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Abstract
Climate change and urbanisation are among the most pervasive and rapidly growing 
threats to biodiversity worldwide. However, their impacts are usually considered in 
isolation, and interactions are rarely examined. Predicting species' responses to the 
combined effects of climate change and urbanisation, therefore, represents a pressing 
challenge in global change biology. Birds are important model taxa for exploring the 
impacts of both climate change and urbanisation, and their behaviour and physiology 
have been well studied in urban and non- urban systems. This understanding should 
allow interactive effects of rising temperatures and urbanisation to be inferred, yet 
considerations of these interactions are almost entirely lacking from empirical re-
search. Here, we synthesise our current understanding of the potential mechanisms 
that could affect how species respond to the combined effects of rising temperatures 
and urbanisation, with a focus on avian taxa. We discuss potential interactive effects 
to motivate future in- depth research on this critically important, yet overlooked, as-
pect of global change biology. Increased temperatures are a pronounced consequence 
of both urbanisation (through the urban heat island effect) and climate change. The 
biological impact of this warming in urban and non- urban systems will likely differ 
in magnitude and direction when interacting with other factors that typically vary 
between these habitats, such as resource availability (e.g. water, food and microsites) 
and pollution levels. Furthermore, the nature of such interactions may differ for cities 
situated in different climate types, for example, tropical, arid, temperate, continen-
tal and polar. Within this article, we highlight the potential for interactive effects of 
climate and urban drivers on the mechanistic responses of birds, identify knowledge 
gaps and propose promising future research avenues. A deeper understanding of the 
behavioural and physiological mechanisms mediating species' responses to urbanisa-
tion and rising temperatures will provide novel insights into ecology and evolution 
under global change and may help better predict future population responses.
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1  |  INTRODUC TION

Climate change and urbanisation represent two of the greatest on-
going challenges for organisms (United Nations, 2019). However, 
they are typically considered in isolation, with little empirical re-
search on how their interaction may influence behaviour, physiology 
and ultimately fitness (but see Becker & McCluney, 2021; Diamond 
et al., 2014; Stofberg et al., 2022). The critical importance of this 
knowledge gap was recently highlighted in a horizon- scanning ex-
ercise, which identified climate– urban interactions as one of six 
core emerging themes in urban evolutionary ecology (Verrelli 
et al., 2022). Cities might be an appropriate system to develop and 
test hypotheses about the biological effects of climate change 
(Diamond et al., 2017; Diamond & Martin, 2021; Rivkin et al., 2019; 
Youngsteadt et al., 2015) given the urban heat island effect (hereaf-
ter ‘UHI’; Oke, 1982). However, increases in temperature associated 
with climate change could have different effects on organisms in 
urban versus non- urban environments. For example, in urban set-
tings, the effects of elevated temperatures could be buffered by 
greater availability or higher reliability of resources such as water, 
food or microsites (i.e. locations that differ in their microclimate on 
a small spatial scale), which may be limited or distributed differently 
in non- urban environments. Alternatively, the impacts of warming 
could be exacerbated by urban- related factors such as lower quality 
of water, food or microsites, higher levels of pollutants and the UHI.

The direction and magnitude of impacts on wildlife of globally 
elevated temperatures under climate change likely vary across cities 
located in different climate types. For example, elevated tempera-
tures could result in positive fitness outcomes for urban animals in 
one region, but negative effects in another region, depending on 
baseline climate conditions. In temperate, continental and polar re-
gions, the combination of the UHI and increasing temperatures could 
offer more favourable thermal environments, especially during win-
ter, compared with non- urban areas. In contrast, in tropical or arid 
regions, elevated temperatures could push animals beyond thermal 
thresholds, above which immediate survival and long- term fitness 
are compromised (Mitchell et al., 2018), especially within the UHI. 
Regional differences might also arise due to underlying ecological 
and evolutionary differences between taxa in the Northern versus 
Southern Hemisphere (e.g. differences in plumage pigmentation, 
breeding systems, female song and aggression, etc., Theuerkauf 
et al., 2022). While we recognise that climate change is more than 
anthropogenic global warming and also influences other climatic fac-
tors besides temperature (e.g. precipitation, wind, ocean currents, 
etc.), those changes are far less predictable in time and space com-
pared with rising temperatures, which makes it difficult to create 
coherent predictions. Thus, for this review, we focus on the more 

well- known impacts of temperature, while acknowledging that other 
climate variables will also interact with the urban environment.

Relatively few empirical studies explore the biotic effects of cli-
mate change simultaneously in urban and non- urban habitats (but 
see Diamond et al., 2014; Zohner, 2019 on phenology; Oliver & 
Morecroft, 2014 on biodiversity; and Pipoly et al., 2022 on repro-
duction). Furthermore, none have considered how climate change 
impacts may differ between cities in different climate types and/
or geographical regions. This is surprising, given that differences 
in organismal thermal physiology that could affect climate change 
responses between climate types have been documented: for ex-
ample, lower metabolic rates in tropical, compared with temperate, 
bird species (Wiersma et al., 2007). Finally, temperature extremes, 
which are predicted to increase in frequency, duration and ampli-
tude with climate change (Drumond et al., 2020; Perkins- Kirkpatrick 
& Lewis, 2020; Rahmstorf & Coumou, 2011; Ummenhofer & 
Meehl, 2017), are potentially more important for abrupt changes 
in ecological systems than mean temperature increases over time 
(Turner et al., 2020) and can be further accelerated by the UHI 
(Depietri et al., 2011). Such temperature extremes may be the great-
est drivers of selection on physiological traits with correspond-
ing fitness consequences for animals (Stager et al., 2016; Vasseur 
et al., 2014; Wingfield et al., 2017).

Here, we first briefly summarise current knowledge of the sep-
arate effects of elevated temperatures and urbanisation on bird 
behaviour and physiology. We focus on individual- level mechanistic 
responses that can mediate changes in fitness, rather than popu-
lation-  and community- level responses, although we recognise that 
these other processes also operate. We then address the impact of 
the UHI across different climate types, and finally, we explore how 
the effects of elevated temperatures may differ between urban and 
non- urban areas and make predictions for the interactive effects of 
elevated temperatures and urbanisation.

We focus on birds throughout, as they are an excellent taxonomic 
group to unravel the impacts of urbanisation (Lepczyk et al., 2017) 
and elevated temperatures (Møller et al., 2010)— and will, therefore, 
be well suited to explore their potential interactive effect. Birds 
are prominent in both urban and non- urban faunal communities 
(Aronson et al., 2014), easily observable and express a diverse range 
of responses to changes in urban ecosystems (Aronson et al., 2014; 
Gil & Brumm, 2014; Isaksson & Bonier, 2020; Marzluff, 2001) and 
temperature (McKechnie, Gerson, et al., 2021; Pollock et al., 2021; 
Sauve et al., 2021). Consequently, they can serve as an ideal model 
taxon that may provide insight into the responses of other taxa. 
However, in some cases, examples from avian taxa are rare or non- 
existent in the literature, especially regarding the interactive ef-
fects of pollutants and temperature on animal physiology. In these 
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cases, we draw from the literature on other taxa. Our overall aim 
is to stimulate further empirical research in this understudied, yet 
increasingly important, area of global change biology. Throughout, 
we highlight terms in bold and italic where more detailed definitions 
can be found in the supplementary glossary.

