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Automatic Time-Resolved Cardiovascular
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Background: Segmenting the whole heart over the cardiac cycle in 4D flow MRI is a challenging and time-consuming pro-
cess, as there is considerable motion and limited contrast between blood and tissue.
Purpose: To develop and evaluate a deep learning-based segmentation method to automatically segment the cardiac
chambers and great thoracic vessels from 4D flow MRI.
Study Type: Retrospective.
Subjects: A total of 205 subjects, including 40 healthy volunteers and 165 patients with a variety of cardiac disorders were
included. Data were randomly divided into training (n = 144), validation (n = 20), and testing (n = 41) sets.
Field Strength/Sequence: A 3 T/time-resolved velocity encoded 3D gradient echo sequence (4D flow MRI).
Assessment: A 3D neural network based on the U-net architecture was trained to segment the four cardiac chambers, aorta,
and pulmonary artery. The segmentations generated were compared to manually corrected atlas-based segmentations. End-
diastolic (ED) and end-systolic (ES) volumes of the four cardiac chambers were calculated for both segmentations.
Statistical tests: Dice score, Hausdorff distance, average surface distance, sensitivity, precision, and miss rate were used to
measure segmentation accuracy. Bland–Altman analysis was used to evaluate agreement between volumetric parameters.
Results: The following evaluation metrics were computed: mean Dice score (0.908 � 0.023) (mean � SD), Hausdorff distance
(1.253 � 0.293 mm), average surface distance (0.466 � 0.136 mm), sensitivity (0.907 � 0.032), precision (0.913 � 0.028), and
miss rate (0.093 � 0.032). Bland–Altman analyses showed good agreement between volumetric parameters for all chambers.
Limits of agreement as percentage of mean chamber volume (LoA%), left ventricular: 9.3%, 13.5%, left atrial: 12.4%, 16.9%,
right ventricular: 9.9%, 15.6%, and right atrial: 18.7%, 14.4%; for ED and ES, respectively.
Data conclusion: The addition of this technique to the 4D flow MRI assessment pipeline could expedite and improve the
utility of this type of acquisition in the clinical setting.
Evidence Level: 4
Technical Efficacy: Stage 1
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Time-resolved three-dimensional flow MRI (4D Flow
MRI) is an acquisition technique that allows for full

three-dimensional spatial coverage of the cardiovascular sys-
tem over time, while also including three-directional velocity
information throughout the cardiac cycle.1–3 The resulting
images can be used for retrospective analysis of blood
flow dynamics at any location in the acquired volume.

Quantifiable hemodynamic parameters commonly calculated
using these images are flow volumes, kinetic energy, wall
shear stress, vorticity, relative pressure, stasis, and turbulence,
among others.3,4 Additionally, visualization techniques such
as streamlines, pathlines, or volume renderings can be utilized
to show these parameters over the cardiac cycle,5,6 or to study
flow connectivity.7,8
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Segmentation is one of the most important, but also
most challenging preprocessing step required to accurately
separate the regions of interest from the rest of the image and
facilitate computation of parameters, in research studies and
clinical application of 4D Flow MRI.4 Therefore, segmenta-
tion is often limited to the aorta during systole, utilizing the
velocities during this stage to create a phase-contrast angio-
graphic image.9,10 Segmenting the whole heart over the car-
diac cycle is a challenging and time-consuming process, as
there is considerable motion and limited contrast between
blood and tissue. Automatic methods aimed at segmenting
4D flow MRI images have achieved good results using
atlas-based techniques to locate the cardiac chambers and
great thoracic vessels in all timeframes.11,12 However, these
methods make considerable use of computationally expensive
registration techniques during execution, which results in rel-
atively slow runtimes. Additionally, atlas-based segmentation
typically relies on a limited number of atlases, which can
restrict the amount of morphological variation that it can be
handled.13

More recently, segmentation methods based on deep
learning have been applied successfully to a variety of medical
imaging tasks.14,15 Training a deep learning convolutional
neural network (CNN) to segment the regions of interest in
an image requires a large amount of data and computational
resources, but runtimes are generally short once trained. In
the case of 4D flow MRI, a previous deep learning method
has focused mainly on three-dimensional segmentation of the
aorta,16 while cardiac segmentation approaches have mostly
targeted different MR sequences or other imaging techniques
such as CT and ultrasound.17,18

Thus, the aim of this study was to develop and evaluate
a deep learning-based segmentation method to automatically
segment the cardiac chambers and great thoracic vessels from
4D flow MRI over the cardiac cycle.

Materials and Methods
The study was performed in line with the declaration of Helsinki
and was approved by the regional ethics board. The exams included
retrospectively in this study were performed specifically for research
purposes between 2011 and 2015 and included retrospectively in
this study. All subjects gave written informed consent for MRI
acquisition and data processing.

