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Abstract

Porphyromonas gingivalis is an anaerobic Gram-negative human oral pathogen highly

associatedwith themore severe forms of periodontal disease. Porphyromonas gingivalis

utilises the type IX secretion system (T9SS) to transport ∼30 cargo proteins, including

multiple virulence factors, to the cell surface. The T9SS is a multiprotein system con-

sisting of at least 20 proteins, and recently, we characterised the protein interactome

of these components. Similar to the T9SS, almost all biological processes are mediated

through protein‒protein interactions (PPIs). Therefore, mapping PPIs is important to

understand the biological functions of many proteins in P. gingivalis. Herein, we pro-

vide native migration profiles of over 1000 P. gingivalis proteins. Using the T9SS, we

demonstrate that our dataset is a useful resource for identifying novel protein interac-

tions. Using this dataset and further analysis of T9SS P. gingivalismutants, we discover

new mechanistic insights into the formation of the PorQ-Z complex of the T9SS. This

dataset is a valuable resource for studies of P. gingivalis.
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1 INTRODUCTION

Porphyromonas gingivalis is aGram-negative anaerobic bacterium found

in subgingival plaque. Various studies have shown that P. gingivalis is

a key pathogen associated with severe periodontal disease in humans

(Hajishengallis et al., 2011; Holt et al., 1988; Kirst et al., 2015; Socran-

sky et al., 1998; Ximenez-Fyvie et al., 2000), which is a major cause

of tooth loss in industrial nations. Severe forms of periodontal disease

have also been linked to an increased risk of cardiovascular diseases,

diabetes, pre-term birth, rheumatoid arthritis and dementia (Dominy

Abbreviations: A-LPS, Anionic lipopolysaccharide; BN-PAGE, Blue Native PAGE; DDM,

Dodecylmaltoside; DTT, Dithiothreitol; iBAQ, intenisty-based absolute quantitation; LFQ,

Label-free quantitation; PPI, Protein-protein interactions; SDS, Sodium dodecyl sulfate; TFA,

Trifluoroacetic acid; T9SS, Type IX secretion system.
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et al., 2019; Figuero 2020 et al., 2020; Haraszthy et al., 2000; Linden

et al., 2013; Orlandi et al., 2020).

The major virulence factors of P. gingivalis called gingipains are

secreted to the cell surface by the type IX secretion system (T9SS)

(Lasica et al., 2017; Veith et al., 2017). In addition to the gingipains, this

system secretes ∼30 other proteins that have a conserved C-terminal

domain (CTD) (Seers et al., 2006; Veith et al., 2013). The T9SS com-

prises at least 17 component proteins, namely, PorK, PorL, PorM, PorN,

Sov, PorT, PorU, PorW, PorP, PorV, PorQ, PorZ, PorE, PorF, PorG, PorD,

Plug, and three transcription regulators PorX, PorY and SigP (Gora-

sia, Lunar Silva, et al., 2022; Heath et al., 2016; Kadowaki et al., 2016;

Lasica et al., 2016; Lauber et al., 2018; Naito et al., 2019; Saiki & Kon-

ishi, 2010; Sato et al., 2010). Several subcomplexes of the T9SS have

been identified (Gorasia, Lunar Silva, et al., 2022; Gorasia et al., 2020).
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The PorK/PorN/PorG complex forms a ring-shaped structure (Gora-

sia et al., 2016), while PorL and PorM associate to form molecular

motors that energise both secretion and motility (Hennell James et al.,

2021). The Sov translocon interacts with either PorV or Plug (Lauber

et al., 2018), and we recently showed that PorW/PorD forms a bridge

between the Sov translocon and the PorK/PorN/PorG complex (Gora-

sia, Lunar Silva, et al., 2022; Gorasia et al., 2020). We also recently

demonstrated that PorP/PorE/PG1035 form a stable subcomplex that

may play a role in anchoring the T9SS to the peptidoglycan (Gorasia,

Seers, et al., 2022). PorU/PorV/PorQ/PorZ form the attachment com-

plex that anchors the T9SS cargo proteins to the cell surface via A-LPS

using a sortase-like mechanism (Glew et al., 2012; Gorasia et al., 2015;

Veith et al., 2020).

Similar to the T9SS, almost all biological processes are mediated

through protein‒protein interactions (PPIs). Therefore, mapping PPIs

is essential to understand the biological function of many proteins in P.

gingivalis. Herein, we provide native migration profiles of over 1000 P.

gingivalis proteins. Using thewell-characterised protein interactome of

theT9SS inP. gingivalis, we demonstrate howour dataset can beused to

understand the protein interactome of any P. gingivalis subcellular sys-

tem. Using this dataset and further analysis of the T9SS mutants, we

provide new insights into the formation of the PorQ-PorZ subcomplex.