1.1  |  Behavioural and physiological responses to 
elevated temperatures

Temperature is a fundamental driver of biological processes (Sexton 
et al., 2009). Biological responses to temperature variation are 
strongly non- linear and often quadratic (Figure 1) and include 
performance- related responses to body temperature (Figure 1a) and 
behavioural and physiological thermoregulatory responses to envi-
ronmental temperatures (Figure 1b). Because of these non- linear re-
lationships, increased temperatures in cold environments can relax 
thermoregulatory costs allowing energy to be allocated to other 
fitness- enhancing processes, such as the immune system, result-
ing in improved fitness outcomes. In contrast, negative effects can 
occur in environments that are already hot (e.g. Catry et al., 2015; 
Redpath et al., 2002). Thus, the strength and sign (positive or nega-
tive) of the impact of a similar- magnitude increase in environmental 
temperature on animals will likely depend on the baseline climate 
conditions.

In cold environments, birds frequently rely on facultative hypo-
thermia to conserve energy at night (McKechnie & Lovegrove, 2002). 
Warmer environmental temperatures could allow birds to enter 
shallower hypothermia (Nord et al., 2011), with positive outcomes 
such as reduced predation risk (Andreasson et al., 2019; Carr & 
Lima, 2013), increased immune function (Sköld- Chiriac et al., 2015) 
and deeper sleep (Mueller et al., 2012). As cold adaptation is linked 
to metabolic rate in temperate birds, warmer environmental tem-
peratures may also result in directional selection for reduced basal 

metabolic rate, which could have cascading effects on other physio-
logical and behavioural traits (Nilsson & Nilsson, 2016). While higher 
environmental temperatures can have positive effects in advancing 
egg- laying dates and shortening incubation periods in some temper-
ate species (e.g. Bleu et al., 2017), other studies suggest many tem-
perate birds are already limited by high environmental temperatures 
(Mueller et al., 2019; Nord & Nilsson, 2019). Overall, it is likely that 
the directional impact of rising temperatures in temperate regions 
might differ between seasons, with largely positive effects in winter 
and potentially negative effects during summer.

In already hot environments, such as tropical and arid zones 
where air temperatures exceeding 30°C are common, extreme 
heat events can lead to mass mortalities (McKechnie, Rushworth, 
et al., 2021). Even moderate temperature increases can cause 
birds to retreat into thermal refuges (e.g. shaded locations Carroll 
et al., 2015; Kearney et al., 2011; Martin et al., 2015) and make trade- 
offs between thermoregulation and other important behaviours (e.g. 
foraging Cunningham et al., 2021). Negative consequences include 
reduced cognitive performance (Danner et al., 2021), body mass (du 
Plessis et al., 2012; van de Ven et al., 2019), nest provisioning rates 
(Cunningham et al., 2013; Edwards et al., 2015; Wiley & Ridley, 2016), 
nestling growth (Andrew et al., 2017; Rodríguez & Barba, 2016) and 
quality and survival of offspring (Cunningham et al., 2013; Wiley & 
Ridley, 2016) and adults (Bourne et al., 2020). In some systems, these 
behaviourally mediated costs may be as, or more, important than 
physiological temperature tolerance limits in determining population 
persistence under climate change (Conradie et al., 2019). Mass loss 
associated with foraging- thermoregulation trade- offs may also have 
negative impacts on other physiological systems that are important 
for homeostasis and self- maintenance. For example, food- limited 
birds can experience weaker constitutive immune function and im-
mune responses (Buehler et al., 2009; Cornelius Ruhs et al., 2019; 
Eikenaar et al., 2020) and energy- based trade- offs between immune 
function and thermoregulation (Nord et al., 2020).

F I G U R E  1  (a) Thermal performance curve: Physiological performance is dependent on body temperature in a strongly non- linear way. 
All animals have a range of ‘optimum’ body temperatures across which physiological performance is maximised. Performance declines at 
body temperatures outside of this range, and loss of function is more precipitous at hyperthermic than hypothermic body temperatures. 
(b) Scholander– Irving model of endotherm thermoregulation: Metabolic and evaporative water loss rates change strongly non- linearly with 
increasing ambient temperature, allowing endotherms to maintain stable body temperatures across a range of ambient temperatures by 
increasing or decreasing metabolic heat production and evaporative heat loss.
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1.2  |  Behavioural and physiological responses to 
urbanisation

Urbanisation has been directly linked to several major components 
of global change, including climate and land- use change, biological 
invasions, biodiversity loss and alterations in biogeochemical cycles 
(Grimm et al., 2008). Urbanisation changes the availability and qual-
ity of resources for birds and creates light, sound and chemical pol-
lution (Isaksson, 2018; Luniak, 2004), which can affect organisms 
directly via physiological constraints and indirectly by disrupting 
sensory systems (Dominoni et al., 2020) and trophic interactions 
(Post et al., 2008). Artificial light at night (ALAN) can provide an ad-
ditional source of heat and has— together with avoidance of human 
presence— caused a worldwide increase in nocturnality of previously 
diurnal or crepuscular wildlife (Gaynor et al., 2018).

Although some avian species thrive in urban environments, urban- 
dwelling individuals may still face fitness- related costs of city life: 
within species, urban individuals show, for example, behavioural differ-
ences such as extended daily activity and disrupted sleep due to ALAN 
(Aulsebrook et al., 2020; Dominoni et al., 2014), higher song ampli-
tude and reduced song repertoire due to sound pollution (Derryberry 
et al., 2020; Slabbekoorn, 2013; Slabbekoorn & Ripmeester, 2008) and 
increased boldness (Atwell et al., 2012; Kumar et al., 2018). Exposure to 
urban stressors can cause oxidative and genotoxic damage, impairing 
cellular function and triggering premature senescence (Isaksson, 2015; 
Watson et al., 2015; also see Sumasgutner et al., 2019). In addition, 
nutritional physiology has changed in many urban passerines, alter-
ing their morphology (e.g. smaller body sizes Caizergues et al., 2021; 
shorter or narrower beaks De et al., 2014 and shorter wing and tail 
length Caizergues et al., 2021; Evans et al., 2009a). Furthermore, there 
is some evidence that thermal physiology has changed in cities, for ex-
ample, fewer feathers in great tits (Parus major) (Sándor et al., 2021) 
in response to the UHI. Urbanisation may reduce dietary availability 
of carotenoids, which are important for coloration and sexual sig-
nalling, development, disease resistance and night vision (Giraudeau 
et al., 2015; Isaksson et al., 2005; Penteriani & Delgado, 2017).