MRI Examinations
A total of 205 4D flow MRI datasets were acquired on a clinical 3 T
Philips Ingenia scanner (Philips Healthcare, Best, The Netherlands).
4D Flow MRI scans were acquired for each subject directly after a
gadolinium contrast agent (0.2 mmol/kg Gadovist, Bayer Schering
Pharma AG) was injected into the subjects prior to the acquisition
of a late-enhancement study. Gadolinium administration to the
healthy volunteers was approved by the ethical review board.

Free-breathing, respiratory-motion-compensated, time-
resolved, velocity-encoded 3D gradient echo MRI examinations were

acquired using the following scan parameters: Sagittal-oblique slab
covering the whole heart and thoracic aorta, velocity encoding
(VENC) 120-150 cm/sec, flip angle 10�, echo time 2.5–2.6 msec,
repetition time 4.2–4.4 msec, SENSE speed up factor 3 (anterior–
posterior direction), k-space segmentation factor 3, acquired tempo-
ral resolution of 33.6–52.8 msec reconstructed to 40 timeframes,
acquired and reconstructed spatial resolution �3 mm3, and elliptical
k-space acquisition. Weighted navigator gating with 4 mm in the
inner 25% of k-space and 7 mm in the outer parts of k-space was
used. Typical scan time was 10–15 minutes, with respiratory naviga-
tor efficiency of 60%–80%. The 4D flow MRI images were
corrected for concomitant gradient fields on the MRI scanner. Phase
wraps were corrected offline using a temporal phase unwrapping
method,19 and background phase errors were corrected using a
weighted second-order polynomial fit to the static tissue.20

Study Population
A set of 212 4D flow MRI acquisitions were used during this study.
The group included 40 healthy volunteers with no history of prior
or current cardiovascular disease or cardiac medication, and
172 patients with a variety of medical disorders including chronic
ischemic heart disease, idiopathic dilated cardiomyopathy, diastolic
heart failure, and mild-to-moderate mitral valve regurgitation.
Detailed subject demographics can be seen in Table 1.

Only the magnitude image included in each 4D flow MRI
dataset was used as input to the network.

Ground Truth Generation
Segmentations corresponding to the four cardiac chambers: left ven-
tricle (LV), left atrium (LA), right ventricle (RV), right atrium (RA),
thoracic aorta (including ascending, proximal, and distal descending
aorta), and pulmonary artery (including the pulmonary trunk and
main left and right branches) were generated automatically using a
previously developed method.12 In brief, this method uses multiatlas
segmentation at two time-points of the cardiac cycle (end-diastole
and end-systole) and registration between time-points to generate
time-resolved segmentations of 4D flow MRI data. All the automatic
segmentations were manually checked for defects and corrected
when necessary at end-diastole and end-systole using the open source
tool ITK-SNAP.21 Manual corrections were performed by one
observer (M.B.) with 10 years of experience in cardiac MR imaging
and postprocessing. After correction, the remaining timeframes were
regenerated using registration and the results were visually inspected
to avoid obvious failures.

Data Preparation
Seven acquisitions were excluded in which the atlas-based segmenta-
tion method failed to generate a viable base segmentation, that is,
where the correction would have required an almost completely
manual segmentation. As a result, the final data set used was com-
posed of 205 4D flow MR images (40 healthy volunteers and
165 patients).

For the purpose of training the neural network, the group was
randomly divided into 70% (144/205, including 35 healthy volun-
teers) for training, 10% (20/205, including 2 healthy volunteers) for
validation, and 20% (41/205, including 3 healthy volunteers) for
testing.
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Each MRI acquisition was reconstructed to cover the entire
cardiac cycle in 40 timeframes, a 3D volume being generated at each
timeframe. Accordingly, the CNN was trained using each timeframe
as an independent segmentation. This resulted in 5760 3D volumes
for training, 800 3D volumes for validation, and 1640 3D volumes
for testing.

Network Architecture and Training Details
The model used is based on the 3D U-net architecture,22 which is
typically used in medical image segmentation and consists of an
encoder–decoder CNN with skip-connections at every level. The
implemented architecture includes four resolution steps in each
direction, each step consisting of two convolutional blocks composed
of a 3 � 3 � 3 kernel convolution with stride of one, followed by
batch normalization, and a Parametric Rectified Linear Unit
(PReLu) activation function.23 Max pooling with kernel size
2 � 2 � 2 and stride of two is used to decrease the resolution at
every step during the encoding half of the network, while transposed
convolution with kernel size 2 � 2 � 2 and stride of two is used to
increase the resolution in the decoding phase. The final layer of the
network uses convolution with kernel size 1 � 1 � 1 to reduce the
number of channels to 7, corresponding to the six regions of interest
(LV, RV, LA, RA, Ao, and PA) included in the segmentation plus
the background. The architecture of the network is shown in Sup-
plemental Fig. S3.

