and higher IGF-1 was associated with higher HV (βstandardized
0.03, 95% CI 0.01 to 0.05).

We also assessed differences in biomarker-brain MRI associations

by sex in the main population, using full covariate adjustment and a

Bonferroni-adjusted threshold of P < 0.0013 (Supplementary Figure 3).

In general, adverse associations of higher adiposity, BMR, liver stress,

urate, sodium in urine, and lower 25(OH)D tended to be more pro-

nounced or only observed in males. However, in females, higher BMI

and lower SHBG were linked to greater WMV, and higher cholesterol

was associated with greater HV.

F IGURE 1 Metabolic subgroup associations with brain MRI parameters. Linear regression was used to evaluate subgroup differences in brain
volumes and caudate iron deposition in comparison to Subgroup IV. Analyses are adjusted for basic covariates (age, sex and assessment centre),
socioeconomic-related covariates (education, Townsend deprivation index and employment) and lifestyle factors (smoking, alcohol consumption,
level of physical activity, recent stress and healthy diet). For caudate iron deposition analyses only, an additional covariate for dietary iron was
included in lifestyle factors. All brain MRI data were normalized to total head size, and *white matter hyperintensity (WMH) volume data were
inverse normal transformed to approximate normal distribution. Estimate values with P values <0.05 are indicated in colour, with orange
indicating higher values, and blue indicating lower values, and more intense colour representing greater deviation of the point estimate from zero.
Confidence interval and P-value information can be found in Supplementary Table 2. Abbreviations: ApoB, apolipoprotein B; BMI, body mass
index; BP, blood pressure; C-Fe, caudate iron (R2*); CRP, C-reactive protein; GMV, grey matter volume; HDLC, high density lipoprotein
cholesterol; HV, hippocampal volume; TBV, total brain volume; WMV, white matter volume
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4 | DISCUSSION

In this study we investigated the relationships between physiological

and biochemical biomarkers of metabolism (clustered in SOM-derived

metabolic subgroups, and individually), and dementia-related brain

MRI parameters. Compared to the metabolically favourable Subgroup

IV, representing a subgroup with preserved brain volumes and low

caudate iron deposition levels, the five other metabolic subgroups dis-

played differential associations with brain MRI outcomes. Profiles

with high BMR and adiposity measures, and traits of liver or kidney

stress (Subgroups II and III) had the most pronounced adverse brain

outcomes, echoed to a lesser extent in subgroups with high ApoB and

BP (Subgroup I), and high urinary excretion (Subgroup VI), while Sub-

group V with high hormone levels had lower HV, despite preserved

overall brain volume and lower burden of WMHs. Several important

associations with brain morphology and caudate iron deposition were

identified for biomarkers related to BMR, obesity, BP and HDLC.

Subgroups II and III, representing individuals with high BMI,

adverse metabolic profiles, and increased dementia risk,3 were associ-

ated with lower HV, GMV and TBV, and the greatest burdens of

WMHs and caudate iron deposition. Biomarker analyses highlighted

high BMR and adiposity markers and low HDLC as potentially key

drivers of subgroup-brain MRI associations in these subgroups. Higher

BP, diabetes markers, liver enzymes, triglycerides, and low IGF-1 and

25(OH)D may also be related to Subgroup II brain outcomes, while

inflammation and kidney stress may be related to adverse brain out-

comes in Subgroup III. Some associations were expected based on pre-

vious findings, including associations of obesity12-14 and diabetes15,16

with lower HV, GMV and TBV, and higher WMH volume. Obesity and

insulin resistance have been linked to greater caudate iron deposition,17

while higher BP has been linked to greater severity of WMHs.18 We

saw expected associations of low 25(OH)D with lower GMV and TBV,

and greater WMH volume as previously described.19-24 Evidence from

Mendelian randomization studies suggests that higher levels of geneti-

cally predicted circulating 25(OH)D decrease the risks of Alzheimer's

disease25-28 and overall dementia.24 Our subgrouping approach

revealed that particular traits such as higher liver enzymes, blood sugar

indicators, alkaline phosphatase levels and diastolic BP were factors that

cluster with lower 25(OH)D levels in the population and also share a

common brain MRI association profile, raising the possibility that bene-

ficial effects of higher 25(OH)D level may be linked to counteracting

these cardiometabolic disturbances.

Our findings of associations of liver enzyme GGT with lower

GMV, TBV and higher WMH volume and caudate iron deposition are

consistent with previous observational studies reporting its associa-

tions with adverse affects for cognition and dementia-related out-

comes.29-32 GGT plays an important role in protecting cells against

oxidative damage by mediating the uptake of the antioxidant

glutathione,33 and higher levels may be reflective of greater oxidative

stress.