To date, most research has focused on cities in temperate or con-
tinental regions of the Northern Hemisphere. In contrast, data are 
lacking for cities in tropical and arid regions (Aronson et al., 2016) 
and for cities in developing countries with different ecologically 
relevant social gradients (e.g. wealth, socioeconomic gradients or 
human socio- cultural factors; Kumar, Gupta, et al., 2019; Reynolds 
et al., 2021; Sumasgutner, 2021). This reflects the well- recognised 
Northern Hemisphere bias in ecological and evolutionary re-
search (Awoyemi & Ibáñez- Álamo, 2023; Marzluff, 2017; McHale 
et al., 2013; Shackleton et al., 2021; Theuerkauf et al., 2022).

2  |  RISING TEMPER ATURES AND THE 
URBAN HE AT ISL AND EFFEC T

The UHI is the most globally consistent difference in the abi-
otic environment between urban and adjacent non- urban areas, 

causing increased air and environmental temperatures and reduced 
diel temperature fluctuations in urban environments (reviewed by 
Arnfield, 2003; Climate Central, 2021; Grimmond, 2007; Heisler 
& Brazel, 2015; Imhoff et al., 2010; Martilli et al., 2020). For in-
stance, cities in the United States can be up to 8°C warmer than 
the surrounding countryside, especially in summer (air temperature 
on average 4.3°C warmer, compared with 1.3°C in winter; Imhoff 
et al., 2010). This UHI effect might drive directional selection for 
greater physiological thermal tolerance, which could ultimately ge-
netically pre- adapt urban populations to a warmer future (Johnson 
& Munshi- South, 2017; Lambert et al., 2021).

2.1  |  Temperate, continental and polar cities and 
relaxed thermal constraints

In temperate, continental and polar cities, the UHI may relax ther-
moregulatory costs and could, thus, facilitate avian settlement, 
buffer against cold winters and extend the breeding season (Chace 
& Walsh, 2006; Shochat et al., 2006). Relaxation of thermoregula-
tory costs due to the UHI and climate warming, and/or supplemen-
tary feeding during winter, may also reduce the propensity of urban 
birds to migrate. For example, urban blackbirds (Turdus merula) have 
shorter wings than non- urban blackbirds in Europe, perhaps due to 
their increased residency (Evans et al., 2009a). Migratory strate-
gies are independently changing towards residency in the face of a 
global temperature increase, as demonstrated for European black-
caps (Sylvia atricapilla) (Plummer et al., 2015). However, in urban 
areas, it is not yet known if the main driver for these changes in mi-
gratory behaviour is temperature or food abundance, that is, sup-
plementary feeding during winter (Evans et al., 2009a; Partecke & 
Gwinner, 2007; see also Section 3.2). In either case, changes in mi-
gratory propensity and increased residency are likely to be linked to 
a suite of behavioural, physiological and morphological adaptations 
that can alter fitness aspects (reviewed by Goossens et al., 2020; 
Hegemann et al., 2019; Piersma & Van Gils, 2011).

Furthermore, milder winters are associated with changes in 
predator- prey or host– parasite interactions (Williams et al., 2015), 
and those effects might be particularly accelerated in urban habitats 
due to the UHI. For example, rural tawny owls (Strix aluco) in Finland 
bred at lower frequency after colder winters, while urban conspe-
cifics were less influenced by local weather conditions, apparently 
buffered by the UHI and wider prey availability in the city (Solonen & 
af Ursin, 2008). Likewise, milder winters could change pathogen as-
semblages and host– parasite interactions, especially in urban areas 
(Altizer et al., 2013; Hall, 2021; Kutz et al., 2009), by altering vector 
abundance or emergence in a warming world (Harvell et al., 2002; 
Medlock & Leach, 2015). This could be particularly problematic for 
species that are adapted to low pathogen diversity and/or transmis-
sion, as, for instance, those living at higher latitudes and hence se-
lected for low immune function (Nord et al., 2020).

Finally, temperature changes may cause shifts in avian phenol-
ogy. This pattern occurs not only spatially along urban to non- urban 
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gradients (Chamberlain et al., 2009) but also temporally: as spring 
temperatures have increased in the Northern Hemisphere in re-
cent decades, phenology has advanced due to relaxation of ther-
mal constraints and associated changes in prey availability (Bates 
et al., 2023; Parmesan, 2007; Thackeray et al., 2016).

2.2  |  Tropical and arid cities and 
increased thermal stress

The frequency, duration and amplitude of heat waves are increas-
ing with climate change (Meehl & Tebaldi, 2004; Schär et al., 2004) 
with heat- related mass mortalities occurring in both urban 
(Kassam, 2022) and non- urban systems (McKechnie, Rushworth, 
et al., 2021). Such events are projected to occur more frequently 
in the future (Conradie et al., 2020) and might be more severe in 
already hotter urban centres. Interventions intended to reduce 
heat stress for humans in urban environments could also aid urban 
wildlife. For example, amelioration of the UHI in summer can 
be aided by the provision of trees for shade (Pena et al., 2017), 
sprinkling streets to increase evaporative cooling, increasing the 
albedo effect by employing light- coloured paint on roofs, the re-
placement of open parking lots with garages (Pacione, 2001) and 
green or blue- green roofs (i.e. with an extra blue water retention 
layer underneath the green layer; Busker et al., 2022). The utility 
of vegetation to improve urban climates is widely acknowledged 
(Aronson et al., 2014), and temperatures under trees can be up 
to 40°C cooler than on non- shaded asphalt surfaces (Rahman 
et al., 2020). This, together with an abundance of artificial water 
resources in urban areas (see Section 3.1), can lead to relaxation of 
heat stress for urban wildlife.

Cities in arid and semi- arid regions show a modified UHI effect, 
often exhibiting lower temperatures than surrounding non- urban 
areas during the day (‘urban heat sink’ Carnahan & Larson, 1990; 
Imhoff et al., 2010; Nassar et al., 2016) but with a pronounced heat 
island effect at night. In semi- arid and arid locations, we expect 
cities to become important thermal refugia as the climate warms, 
therefore exposing more individuals to alternative risks associated 
with anthropogenic infrastructure and urban pollution (see below). 
Some neotropical migrants, including species of conservation con-
cern, already use urban centres as non- breeding habitats and exploit 
urban parks and vegetation structures within cities (MacGregor- Fors 
et al., 2010). While this might so far be mainly driven by changes 
in land- use, the urban heat- sink effect in hot regions could poten-
tially increase the pressure on species to move into cities with rising 
temperatures.