The model was implemented using PyTorch24 and was
trained for 19 epochs with the following parameters: batch size = 16,
AdamW optimizer25 using Dice Score as loss without including the
background label in the calculation,26 initial learning rate was 0.01
scheduled to reduce by a factor of 0.1 with a patience of 5 epochs.
Training took approximately 7 hours on an NVIDIA DGX-2 server
using data parallelism over four 32 GB Tesla V100 GPUs.

The following data augmentation transforms were used during
training in order to increase the generalization capabilities of the
model: Gaussian smoothing with sigma range [0.5–1.5], addition of
Gaussian noise with sigma 0.1, contrast adjustment with gamma
range [0.7–1.5], image flipping, addition of MR bias field, addition

of MR motion artifacts, addition of ghosting artifacts with strength
range [0.5–1.0]. All augmentations were generated on the fly during
training with a probability of 0.15 for each transform.

To ease the generation of batches on-the-fly during the train-
ing process, the input images were resized to a size of
112 � 112 � 48. This volume contained all regions of interest, even
in the largest cases.

The MONAI framework and the TorchIO library were used
for data preprocessing and augmentation.27,28

Evaluation

VOLUMETRIC ANALYSIS. For each cardiac chamber (LV, RV,
LA, RA), the following clinical parameters were calculated for both
deep-learning and ground truth segmentations:

• End-diastolic volume (EDV): Volume of a cardiac chamber
at end-diastole.

• End-systolic volume (ESV): Volume of a cardiac chamber
at end-systole.

KINETIC ENERGY ASSESSMENT. For each region (LV, RV,
LA, RA, Ao, PA) the total kinetic energy over the cardiac cycle (tot
KE) was calculated for both deep-learning and ground truth
segmentations.

STATISTICAL ANALYSIS. The segmentations generated by the
CNN on the test dataset were compared to their corresponding gro-
und truth segmentations at all timeframes using the following
metrics29:

• Dice score (DS)26: Measures the spatial overlap between
regions (X and Y), calculated as:

DS X ,Yð Þ¼ 2* jX \Y j
Xj jþ j Y j

TABLE 1. Population Demographics

Group size Age (mean � SD) Gender (f/m)

Healthy controls 40 64.9 � 4.5 11

Chronic IHD 80 67.3 � 7.0 29

Chronic IHD + MR 22 68.4 � 6.2 6

Chronic IHD + AS 8 68.7 � 7.3 2

DCMP 30 57.7 � 11.0 8

ICMP 20 67.7 � 7.3 3

Diastolic disfunction 12 68.8 � 10.5 6

Total 212 65.7 � 9.2 65

IHD = ischemic heart diseases; MR = mitral regurgitation; AS = aortic stenosis; DCMP = nonischemic dilated cardiomyopathy;
ICMP = ischemic cardiomyopathy.
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• Hausdorff distance (HD)30: Maximum distance from a
point in one set to the closest point in the other set.
Calculated as:

HD X ,Yð Þ¼max h X ,Yð Þ,h Y ,Xð Þð Þ

where:

h A,Bð Þ¼max
a � A

min
b � B

d a,bð Þð Þ
� �

• Average surface distance (ASD)31: Computes closest dis-
tances from all surface points to the other surface and aver-
ages them. Calculated as:

ASD X ,Yð Þ¼ 1
Xj jþ Yj j

XX
x¼1

min
y � Y

x� yk kð Þ
 

þ
XY
y¼1

min
x � X

x� yk kð ÞÞ

• Sensitivity (true positive rate [TPR]): Proportion of
all actual positives that are correctly predicted positive.
Calculated using true positives (TP) and false nega-
tives (FN) as:

TPR¼ TP
TPþFN

• Precision (positive predictive value [PPV]): Proportion of
all predicted positives that are actually positive. Calculated
using true positives (TP) and false positives (FP) as:

PPV¼ TP
TPþFP

• Miss rate (false negative rate [FNR]): Proportion of all
actual positives that are wrongly predicted negative. Calcu-
lated as:

FIGURE 1: Results obtained in the best, median, and worst cases according to Dice scores visualized as isosurface renderings. Dice
scores of 0.96, 0.91, and 0.86, respectively. Each case includes a comparison between the ground truth segmentations and those
generated by the CNN at end-diastole and end-systole. Yellow: Left ventricle, orange: Left atrium, dark blue: Right ventricle, light
blue: Right atrium, red: Aorta, green: Pulmonary artery.
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FNR¼ FN
FNþTP

In addition to the segmentation agreement metrics outlined
above, Bland–Altman analysis was used to evaluate agreement
between the volumetric parameters determined from the deep learn-
ing and ground truth segmentations. The 95% confidence intervals
for the mean differences and limits of agreement were calculated.