The group with a high sex hormone profile, Subgroup V, had

lower HV, lower burden of WMHs, and higher caudate iron deposition

than reference Subgroup IV (although it had the second lowest cau-

date iron deposition level overall). Subgroup V features, such as being

lean with low BP, having high SHBG levels, and (for males) having

higher testosterone levels may be linked to the preserved overall brain

volume and lower burden of WMHs in this subgroup. However,

higher oestradiol and lower albumin levels are features that may be

related to the lower HV of this subgroup. Consistent with the current

findings, we have previously observed lower risk of hypertension and

higher risk of all-cause dementia for Subgroup V compared to Sub-

group IV.3 Our findings are consistent with previous studies linking

higher oestradiol levels to lower HV,34,35 and are compatible with

reports linking low albumin levels to greater dementia-related

risks.36,37

The most striking biomarker-brain MRI associations seen in this

study were for BMR. Although strongly linked to adiposity, BMR

showed markedly larger estimates for brain MRI outcomes than did

obesity measures, especially higher caudate iron deposition, lower

GMV and lower HV. The UK Biobank BMR measure is derived from

body impedance, accurately reflecting resting energy expenditure

determined by respiratory breath gas analysis, according to the

recording device manufacturers.38 Patients with dementia have been

reported to have higher resting energy expenditure.39,40 Furthermore,

in healthy White subjects, variance in brain volumes (especially grey

matter) has been shown to explain much of the residual variance in

resting energy expenditure not accounted for by fat-free mass.41

BMR is related to the function of mitochondria (the cellular organelles

where respiration occurs), and many links have been made between

perturbation of mitochondrial function and dementia.42 Although it is

an essential energy-producing process vital for neuronal function,

mitochondrial respiration generates oxidants, and higher BMR could

promote harmful effects of oxidative stress if not adequately counter-

balanced by the body's antioxidant capacity. Further studies are

F IGURE 2 Metabolic biomarker associations with brain MRI parameters. Standardized beta estimates are shown for each neuroimaging
marker, per one-standard deviation higher metabolic biomarker level. Biomarker data were sex-standardized, and log-transformed †with the
exceptions of oestradiol, microalbumin and rheumatoid factor, which were analysed without log transformation due to many values being zero.

All analyses were adjusted for age, sex, assessment centre, socioeconomic (education, Townsend deprivation index, employment) and lifestyle
factors (smoking, alcohol consumption, physical activity, stress, diet). Caudate iron deposition analyses were also adjusted for dietary iron. All
brain MRI data were normalized to total head size, and *white matter hyperintensity (WMH) volume data were inverse normal transformed to
approximate normal distribution. Estimate values with P values below the Bonferroni-adjusted threshold (P < 0.0013) are indicated in colour, with
orange indicating higher values, and blue indicating lower values, and more intense colour representing greater deviation of the point estimate
from zero. Confidence interval and P-value information can be found in Supplementary Table 3. Abbreviations: C-Fe, caudate iron (R2*); GMV,
grey matter volume; HV, hippocampal volume; TBV, total brain volume; WMV, white matter volume
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warranted to explore the biological underpinnings of the striking brain

MRI associations observed with this biomarker, which is infrequently

measured in relation to brain imaging outcomes.

Some strengths of this study include the utilization of a large

population, representing the largest ever MRI neuroimaging

cohort,5 utilization of our SOM-derived metabolic profiling

approach, and the inclusion of caudate iron deposition as an out-

come in our analyses, facilitated by the collection of T2* data by

the UK Biobank. Brain iron levels increase with age,43 and brain

iron accumulation has long been associated with neurodegenera-

tion and dementia.44 In Alzheimer's disease, higher levels of iron

have been observed in deep grey matter, including the caudate

region of the basal ganglia,9,10 where it has been shown to corre-

late with measures of Alzheimer's disease severity.10 Our study

has revealed several metabolic factors that are associated with

this phenotype, most notably, higher BMR and obesity markers.

The inverse relationship observed between HDLC and caudate iron

deposition is also worth further investigation; indeed, food groups

linked to healthy lipid profiles such as nuts, healthy oils and fish,

have recently been shown to moderate the effects of age on brain

iron concentration, and working memory performance.45

Data-driven metabolic profiling using the SOM approach

allows hypothesis-free subgrouping of a population, based on the

way different traits cluster together in that population. Some limi-

tations of the approach used in this study must also be acknowl-

edged. For example, while SOM subgroups are based on

aggregation of metabolic factors in the population, variation will

still be evident within each subgroup, and not every individual will

perfectly fit a particular subgroup profile. While our study has a

prospective design, causality cannot be conclusively inferred by

the observed associations, necessitating further investigations to

validate and determine the causality of these relationships. We

cannot exclude the possibilities of reverse causation (such as

where early neurodegenerative processes are affecting metabo-

lism), or residual confounding by unknown factors. The UK Bio-

bank cohort is subject to healthy volunteer bias and, as such, may

not be reflective of the general population,46 and because our

cohort was limited to participants of White British ancestry, our

findings need to be evaluated in other ethnic groups.

Metabolic profiling provides important insight into population

diversity and multimorbidity, and the SOM-defined metabolic sub-

groups have previously shown differential associations with the prev-

alence and incidence of all-cause dementia.3 In the current study,

which evaluated metabolic subgroup and individual biomarker rela-

tionships with dementia-related brain MRI outcomes among a cohort

that was free of dementia and stroke at baseline, we have observed

differential patterns of neuroimaging outcomes across metabolic sub-

groups and identified metabolic biomarkers that may be driving these

brain associations. We have demonstrated notable differences in brain

neuroimaging characteristics by metabolic profile, with the associa-

tions of BMR, BP and other individual biomarkers providing insights

into actionable mechanisms that may drive these subgroup

associations.
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