3  |  THE INTER AC TIVE EFFEC T OF 
TEMPER ATURE AND URBANISATION

In the following sections, we discuss the important environmental 
differences between urban and non- urban systems in the context 

of globally rising temperatures. Resource availability and quality, 
in terms of water, food and microsites, and other abiotic factors 
like air pollution— all altered in urban areas— may strongly interact 
with rising temperatures to affect bird behaviour and physiology, 
especially as the UHI further elevates temperatures within urban 
areas (Figure 2). In Section 3.1, we contrast higher surface water 
availability/reliability in urban areas— due to higher precipitation 
and abundant artificial water resources, with lower water quality— 
due to higher nutrient, heavy metal and pollutant loads, lower 
turbidity and reduced aquatic biodiversity (McKinney, 2002; Roy 
et al., 2003; Sullivan et al., 2021) compared with non- urban areas. 
All these factors interact and may be exacerbated by increasingly 
higher water temperatures (Figure 3). In Section 3.2, we contrast 
the abundance of anthropogenic food sources (Risi et al., 2021) 
with the quality of these resources in urban areas. Anthropogenic 
food can sometimes compensate partly or wholly for an overall 
scarcity of natural foods (Plummer et al., 2019; Seress et al., 2020) 
but may be of lower quality due to a lack of essential micronutri-
ents in processed food (Coogan et al., 2018), which can lead to 
impaired health (Murray et al., 2016). Interactive effects between 
urban food resources and temperature may become apparent 
through behavioural trade- offs between foraging, heat dissipa-
tion and water loss (Figure 4). In Section 3.3, we shed light on 
small- scale variations in the microclimate between locations that 
birds use for foraging, self- maintenance like preening or roosting, 
and breeding, between urban and non- urban sites. These sites 
can have different thermal properties and ultimately influence 
the heat load birds will experience in a warming world (Figure 5). 
Finally, we explore the interaction of air pollution (higher in urban 
environments, Section 3.4) and rising temperatures on the im-
mune and redox systems, predicting exacerbated impacts on birds' 
health in urban centres due to these effects (Figure 6).

3.1  |  Water resources

3.1.1  |  Water availability

Rainfall is approximately 5%– 10% higher in cities than in sur-
rounding non- urban areas because of greater air turbulence and 
a higher concentration of dust particles (the urban dust dome) 
that serve as hygroscopic nuclei (Pacione, 2001). Moreover, urban 
areas often contain parks and gardens with artificial watering (or 
drought- proofing), providing a reliable water resource, which in-
creases and stabilises primary productivity throughout the system 
(Imhoff et al., 2000) and could create valuable refugia for wildlife 
during droughts— especially in arid regions and as temperatures 
continue to rise. A recent review exploring the pattern of higher 
biodiversity in urban areas with wealthier citizens found that the 
‘luxury effect’ was most pronounced in arid zones, suggesting that 
the availability of water in wealthy neighbourhoods could be the 
driving mechanism (Chamberlain et al., 2020). Differences in water 
availability between urban and non- urban areas may become 
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particularly important as global temperatures rise because evapo-
rative water loss plays an important role in thermoregulation. It is 
the sole mechanism for birds to dissipate heat when environmental 
temperatures exceed body temperature (McKechnie et al., 2012; 
McKechnie & Wolf, 2010). Birds gain water through drinking, from 
the moisture contained in food (preformed water) or from water 
released during metabolism (metabolic water). Reliance on surface 
water for drinking increases with air temperature, and some spe-
cies shift from obtaining all water from food to drinking, when 
open water sources are available (Pattinson et al., 2020; Smit 
et al., 2013). Within- species, hydrated individuals may maintain 
lower body temperatures (Maloney & Dawson, 1998). Thus, in 
urban environments, increased access to reliable water may fa-
cilitate birds' ability to maintain stable body temperatures in hot 
weather, increasing their capacity to remain active and reducing 
their exposure to foraging- thermoregulation trade- offs and buff-
ering climate warming impacts compared with non- urban environ-
ments. Such benefits would likely be greater in already- hot tropical 
and arid cities and less important in temperate, continental and 
polar cities. The importance of water resource availability in arid 
regions is starkly illustrated by a study of Mojave Desert bird bio-
diversity, in which the presence of water partially buffered avian 
communities from climate- change- driven collapse over the last 

century (Iknayan & Beissinger, 2018). A similar mechanism could 
be expected to help preserve bird communities in urban areas.

3.1.2  |  Water quality

Water quality may differ between urban and non- urban areas 
in terms of both pathogen abundance and diversity (Delgado- V 
& French, 2012; Evans et al., 2009b) and pollutants. Pathogens 
can accumulate in urban wastewater and local water bodies, and 
this may be exacerbated by higher temperatures (e.g. due to ac-
celeration of pathogen development times) and, thus, could have 
significant consequences under climate warming. Indeed, rising 
temperatures are already associated with an increase in infec-
tious diseases in many ecosystems (e.g. Altizer et al., 2013; Harvell 
et al., 2009). For example, relevant disease vectors for human 
health, such as malaria- spreading Anopheles mosquitoes breeding 
in standing water or filariasis- spreading Culex mosquitoes breed-
ing in blocked drains, latrines or septic tanks both profit from 
higher temperatures in urban areas (McGranahan et al., 2001). 
This, together with inadequate sanitation, still common in cit-
ies in developing countries, can lead to high contamination rates 
(Pacione, 2001).

F I G U R E  2  Predicted interactive effects between rising temperatures and urbanisation in relation to the urban heat island (UHI) effect: 
Birds in urban areas might be genetically pre- adapted to a warmer future through experiencing selective pressures of the UHI. The UHI 
might also result in accelerated temperature- related changes to migration, phenology and pathogen assemblages, and an earlier onset of 
deleterious heat stress including heat- related mortality. Cities in arid and semi- arid regions show a modified UHI effect, often exhibiting 
lower temperatures than non- urban areas during the day, buffering the above- mentioned diurnal effects. The UHI under globally warming 
temperatures will likely continue to lead to relaxed thermoregulatory costs in temperate, continental and polar cities during winter, while 
exacerbating thermoregulatory costs in summer and in tropical cities compared with non- urban environments.
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Transmission of disease can also be higher in urban, compared 
with non- urban, areas due to higher host densities, higher concen-
trations of hosts at feeding and drinking sites, and increased inter-
actions between wildlife, livestock, pets and humans (Bradley & 
Altizer, 2007; Franklin et al., 2021). Because pathogens and para-
sites also react to climate warming, infected birds may have to invest 
more resources in self- maintenance (behaviourally and physiologi-
cally via immune defences) to counteract parasite loads, which could 
potentially impair their ability to effectively thermoregulate. Some 
empirical evidence suggesting interactive effects of climate warm-
ing and anthropogenic change may exacerbate disease risk in birds 
comes from a study on land- use change (transformation from forest 
to farmland), climate warming (modelled 2°C temperature increase) 
and biological invasions of mosquito vectors on Hawaii, which found 
increased avian malaria transmission resulting in anthropogenic 
extinctions (Benning et al., 2002). To date, we lack comprehensive 
literature on the potentially synergistic effect of urbanisation and 
warming temperatures on physiological and behavioural adaptations 
to limit the negative effect of increased pathogen exposure. Studies 
comparing physiological responses to natural and experimental 
pathogen exposure of urban and non- urban birds exposed to differ-
ent temperatures might shed light on this.