Results
The CNN was successfully created and trained using the
training and validation sets. The resulting model was then
applied to the test set to generate four-dimensional segmenta-
tions of the cardiac chambers and great thoracic vessels. The
trained network took approximately 6 seconds per subject,
resulting in a complete segmentation for a 4D flow MRI
dataset, including all timeframes. The best, median, and
worst results (DS of 0.96, 0.91, 0.86, respectively) calculated
by averaging the DS of each 4D flow MRI over time are

shown in Figs. 1–3. Figure 1 displays the results as isosurface
renderings of all the regions of interest at end-diastole and
end-systole, while Fig. 2 shows similar results superimposed
over a four-chamber image of the heart generated by slicing
the 4D flow MRI volume in the four-chamber direction.
Figure 3 depicts flow streamlines at mid-systole in the seg-
mented regions for the same cases. A limited number of time-
frames are included in this section due to space constraints,
time-resolved versions of these images in video format have
been included as Supplementary Material (S1).

Table 2 and Fig. 4 summarize the results for each of the
chosen evaluation metrics. The subplots in Fig. 4 include
values representing the results for each region of interest inde-
pendently, together with the mean of all the regions. Note
that in this figure, each result corresponds to a single time-
frame out of the 40 that compose each 4D flow MRI; conse-
quently, failure to segment one subject could potentially
result in 40 low values in each plot. In general, all segments
resulted in high scores, where the aorta showed the highest

FIGURE 2: Results obtained in the best, median, and worst cases according to Dice scores. Dice scores of 0.96, 0.91, and 0.86,
respectively. The segmentations have been superimposed over a four-chamber image of the heart. Each case includes a comparison
between the ground truth segmentations and those generated by the CNN at end-diastole and end-systole. Yellow: Left ventricle,
orange: Left atrium, dark blue: Right ventricle, light blue: Right atrium, red: Aorta.
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scores and the right atrium showed to be most challenging. Mean
DS for all regions and timeframes was 0.908 � 0.023, with simi-
lar values for sensitivity and precision: 0.907 � 0.032, and
0.913 � 0.028, respectively. Distance error measures (Hausdorff
distance and average surface distance) resulted in lower values for
all regions: 1.253 � 0.293 mm and 0.466 � 0.136 mm, respec-
tively. Average miss rate for all regions was 0.093 � 0.032.

The DS obtained for each timeframe of the 4D flow
MRI images can be seen in Fig. 5. The topmost plot com-
bines the DS for all regions, while the remaining plots show
each label’s result independently. The segmentations resulted

FIGURE 3: Flow streamlines generated at a mid-systolic
timeframe using the ground truth and CNN results for the best,
median, and worst Dice scores. Dice scores of 0.96, 0.91, and
0.86, respectively. Pulmonary flows are depicted using shades
of blue, and systemic flows using shades of red. Streamlines
were generated independently for each region included in the
segmentation.
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FIGURE 4: Metric results on the test dataset for each region included in the segmentations. LV = left ventricle; LA = left atrium;
RV = right ventricle; RA = right atrium; Ao = aorta; PA = pulmonary artery.

FIGURE 5: Dice scores calculated per timeframe on the test set. The topmost plot combines all regions. LV = left ventricle; LA = left
atrium; RV = right ventricle; RA = right atrium; Ao = aorta; PA = pulmonary artery.
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FIGURE 6: Bland–Altman plots of end-diastolic volume (EDV) and end-systolic volume (ESV) for the cardiac chambers. The dashed
blue line shows the mean difference, while the dashed red lines denote the 95% limits of agreement (� 1.96 * standard deviation).
GT = ground truth; LV = left ventricle, LA = left atrium; RV = right ventricle; RA = right atrium;EDV = end-diastolic volume;
ESV = end-systolic volume.
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in consistently high DS between 0.8 and 1.0 for most regions
(LV, LA, Ao, and PA) at all timeframes, with slightly lower
scores in a few timeframes corresponding to the right cardiac
chambers. The RA seemed to be the most challenging region
possibly due to inconsistencies in the acquisition’s field of
view, which affected its shape and size in 41% of cases in our
dataset.

Figure 6 shows Bland–Altman plots corresponding to
the cardiac volumetric parameters (EDV and ESV) for each
cardiac chamber. A detailed summary of the results regarding
the mean differences and limits of agreement can be seen in
Table 3. Bland–Altman analysis using ED and ES volumes
resulted in good agreements between the segmentations with
average differences between �2.30 and 1.27 mL, while the
limits of agreement expressed as percentage of the mean
chamber volume ranged from 9.34% in the best case to
18.76% in the worst.