Urban water sources may also carry higher pollutant loads, in-
cluding lead (Pb; Brown et al., 2016; Levin et al., 2021), than those 
in non- urban areas, with the potential to affect behaviour and 
physiology of birds in ways that may be exacerbated by rising air 

temperatures. Urban air pollution— which correlates with weather 
and climate variability through deposition or ventilation, regional 
transport and atmospheric chemistry (Seo et al., 2018)— exacerbates 
the problem of accumulating heavy metals in water, as atmo-
spheric deposition adds to already polluted stormwater runoffs (Liu 
et al., 2018). Exposure to heavy metals and other toxins may reduce 
the capacity of animals to tolerate high body temperatures (evi-
dence from laboratory mammals; Gordon et al., 1987, 1988), likely 
making the risks of hot environmental temperatures more acute 
(Dearing, 2013). This mechanistic link has yet to be fully investigated 
in free- ranging birds, but it could exacerbate the negative impacts 
of higher temperatures associated with climate warming in urban 
settings where birds are likely to carry higher levels of heavy metals 
in their bodies (Bauerová et al., 2020; Brahmia et al., 2013; Scheifler 
et al., 2006; Sriram et al., 2022; Sullivan et al., 2021). Birds are af-
fected by toxin ingestion through drinking and accumulative effects 
(e.g. ingestion of contaminated aquatic invertebrates; Manning & 
Sullivan, 2021). Thus, higher environmental temperatures make the 
risks of poisoning more acute (Dearing, 2013), especially in urban 
areas. Furthermore, recent work suggests higher pollutant loads 
may make birds less resilient to pathogens (Teitelbaum et al., 2022), 
exacerbating the issues outlined in Section 3.1.2 As with our sug-
gestion of future research on pathogens (see above), similar exper-
imental manipulations of pollutants in birds exposed to different 
climatic conditions could help better understand these potential 
impacts.

F I G U R E  3  Predicted interactive effects between rising temperatures and urbanisation in relation to water resources: Greater surface 
water availability and reliability in cities buffers thermoregulatory costs, which could result in reduced biological impacts of warming in cities 
versus non- urban areas (left). However, a poorer urban water quality exacerbates warming- related increases in disease risk, and exposure to 
pollutants in urban water sources might reduce thermoregulatory capacity, therefore, increasing the costs of heat exposure in urban versus 
non- urban areas (right).
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3.2  |  Food resources

3.2.1  |  Food availability

In urban areas, anthropogenic food sources are often abundant (Risi 
et al., 2021) and may (partly or wholly) compensate for an overall 
scarcity of natural foods (Plummer et al., 2019; Seress et al., 2020). 
The provisioning of anthropogenic food may be deliberate, for exam-
ple, in the form of bird feeding by the public (Reynolds et al., 2017), 
which occurs mainly in Northern Europe, North America and many 
Commonwealth countries (Baverstock et al., 2019); or unintentional, 
such as the discarding of food or refuse (Auman et al., 2008; Kumar, 
Singh, et al., 2019; Oro et al., 2013; Stofberg et al., 2019), which oc-
curs globally. Abundant anthropogenic food can also lead to high 
population densities of a few urban- exploiting bird species, which, in 
turn, can profit urban bird- eating raptors (Kettel et al., 2018; Schütz 
& Schulze, 2018; Suri et al., 2017). Higher food availability in urban 
areas may affect the behaviour and physiology of birds in multiple 
ways, including via impacts on time budgets, mass maintenance and 
glucocorticoid levels. All these can also be influenced by tempera-
ture, suggesting interactions between urbanisation and rising tem-
peratures in the context of food availability are likely.

Birds are known to trade- off heat dissipation behaviours and 
foraging (e.g. du Plessis et al., 2012, van de Ven et al., 2019). The 
abundance of easily accessible, predictable, calorie- rich anthropo-
genic food resources (Anderies et al., 2007; Møller, 2009; Shochat 

et al., 2006) may allow urban birds to spend less time foraging, en-
abling allocation of more time and energy to cooling behaviours (e.g. 
shade- seeking, panting or gular fluttering) and, thus, buffering costs 
of rising temperatures, especially in already- hot regions. Evidence 
that anthropogenic food reduces time spent foraging by urban wild-
life, compared with non- urban conspecifics, comes thus far from 
studies of black bears (Ursus americanus; Beckmann & Berger, 2003 
and rhesus macaques Macaca mulatta; Jaman & Huffman, 2013). The 
likely impacts of higher food abundance on birds can be predicted 
from how supplementary- fed populations respond to high tempera-
tures, regardless of habitat type. For example, supplementary- fed 
hoopoe- larks (Alaemon alaudipes) in the Arabian Desert ceased ac-
tivity earlier in the day and engaged in thermoregulatory behaviours 
instead of foraging during hot periods (Tieleman & Williams, 2002). 
However, buffering effects of anthropogenic food may be less 
evident during the breeding season, when urban birds might be 
constrained to finding natural food to raise their young (Catto 
et al., 2021).

Energetic costs of thermoregulation (and, therefore, food de-
mands) also increase steeply in the cold (Figure 1b). In temperate, 
continental and polar regions, provision of anthropogenic food is 
most pronounced during winter via deliberate feeding of seeds, nuts 
and fatballs for small birds in parks and gardens. The consequently 
increased ease of meeting daily energetic requirements, combined 
with the UHI, could reduce thermoregulatory costs associated with 
cold weather for city- dwelling versus non- urban passerines (e.g. 

F I G U R E  4  Predicted interactive effects between rising temperatures and urbanisation in relation to food resources: Greater food 
availability may buffer foraging- thermoregulation trade- offs by improving foraging efficiency and artificial light at night in cities may allow 
foraging during cooler times of day (e.g. extending ‘daylight’ before dawn and after dusk) for diurnal birds, reducing biological impacts of 
warming temperatures in urban versus non- urban areas (left). However, high temperatures may reduce food quality (e.g. trees synthesise 
lower carotenoid content under heat reducing carotenoid availability across the food web), which can be exacerbated in cities by the urban 
heat island effect and air pollution, causing increased biological impact of warming in urban than non- urban areas (right).
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Nilsson et al., 2020; Nord et al., 2011), with potential implications for 
survival. However, there is currently little empirical data to demon-
strate that winter survival of urban passerines is higher compared 
with those residing in non- urban habitats (but see Evans et al., 2009; 
Horak & Lebreton, 1998). In the face of a warming climate, ther-
moregulatory costs for small birds in winter will be reduced in both 
urban and non- urban environments in temperate and polar regions; 
thus, winter- feeding- related energetic advantages in the urban en-
vironment may diminish. Additionally, dense predictable food re-
sources often disproportionately benefit larger and or dominant 
species, while increasing interference competition (Oro et al., 2013). 
This could cancel out any potential energy savings. In other scenar-
ios, abundant anthropogenic food can reduce intraspecific competi-
tion (Oro et al., 2009), and therefore, the outcomes are expected to 
be highly variable between different avian communities.

Food availability might also be indirectly increased by (artificially) 
extended daylight hours. In an urban environment, ALAN could 
allow diurnal birds to alter or extend foraging times in the face of 
hotter days. Other diurnal taxa show such flexibility. For example, 
African wild dogs (Lycaon pictus) take advantage of moonlit nights 
to make up for lost foraging time following extremely hot days 
(Rabaiotti & Woodroffe, 2019). There is evidence for extended for-
aging activity into the night by a number of urban bird populations 
(Byrkjedal et al., 2012; DeCandido & Allen, 2006; Kettel et al., 2016; 
Lebbin et al., 2007; Rejt, 2004; Spelt et al., 2021). While these ob-
servations were not linked to temperature, models suggest that di-
urnal mammals might be able to compensate for climate change by 
shifting to nocturnal activity (Levy et al., 2019). However, ALAN may 
also have negative consequences for behaviour and multiple physio-
logical systems, including hormones, immune function and oxidative 
stress in birds (de Jong et al., 2016; Dominoni et al., 2013; Moore & 
Siopes, 2000; Raap et al., 2016; Ziegler et al., 2021). Studies inves-
tigating correlations between lost foraging time due to heat during 
the day, increased night- time activity and potential physiological 
changes are currently missing for diurnal birds and would add con-
siderably to our understanding on this topic.

Increased food availability in urban areas could also mean neg-
ative effects of extreme temperatures on body condition may be 
less severe in urban versus non- urban birds. Indeed, wild arid- zone 
birds showed declines in body mass associated with foraging- 
thermoregulation trade- offs on hot days (du Plessis et al., 2012; van 
de Ven et al., 2019), whereas similar changes in behaviour for ther-
moregulation did not translate to changes in body mass in suburban 
Australian magpies (Edwards et al., 2015) or urban red- winged star-
lings (Stofberg et al., 2022). Thus, urban birds' body condition might 
be better buffered against the effects of warming temperatures 
in already- hot environments. An important remaining question is 
whether resource availability or physiological costs of high tempera-
ture, or both, are the limiting factors controlling body mass mainte-
nance and breeding success in urban and nonurban birds. Targeted 
supplementary- feeding experiments are required to tease apart the 
effects of these drivers but are generally lacking to date. However, 
one experiment in the hot regions of Phoenix, Arizona, United 

States, shows giving- up density (i.e. amount of food left behind in 
food patches after birds ceased foraging) at urban bird feeders is 
related to air temperature, suggesting that physiological constraints 
at high air temperatures may limit birds’ access to available food 
(Shochat et al., 2004).

Anthropogenic food availability may also mediate relation-
ships between rising temperatures and glucocorticoid exposure in 
birds. For example, increased and more reliable food abundance in 
urban areas can reduce glucocorticoid levels (Kitaysky et al., 2001; 
Schoech et al., 2004). Glucocorticoids are a central mediator of me-
tabolism and responses to environmental stressors in vertebrates, 
and glucocorticoids could be very important in avian responses to 
urbanisation and climate- related temperature increases. A robust 
glucocorticoid response is adaptive, promoting phenotypic and 
behavioural changes to increase immediate survival, but chronic 
stimulation of the hypothalamic– pituitary– adrenal axis (and associ-
ated secretion of glucocorticoids) can have adverse effects. Acute 
extreme high temperatures can increase glucocorticoid levels (e.g. 
Moagi et al., 2021), while chronic harsh thermal conditions might 
suppress glucocorticoid responses via habituation (de Bruijn & 
Romero, 2018). The interaction between food availability, tempera-
ture and urbanisation could, thus, be particularly important in shap-
ing glucocorticoid regulation and overall glucocorticoid exposure. 
Several studies have linked baseline glucocorticoid to fitness- related 
traits such as reproductive success (Schoenle et al., 2018; Sorenson 
et al., 2017), and recent experimental studies demonstrate a key 
role of glucocorticoid regulation in mediating stress resilience and 
persistence in rapidly changing environments (Vitousek et al., 2019; 
Zimmer et al., 2020). However, the dynamics of glucocorticoid regu-
lation are highly context- dependent (Schoenle et al., 2018; Vitousek 
et al., 2019), and dysregulation of the hypothalamic– pituitary– 
adrenal axis can be manifest in both increases and decreases in 
glucocorticoid exposure (Boonstra, 2013). Perhaps unsurprisingly, 
relationships between urbanisation and glucocorticoid levels in 
birds are inconsistent (Iglesias- Carrasco et al., 2020). In the future, it 
would be valuable to study these complex processes and how they 
may affect phenotype and fitness in urban versus non- urban birds in 
the context of rising temperatures.

3.2.2  |  Food quality

In addition to being highly abundant, the quality of anthropogenic 
food available in urban centres may differ from the natural diet of 
birds. For example, certain micronutrients, which are crucial for 
many physiological systems like oxidative balance (Cooper- Mullin 
& McWilliams, 2016; Isaksson, 2020) and immune function (Catoni 
et al., 2008; Hegemann, Matson, Flinks, et al., 2013; Klasing, 2004; 
Nwaogu et al., 2020) might be missing from processed anthropo-
genic food sources, hence constituting threats to the maintenance 
of homeostasis. Different quantities and quality of food may result 
in trade- offs among different physiological systems (i.e. innate im-
mune function versus antioxidant defence; Eikenaar et al., 2018, 
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2019). Potential consequences of these differing food resources 
in relation to the impacts of rising temperatures are relatively 
unknown.

Fatty acid (FA) nutrition and physiology have recently been high-
lighted in the context of urbanisation and temperature variation, 
specifically regarding winter feeding in urban and suburban areas. 
The fatty acid composition of tissues and cells affects many phys-
iological processes such as the immune system, growth, thermo-
regulation and cell membrane function, hence anthropogenic food 
sources could alter these functions. In seasonally cold environments, 
plasma fatty acid composition differs between urban and non- urban 
passerines, and the direction of the variation is dependent on spe-
cies and season (Andersson et al., 2015; Isaksson et al., 2017). This 
variation is likely attributable to differences in food quality and tem-
perature across the urban— non- urban landscape, both of which di-
rectly affect tissue fatty acid composition (Ben- Hamo et al., 2011). 
In laboratory experiments with great tits, interactions between air 
temperature and diets (unsaturated fatty acid diet versus saturated 
fatty acid diet) on basal metabolic rate, oxidative damage and fatty 
acid biosynthesis were observed (Andersson et al., 2018). These 
traits are all known to be important for fitness (Isaksson et al., 2011). 
Hence, warming is likely to have both direct and indirect effects 
on avian fatty acid physiology, which may be more pronounced in 
cities where rising temperatures are superimposed on the UHI and 
diet quality differs from non- urban habitats. The resulting effects 
are likely to be dependent on complex interactions between biotic 
and abiotic factors that differ between urban and non- urban sites. 
However, with our current limited knowledge of these interactions 
and effects, it is difficult to predict how this will affect fitness in 
urban versus non- urban- dwelling birds as temperatures warm.