Figure 7 shows Bland–Altman plots corresponding to
the kinetic energy (tot KE) for each region. The Bland–
Altman analysis showed good agreements between the seg-
mentation for all regions, with the mean of the differences
ranging from �3.40 to 1.64 mJ, with the limits of agree-
ments expressed as percentage of the mean kinetic energy for

each region ranging from 7.02% to 13.78%. A detailed sum-
mary of the Bland–Altman analysis results is presented in
Table 3.

Discussion
In this study, we have developed and evaluated a deep
learning-based method to segment the cardiac chambers,
aorta, and pulmonary artery from 4D flow MRI data. Once
generated, the segmentations can be used to expedite and
automate flow assessment using the velocity data included in
the acquisitions.

Evaluation of the trained network using segmentation
metrics resulted in good scores overall. The best values were
obtained in the aorta, probably due to its generally high con-
trast, and simple and consistent shape over the cardiac cycle.
The left chambers of the heart and pulmonary artery also
resulted in DS of over 0.9 when averaged over all timeframes,
and favorable values on the remaining metrics. The model
was able to adapt to the different shapes and sizes of the LV
and LA, even though these change throughout the cardiac
cycle. The right chambers of the heart had high but relatively
lower DS, which could be explained by the more irregular

TABLE 3. Bland–Altman Analysis Results on the Test Dataset

Region LoA
LoA (% of mean
volume/tot KE) LoA 95% confidence interval

Mean diff. 95%
confidence interval

LV EDV 13.82 mL 9.34 (�18.65, 17.12) mL (�3.02, 1.48) mL

LV ESV 9.46 mL 13.52 (�10.23, 14.25) mL (0.47, 3.55) mL

LA EDV 7.04 mL 12.40 (�10.88, 7.33) mL (�2.92, �0.62) mL

LA ESV 16.87 mL 16.91 (�22.67, 20.97) mL (�3.60, 1.90) mL

RV EDV 14.66 mL 9.98 (�20.35, 17.57) mL (�3.78, 1.00) mL

RV ESV 11.44 mL 15.69 (�13.01, 16.56) mL (�0.09, 3.64) mL

RA EDV 9.27 mL 18.76 (�13.73, 10.23) mL (�3.26, �0.24) mL

RA ESV 13.85 mL 14.41 (�19.22, 16.60) mL (�3.57, 0.95) mL

LV tot KE 5.68 mJ 7.08 (�8.85, 5.83) mJ (�2.43, �0.58) mJ

LA tot KE 3.88 mJ 11.07 (�5.58, 4.54) mJ (�1.09, 0.16) mJ

RV tot KE 8.56 mJ 13.78 (�13.82, 8.30) mJ (�4.15, �1.36) mJ

RA tot KE 5.34 mJ 14.54 (�8.04, 5.76) mJ (�2.01, �0.27) mJ

Ao tot KE 17.28 mJ 7.02 (�28.93, 15.74) mJ (�9.41, �3.78) mJ

PA tot KE 7.98 mJ 10.25 (�10.47, 10.16) mJ (�1.45, 1.15) mJ

Limits of agreement (LoA) centered on the mean difference (in milliliters and millijoule) and expressed as a percentage of the mean vol-
ume or total kinetic energy. 95% confidence intervals are given for the limits of agreement and the mean differences. LV = left ventricle;
LA = left atrium; RV = right ventricle; RA = right atrium; Ao = aorta; PA = pulmonary artery; EDV, end-diastolic volume; ESV,
end-systolic volume; tot KE, total kinetic energy.
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shapes of these regions and their variability over time when
compared to the more rounded left chambers. The RA in par-
ticular can present an extra challenge in these images since
part of the chamber was left outside the image in a number
of cases (83/205) which resulted in a wider variety of possible
shapes and sizes for this label.

Very little variation was observed between the Dice
scores obtained for the different timeframes corresponding to
regions with the highest scores overall (LV, LA, aorta, and

pulmonary artery), while some differences were visible in the
RV and RA results at certain points during the cardiac cycle.
In addition to the already discussed challenging shapes of
these regions, we speculate that these small differences could
be a consequence of the way the ground truth data was gener-
ated, by only manually correcting the atlas-based segmenta-
tion at two timepoints and using registration to generate the
remaining timeframes. Nevertheless, these results demonstrate
the capability of the CNN to adapt to the different shapes

FIGURE 7: Bland–Altman plots of the total kinetic energy over the cardiac cycle, for all regions. The dashed blue line shows the
mean difference, while the dashed red lines denote the 95% limits of agreement (� 1.96 * standard deviation). GT = ground truth;
LV = left ventricle; LA = left atrium; RV = right ventricle; RA = right atrium; Ao = aorta; PA = pulmonary artery; tot KE: total kinetic
energy.
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and sizes of the cardiac chambers over time. In this setting,
training the network with variety related to time in the data
could be seen as a type of augmentation, which is a technique
commonly used to improve neural network performance.

A further evaluation of the results of the network was
performed by comparing the total kinetic energy for each
region. The results of the Bland–Altman analysis showed gen-
erally a good agreement between ground truth and CNN seg-
mentations for all regions. For the aorta, there were a few
cases with a larger difference, which seem to be related to
some slight undersegmentation in regions with high velocities
due to an aortic valve stenosis. Only few cases with aortic ste-
nosis were present in the training data, and we expect the
results to improve by adding more.

Segmentation of whole heart 4D flow MRI over the
cardiac cycle is challenging and few attempts have been
published so far. A previously published CNN-based seg-
mentation method aimed at labeling the systolic anatomy
of the aorta in 4D flow MRI resulted in similar metrics as
the ones obtained by the proposed technique for the same
region, with average DS of 0.951, and average Hausdorff
Distance of 2.8 mm.16 Additionally, a recent study used a
fine-tuned CNN originally trained on cine balanced steady-
state free precession (bSSFP) cardiac MR images to segment
the ventricles in 4D Flow MRI resulting in average DS of
0.92 for the LV, and 0.86 for the RV.18 These results are
also comparable to the ones generated by the proposed
method, with the added limitation of being restricted by
the anatomy included in the bSSFP MR images, which typ-
ically only cover the cardiac ventricles with sufficient resolu-
tion to generate a complete segmentation.

A total of 8200 three-dimensional segmentations were
used during this study (205 acquisitions, 40 timeframes in
each), with all segmentations including the four cardiac
chambers, aorta, and pulmonary artery. It would be
unfeasible to generate all the ground truth necessary to suc-
cessfully train the model in a completely manual way; thus,
an already developed atlas-based automatic method was used
to generate the segmentations and facilitate their correction.
This could perhaps be seen as a form of transfer learning from
one method to another.32 One of the main disadvantages of
atlas-based segmentation is that the results depend on the
ability of the registration technique to generate a suitable
transformation between the atlases and the image to be seg-
mented. The difficulty of this challenge increases as the image
to segment differs from the atlases; consequently, the tech-
nique might fail to generate satisfactory results on images that
are markedly different from the atlases in their morphology,
that is, in cases of extremely enlarged ventricles, altered car-
diac shapes, highly tortuous vessels, and in congenital heart
disease. In the case of the deep learning-based segmentation,
the results should not be as strongly affected by morphologi-
cal differences since the network has been trained on a larger,

more diverse dataset. In comparison, the atlas-based method
included only eight 4D flow MR images as atlases (six healthy
volunteers and two patients with normal left ventricular func-
tion at rest). Additionally, augmentation was used during
training of the current model, which helps reduce overfitting
and further increases the variation in the training dataset.

As an additional method of evaluation, we tried to seg-
ment some of the images that could not be included in this
study since the atlas-based method failed to generate a result
that could be manually corrected in a relatively short amount
of time. The proposed method managed to generate accept-
able segmentations in these cases, a comparison of three of
the results can be seen in Supplemental Figs. S1 and S2.

Specifically in the case of the aorta and pulmonary
artery, the focus of the segmentation was to include the main
structures of the vessels. The supra aortic branches, and the
distal branches of the pulmonary artery were not expected to
be fully segmented since they were not included in the gro-
und truth segmentations in all cases.

The proposed method reduces the time required to gen-
erate a full four-dimensional segmentation when compared to
the previously published atlas-based technique from
25 minutes to approximately 6 seconds per acquisition while
running on the same hardware.12 This improvement could
make real-time flow assessment feasible in the clinic.

Limitations
The model was trained using datasets where an extracellular
Gadolinium contrast agent was used. The proposed technique
is expected to handle a certain level of variation in blood-
tissue contrast due to the original differences already present
in the training set, in addition to the augmentation trans-
forms related to contrast adjustment and artifact simulation.
However, if the goal is to perform similar segmentations on
noncontrasted data, the model should be retrained using
these data. Alternatively, previous studies have shown promis-
ing results using generative adversarial networks in order to
emulate the use of contrast agents in medical images.33,34

In a similar manner, all the data included in this study
were acquired using one MR scanner, with a similar field of
view, and no subjects with exceedingly atypical cardiovascular
anatomies were included. The model might require some
retraining, probably in the form of transfer learning, to per-
form at the same level using data from a wide range of MRI
scanners and patient diseases.