Food quality may also be affected by both urbanisation and 
temperature in terms of dietary antioxidants including carotenoids. 
Carotenoids have multiple functions; apart from being antioxidants, 
they play a role in UV protection and cell membrane stability and are 
used as colour pigments in the skin, scales and feathers (Britton, 2008). 
In plants, the synthesisers of carotenoids, heat and UV exposure and 
air pollution can affect carotenoid function and level (e.g. Camejo 
et al., 2005; Joshi & Swami, 2009). Effects on carotenoid- synthesising 
trees can influence the carotenoid content in the entire food chain, 
for example, lower carotenoid levels in city trees likely lead to a 
lower carotenoid content in urban caterpillars and subsequently in 
urban birds (Isaksson, 2009; Isaksson & Andersson, 2007). This can 
lead to physiological constraints that affect the morphology of birds, 
such as carotenoid- based pigmentation used in mate choice (Olson & 
Owens, 1998). For example, carotenoid- based plumage coloration is 
paler in urban, compared with rural, great tits (Isaksson et al., 2005). 
The same has been shown for integument colouration of urban 
Eurasian kestrels (Falco tinnunculus; Sumasgutner et al., 2018). As tem-
peratures increase, we can expect a reduction in carotenoid synthesis 
by primary producers across systems, and these reductions are likely 
to be exacerbated in urban environments by both air and heat pollu-
tion. The impact of this interaction on the relative fitness of urban and 
non- urban bird populations is currently unknown.

3.3  |  Microsites

3.3.1  |  Microsite availability

The use of thermally buffered microsites for daily activities such as 
foraging is one mechanism by which behaviour may help buffer the 
effects of elevated air temperatures (Martin et al., 2015). For example, 
in the Kalahari Desert, several bird species increased their use of trees 
with the most shade on days >35°C (Martin et al., 2015). In non- urban 
areas, shaded microsites include trees, cliffs or banks and topographi-
cally variable areas, but shade availability might be limited, particularly 
in arid environments. However, in urban areas, shaded microsites may 
be more reliably available, for example in the form of ornamental trees 
or large areas of shade cast by buildings and other structures, and 
the contrast between urban and non- urban areas might be more pro-
nounced in arid regions (see ‘luxury effects’). Such shaded areas could 
allow birds to continue foraging during hot periods, especially if this 
shade encompasses resource- rich areas (e.g. sheltered areas in parks 
or outdoor cafes that are also rich in anthropogenic food). These dif-
ferences could theoretically have a profound impact on the heat load 
experienced by birds in urban versus non- urban areas as temperatures 
increase. However, currently, we know of no studies which have ex-
plored the use of microsites as thermal refugia by urban birds during 
their daily activity routines (but see Pena et al., 2017 on the positive 
effect of trees on urban bird diversity).

3.3.2  |  Microsite quality

Thermal properties of sites used by urban birds for nesting or roost-
ing could differ substantially from these sites in non- urban areas. For 
example, the available locations in which to find a nesting or roost-
ing opportunity are often different in urban areas compared with 
non- urban areas, which might be especially important for cavity- 
nesters relying on tree hollows in natural environments and artificial 
cavities in urban areas (Mainwaring, 2011). Additionally, the material 
available to build a nest varies between urban and non- urban areas 
(Reynolds et al., 2019). Thus, the thermal conditions of nest and 
roost sites may differ substantially between urban and non- urban 
sites (Mainwaring, 2015; Maziarz et al., 2017; Sudyka et al., 2022) 
and could alter the responses of birds to climate change, by influenc-
ing the heat load they experience in each environment. The impact 
of elevated temperatures on an individual's fitness may, therefore, 
vary in direction and magnitude across different sites.

Artificial nest sites in urban areas (e.g. nest boxes, building and 
roof cavities) are generally less thermally buffered than tree cavi-
ties or caves (see microclimate comparisons in Maziarz et al., 2017; 
Sudyka et al., 2022; and review of nest- box conductance in Grüebler 
et al., 2014). The temperatures in such cavities can be several degrees 
higher than temperatures outside (Maziarz et al., 2017), with consis-
tently higher maximum temperatures, larger temperature amplitudes, 
and worse insulation from environmental temperatures relative to 
natural tree cavities (Sudyka et al., 2022). Heat- related impacts on 
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nest success associated with climate warming might, therefore, be ex-
acerbated in urban, compared with non- urban, environments. In arid 
and tropical cities, overheating inside cavities for nesting and roost-
ing will become apparent earlier on, offering a pressing research op-
portunity to develop mitigating measures, for example, suitable nest 
box design and improved nest placements (Bideguren et al., 2019) 
that can then be applied to prevent devastating effects as cities warm. 
Nest temperature is especially important given that eggs (McCowan 
& Griffith, 2021; Sharpe et al., 2021) and nestlings (Andreasson 
et al., 2016; Marques- Santos & Dingemanse, 2020) are highly sensitive 
to temperature effects, leaving them potentially more vulnerable to 
temperature extremes than adults. Recent anecdotal evidence stems 
from heat- related mass mortality of swift nestlings in Seville, Spain 
(Kassam, 2022). Other examples include use of sun- exposed roofs for 
nesting by urban seabird colonies (Raven & Coulson, 1997; Soldatini 
et al., 2008) and higher nestling mortality due to heat stroke or de-
hydration in thermally unsuitable urban building cavities and planters 
(discussed for kestrels in Vienna; Sumasgutner et al., 2014), which 
might presage higher rates of heat- related breeding failure in urban, 
compared with non- urban, areas as temperatures rise.

3.4  |  Air pollution

3.4.1  |  Air pollution and the redox system

Urban air pollution has important behavioural (e.g. increased 
preening and homing behaviour), physiological (e.g. increased 

macrophages in lungs) and morphological effects in birds (reviewed 
in Sanderfoot & Holloway, 2017). The redox system (=oxidation- 
reduction status), with its multifaceted and diverse group of anti-
oxidants, plays an important role in reducing these negative effects 
(e.g. Isaksson, 2010) but is affected by ambient temperatures (e.g. 
in poultry Miao et al., 2020), potentially making the impact of rising 
average air temperatures and temperature extremes more severe in 
urban, compared with non- urban, areas. In response to increased 
pro- oxidative air pollution, up- regulation of endogenously synthe-
sized antioxidants, such as catalase and superoxide dismutase, is pre-
dicted to limit generation of oxidative damage to proteins, lipids and 
DNA. However, evidence for this effect from urban- dwelling birds 
is mixed (e.g. Herrera- Dueñas et al., 2014; Koivula & Eeva, 2010; 
Salmón, Stroh, et al., 2018; Salmón, Watson, et al., 2018; Watson 
et al., 2021). This could be a result of oversimplified predictions re-
garding how antioxidants or species respond to different levels of 
urbanisation/air pollution, for example, the antioxidant system might 
collapse if air pollution is very high (Isaksson, 2020).

In urban areas, as the climate becomes hotter, air pollution wors-
ens, as high air temperatures and increased solar radiation stimulate 
the production of photochemical smog, as well as ozone, through 
a combination of meteorological effects, atmospheric chemical 
reactions and changes to both the rates and types of terrestrial 
emissions (e.g. Jacob & Winner, 2009; Lee et al., 2006). This will 
likely aggravate differences between urban and non- urban areas in 
terms of air quality. While the negative impact of urban air pollu-
tion during periods of high temperatures is well documented in hu-
mans (Pourvakhshoori et al., 2020; Stedman, 2004), the thresholds 

F I G U R E  5  Predicted interactive effects between rising temperatures and urbanisation in relation to microsite availability and quality: 
Greater shade availability in cities, especially in arid regions, may buffer foraging- thermoregulation trade- offs especially for diurnal animals 
and reduce the thermal costs associated with rising temperatures in urban versus non- urban areas (left). However, urban nest-  and roost 
sites are poorly thermally- buffered making them of lower quality compared with natural sites with implications for individual health and 
fitness outcomes and potentially exacerbating warming- related biological impacts in urban areas versus non- urban areas (right).
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and plasticity of the redox system to combat pollutants at different 
temperatures have been completely overlooked in wildlife (see also 
Isaksson, 2020). This means there is a lack of information on taxon- 
specific responses to the interaction between high temperature and 
air pollution, and it is difficult to predict the combined impact of ur-
banisation and climate warming on birds.

3.4.2  |  Air pollution and the immune system

Pollutants trigger the immune system and may lead to inflamma-
tory responses, which come with a suite of behavioural and physi-
ological costs in birds (Armour et al., 2020; Bonneaud et al., 2003; 
Burness et al., 2010; Hegemann et al., 2012, 2018; Hegemann, 
Matson, Versteegh, et al., 2013; Owen- Ashley & Wingfield, 2007). 
Heat stress during development and in adulthood can affect immune 
function and the ability to mount immune responses, as has been 
well documented in poultry and domestic mammals (reviewed by 
Aggarwal & Upadhyay, 2013; Lara & Rostagno, 2013). Interactions 
of the immune system with other physiological systems (e.g. heat 
shock proteins, oxidative stress) are also well described in poultry 
(e.g. Quinteiro- Filho et al., 2010) although appear not to be well 
studied in wild birds. Given the results from domestic birds, we pre-
dict that heat stress caused by climate change could increase vul-
nerability to diseases— an effect that might be particularly strong in 

urban environments, where the UHI effect interacts with air pol-
lution and exposure to pathogens is likely modified (Section 3.1.2). 
For cold environments, predictions are less clear. On the one hand, 
release from cold stress could enable individuals to invest more in 
immune function and develop a better resistance against pathogens. 
On the other hand, increased temperatures will likely allow for a 
broader pathogen community.

4  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

The combined effects of urbanisation and climate change will likely 
have pronounced consequences for urban birds, and the nature and 
outcome of interactive effects will differ across different climate 
types. The availability and quality of resources (e.g. food, water and mi-
crosites) and the level of pollution vary between urban and non- urban 
areas and across climate types. These factors are likely to mediate 
the responses of birds to rising temperatures, which are themselves 
exacerbated in urban areas by the UHI. Interactive effects of urbani-
sation and rising temperatures are expected to manifest as additive, 
synergistic and antagonistic across different regions and contexts. 
Yet, studies directly addressing these effects are almost entirely lack-
ing. A key research question, therefore, is whether the quantity and 
quality of urban resources, together with pollutant exposure and the 
UHI, will buffer or exacerbate impacts of warming on the behaviour, 
physiology and ultimately fitness of urban bird populations, compared 
with non- urban conspecifics. This question will need to be addressed 
across multiple fronts, opening up a broad field of research.

Pioneering studies in temperate regions have so far identi-
fied signatures of urbanisation in great tits at the genetic (Salmón 
et al., 2021) epigenetic (Watson et al., 2021) and transcriptomic 
(Watson et al., 2017) levels. These data suggest a coordinated and 
regulated response to the urban environment with changes in ex-
pression and methylation of genes involved in stress, immune and 
inflammatory responses (Watson et al., 2017, 2021). Collectively, 
the data pinpoint diet and exposure to reactive oxygen species as 
the likely main drivers of divergence between urban and non- urban 
populations, from the epigenetic level through to the phenotypic 
level. Yet these data are only for one species and a limited number of 
urban— non- urban comparisons. Further data are urgently needed to 
understand whether these results are generalisable across species, 
taxon groups and regions. For future studies, it would be highly rel-
evant to explore whether the impacts and responses are different 
for tropical and arid- dwelling species, especially since we still know 
so little about genes relevant for coping with high thermal loads in 
an urban context (but see Park et al., 2019). Furthermore, it remains 
totally unknown how these genetic, epigenetic and transcriptomic 
responses to urbanisation will affect the resilience or vulnerability 
of birds to rising temperatures in terms of behaviour, physiology, fit-
ness and population persistence.

Including thermal behaviour and physiology in future urban wild-
life research will, therefore, allow a far better understanding of the 

F I G U R E  6  Predicted interactive effects between rising 
temperatures and urbanisation in relation to air pollution: The 
redox system, important in mitigating the negative health effects of 
air pollution, is in itself negatively affected by rising temperatures, 
making the impact of global temperature rise in urban areas more 
severe than in non- urban areas. In addition, high temperatures can 
compromise immune function, which is already challenged by air 
pollution and exposure to modified pathogen assemblages in urban 
versus non- urban environments.
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resilience of birds to increasing temperatures. Furthermore, future 
research should address whether buffering effects of urban environ-
ments could help species cope with climate warming, or whether the 
interactive effects between temperature and other urban factors will 
push birds beyond their thermal tolerance thresholds faster. In urban 
ecology, the altered conditions and rapid rate of change in cities pro-
vide the basis for ‘natural experiments’, with non- urban environments 
serving as the reference or control sites. Urban areas can also serve 
as models for climate change itself (but see Carreiro & Tripler, 2005; 
Diamond & Martin, 2021; Ziska et al., 2004). The physical environ-
ment in cities, which includes higher temperatures, altered hydro-
logical cycles, and elevated CO2 concentrations (Kaye et al., 2006), 
mimics key components of climate change, thus providing opportuni-
ties to study responses of biota to such changes. This is particularly 
important where future predicted climates have no current analogues 
and hence a species’ ability to cope with these conditions can only 
be assessed from behavioural thermal thresholds associated with 
fitness losses (Conradie et al., 2019; Cunningham et al., 2021) and 
thermal physiological limits (Porter & Kearney, 2009). Taken together, 
a deeper understanding of the behavioural and physiological mech-
anisms that mediate species’ responses to the interactive effects of 
urbanisation and rising temperatures will be needed to unravel the 
ability of species to adapt to or cope with these challenges.
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