We attempted to include as much variation as possible
in our training distribution by manually correcting most of
the available images, even those with the most diverging anat-
omies within our set. However, there was a few where the
correction would have required almost a fully manual seg-
mentation, and these cases were not included. The cause for
atlas-segmentation failure could have been related to anatomi-
cal reasons and consequently could have affected the
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variability in our training set. However, it is important to
note that there are quite a few other reasons related to image
quality that can influence the atlas-based method such as
blood-tissue contrast, noise, and the presence of artifacts. As
mentioned previously, manual correction of each 3D image
used would have been an extremely time-consuming task,
even when the segmentations did not have to be created from
scratch. In this study, manual corrections were performed
only on end diastolic and end systolic frames of the atlas-
based segmentations, which might have affected the ground
truths and consequently the CNN results. Nevertheless,
visual assessment of the final time-resolved ground truth seg-
mentations showed no major issues due to this.

The proposed CNN takes 3D images including the
complete field-of-view contained in the flow MRI acquisi-
tions as inputs; therefore, the model requires a relatively large
amount of GPU memory during training (approximately
70 GB with batches of size 16). Adding the velocity data dur-
ing training could potentially improve the performance, given
that the current model used only the magnitude image
included in the 4D flow MR acquisitions. However, the
increase in memory requirements for the network would be
significant. To reduce these requirements, in addition to
reducing the batch size, the model could be trained on 3D
patches of smaller size; however, this will make the problem
more challenging for the network and could affect the perfor-
mance negatively. The model was designed to be completely
automatic, as manual correction of the target images is quite
time-consuming. However, if desired, the method could be
adapted to receive interactive annotations that could also help
refine the network’s training to improve future results.

Conclusion
The proposed method can generate a full time-resolved seg-
mentation of a 4D flow MRI image within seconds. The seg-
mentations include all the regions of interest within the
acquisition and might be used to perform a comprehensive
assessment of the blood-flow hemodynamics. Addition of this
technique to the 4D flow MRI assessment pipeline may expe-
dite and significantly improve the utility of this type of acqui-
sition in the clinical setting.

Acknowledgments
The authors would like to express their gratitude to Omkar
Bhutra for his valuable support to this study. This work was
funded by Sweden’s Innovation Agency Vinnova, grant num-
ber 2017-02447; the Swedish Research Council, grant num-
ber 2018-04454; the Swedish Medical Research Council,
grant number 2018-02779; the Swedish Heart and Lung
Foundation, grants number 20180657 and 20170440; and
ALF Grants Region Östergötland, number LIO-797721.

References
1. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow

MRI. J Magn Reson Imaging 2012;36:1015-1036.

2. Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging
with MRI. Cardiovasc Diagn Ther 2014;4:173-192.

3. Soulat G, McCarthy P, Markl M. 4D flow with MRI. Annu Rev Biomed
Eng 2020;22:103-126.

4. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular mag-
netic resonance consensus statement. J Cardiovasc Magn Reson 2015;
17:72.

5. Köhler B, Born S, van Pelt RFP, Hennemuth A, Preim U, Preim B. A sur-
vey of cardiac 4D PC-MRI data processing. Comput Graph Forum
2017;36:5-35.

6. Julio G, J BA, Michael M. The role of imaging of flow patterns by 4D
flow MRI in aortic stenosis. JACC Cardiovasc Imaging 2019;12:
252-266.

7. Eriksson J, Carlhäll C, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T.
Semi-automatic quantification of 4D left ventricular blood flow.
J Cardiovasc Magn Reson 2010;12:9.

8. Fredriksson AG, Zajac J, Eriksson J, et al. 4-D blood flow in the human
right ventricle. Am J Physiol Heart Circ Physiol 2011;301:H2344-H2350.

9. Bock J, Frydrychowicz A, Stalder AF, et al. 4D phase contrast MRI at
3 T: Effect of standard and blood-pool contrast agents on SNR, PC-
MRA, and blood flow visualization. Magn Res Med 2010;63:330-338.

10. Juffermans JF, Westenberg JJM, van den Boogaard PJ, et al. Repro-
ducibility of aorta segmentation on 4D flow MRI in healthy volunteers.
J Magn Reson Imaging 2021;53:1268-1279.

11. Bustamante M, Petersson S, Eriksson J, et al. Atlas-based analysis of
4D flow CMR: Automated vessel segmentation and flow quantification.
J Cardiovasc Magn Reson 2015;17:87.

12. Bustamante M, Gupta V, Forsberg D, Carlhäll CJ, Engvall J, Ebbers T.
Automated multi-atlas segmentation of cardiac 4D flow MRI. Med
Image Anal 2018;49:128-140.

13. Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biomedical
images: A survey. Med Image Anal 2015;24:205-219.

14. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in med-
ical image analysis. Med Image Anal 2017;42:60-88.

15. Lundervold AS, Lundervold A. An overview of deep learning in medical
imaging focusing on MRI. Z Med Phys 2019;29:102-127.

16. Berhane H, Scott M, Elbaz M, et al. Fully automated 3D aortic segmen-
tation of 4D flow MRI for hemodynamic analysis using deep learning.
Magn Reson Med 2020;84:2204-2218.

17. Chen C, Qin C, Qiu H, et al. Deep learning for cardiac image segmen-
tation: A review. Front Cardiovasc Med 2020;7:25.

18. Corrado PA, Wentland AL, Starekova J, Dhyani A, Goss KN, Wieben O.
Fully automated intracardiac 4D flow MRI post-processing using deep
learning for biventricular segmentation. Eur Radiol 2022. Advance
online pubblication. https://doi.org/10.1007/s00330-022-08616-7.

19. Xiang QS. Temporal phase unwrapping for CINE velocity imaging.
J Magn Reson Imaging 1995;5:529-534.

20. Ebbers T, Haraldsson H, Dyverfeldt P. Higher order weighted least-
squares phase offset correction for improved accuracy in phase-
contrast MRI. In: Proceedings of the 16th annual meeting of ISMRM.
Toronto, 2008. p 1367.

21. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active con-
tour segmentation of anatomical structures: Significantly improved effi-
ciency and reliability. Neuroimage 2006;31:1116-1128.

22. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D
U-net: Learning dense volumetric segmentation from sparse annota-
tion. Proceeding of the 19th medical image computing and computer-
assisted intervention conference (MICCAI 2016), Vol 9901. Cham:
Springer; 2016. p 424-432.

202 Volume 57, No. 1

Journal of Magnetic Resonance Imaging

https://doi.org/10.1007/s00330-022-08616-7


23. He K, Xiangyu Z, Shaoqing R, Jian S. Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification. IEEE Int
Conf Comput Vis (ICCV) 2015;2015:1026-1034.

24. Paszke A, Gross S, Chintala S, et al. Automatic differentiation in
PyTorch. NIPS-W; 2017. https://openreview.net/forum?id=BJJsrmfCZ

25. Loshchilov I, Hutter F. Decoupled weight decay regularization. Interna-
tional conference on learning representations (ICLR). New Orleans;
2019. https://doi.org/10.48550/arXiv.1711.05101

26. Dice LR. Measures of the amount of ecologic association between spe-
cies. Ecology 1945;26:297-302.

27. Ma N, Li W, Brown R, et al.: Project-MONAI/MONAI: 0.5.0; 2021.
https://doi.org/10.5281/zenodo.4679866

28. Pérez-García F, Sparks R, Ourselin S. TorchIO: A python library for effi-
cient loading, preprocessing, augmentation and patch-based sampling
of medical images in deep learning. Comput Methods Prog Biomed
2021;208:106236.

29. Taha AA, Hanbury A. Metrics for evaluating 3D medical image seg-
mentation: Analysis, selection, and tool. BMC Med Imaging 2015;15:
1-28.

30. Gerig G, Jomier M, Chakos M. Valmet: A new validation tool for
assessing and improving 3D object segmentation. In: Niessen WJ,
Viergever MA, editors. Medical image computing and computer-
assisted intervention -- MICCAI, Vol 2001. Berlin, Heidelberg: Springer;
2001. p 516-523.

31. Khotanlou H, Colliot O, Atif J, Bloch I. 3D brain tumor segmen-
tation in MRI using fuzzy classification, symmetry analysis and
spatially constrained deformable models. Fuzzy Set Syst 2009;160:
1457-1473.

32. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep
transfer learning. Proceeding of the 21st medical image computing
and computer-assisted intervention conference (MICCAI 2018), Vol
11141. Cham: Springer; 2018. p 270-279.

33. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative
adversarial nets. Adv Neural Inf Process Syst (NIPS) 2014;27:2672-
2680.

34. Bustamante M, Viola F, Carlhäll CJ, Ebbers T. Using deep learning to
emulate the use of an external contrast agent in cardiovascular 4D flow
MRI. J Magn Reson Imaging 2021;54:777-786.

January 2023 203

Bustamante et al.: Automatic 4D Flow MRI Deep Learning-Based Segmentations

https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.5281/zenodo.4679866

	 Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning
	Materials and Methods
	MRI Examinations
	Study Population
	Ground Truth Generation
	Data Preparation
	Network Architecture and Training Details
	Evaluation
	VOLUMETRIC ANALYSIS
	KINETIC ENERGY ASSESSMENT
	STATISTICAL ANALYSIS


	Results
	Discussion
	Limitations
	Conclusion

	Acknowledgments
	References