2 MATERIALS AND METHODS

2.1 Bacterial strains and culture conditions

Porphyromonas gingivaliswild-type strainsW50 and ATCC 33277 were

grown in tryptic soy-enriched brain heart infusion broth (TSBHI)

(25 g/L tryptic soy, 30 g/L BHI) supplemented with 0.5 mg/ml cys-

teine, 5 μg/ml haemin and 5 μg/ml menadione. For blood agar plates,

5% defibrinated horse blood (Equicell, Bayles, Australia) was added to

enriched trypticase soy agar. Mutant strains were grown in the same

media as above with the appropriate antibiotic selections. All P. gingi-

valis strains were grown anaerobically (80%N2, 10%H2 and 10%CO2)

at 37◦C. Mutant P. gingivalis strains, namely, sov, porK, porP, porQ, porT,

porW andABK–, in aATCC33277backgroundwere obtained fromPro-

fessor Koji Nakayama (Sato et al., 2010). Mutant P. gingivalis strains

porU, porV and porZwere previously produced in our laboratory in both

ATCC 33277 and W50 backgrounds (Chen et al., 2011; Glew et al.,

2017, 2012). The mutant porE was also generated in our laboratory

in the P. gingivalis W50 background (Heath et al., 2016). Of note, all

these mutants have been complemented and shown to return to the

wild-typephenotype; hence, therearenopolar effects in thesemutants

(Chen et al., 2011; Glew et al., 2012; Heath et al., 2016; Sato et al.,

2010).

2.2 Blue native gel electrophoresis

Blue native gel electrophoresis was performed essentially as described

(Sato et al., 2010). Briefly, P. gingivalis cells were pelleted by centrifu-

gation at 5000 × g for 5 min at 4◦C, and the pellet was suspended in

native gel buffer containing 1% n-dodecyl-β-D-maltoside (DDM), com-

plete protease inhibitors and 5mMMgCl2. After sonication (Sato et al.,

2010), the samples were clarified by centrifugation at 16,000 × g for

20 min at 4◦C. Coomassie Blue G-250 was added to the samples at a

final concentration of 0.25%, and the sampleswere electrophoresedon

nondenaturing Native PAGE Novex 3–12% Bis-Tris gels. The proteins

in the gels were stained with Coomassie Blue G-250 and destained

until the background was clear. The lane containing the sample was

excised into 12 gel bands, and in-gel digestion was performed. The gel

pieces were incubated with 2% sodium dodecyl sulfate and 10 mM

dithiothreitol and incubated at 56◦C for 1 h. Following incubation,

55 mM iodoacetamide was added to the gel pieces and incubated for

30 min in the dark. In-gel digestion was performed using sequencing-

grade-modified trypsin (Promega) and incubated overnight at 37◦C,

as previously published (Mortz et al., 2001). Tryptic peptides were

extracted from the gel pieces using 50% acetonitrile in 0.1% Trifluo-

roacetic acid and sonicated for 10min in a sonicator bath. The samples

were concentrated in a vacuum centrifuge before analysis using liquid

chromatography-tandemmass spectrometry (LC-MS/MS).

2.3 Liquid chromatography-tandem mass
spectrometry

The tryptic peptides were analysed by LC-MS/MS using a Q Exactive

Plus Orbitrapmass spectrometer coupled to an Ultimate 3000UHPLC

system (Thermo Fisher Scientific). Buffer A was 2% acetonitrile and

0.1% formic acid, and buffer B consisted of 0.1% formic acid in ace-

tonitrile. Sample volumes of 1 μl were loaded onto a PepMap C18 trap

column (75 μM ID X 2 cm X 100 Å) and desalted at a flow rate of

2 μl/min for 15 min using buffer A. The samples were then separated

through a PepMap C18 analytical column (75 μM ID X 15 cm X 100

Å) at a flow rate of 300 nl/min, with the percentage of solvent B in the

mobile phase changing from 2% to 10% in 1 min, from 10% to 35% in

50 min, from 35% to 60% in 1 min and from 60% to 90% in 1 min. The

spray voltage was set at 1.8 kV, and the temperature of the ion trans-

fer tube was 250◦C. The S-lens was set at 50%. The full MS scans were

acquired over an m/z range of 300–2000, with a resolving power of

70,000, an automatic gain control (AGC) target value of 3 × 106, and a

maximum injection of 30ms. Dynamic exclusionwas set at 90 s. Higher

energy collisional dissociationMS/MS scans were acquired at a resolv-

ing power of 17500, AGC target value of 5×104, maximum injection

time of 120ms, isolationwindowofm/z 1.4 andNCEof 25% for the top

15 most abundant ions in theMS spectra. All spectra were recorded in

profile mode.

The relative abundances of proteins were quantified by MaxQuant

(Ver 1.5.3.30) (Cox et al., 2014). Raw MS/MS files were searched

against P. gingivalis W50 or ATCC 33277. The default MaxQuant

parameters were used, except the label-free quantitation (LFQ) min

ratio count was set to 1, and the match between runs was selected.

MaxQuant normalised the dataset as part of the data processing. LFQ

intensities were used for the analysis of the T9SS components, and
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F IGURE 1 Nativemigration profiles of P. gingivalis proteins plotted as a heat map. (a) Porphyromonas gingivalis cells lacking the gingipains
(ABK-) were lysed in 1% n-dodecyl-β-D-maltoside (DDM), electrophoresed on a BN-PAGE gel and stainedwith Coomassie brilliant blue G-250. The
gel lane was sliced into 12 bands, and in-gel tryptic digestion was performed on the gel pieces. Tryptic fragments were analysed bymass
spectrometry and identified usingMaxQuant software. (b)Migration profile overview of all the proteins identified in each band of the BN-PAGE
gel based on the intensity-based absolute quantitation (iBAQ) values (average of four replicates). (c) Migration profiles of selected complexes in
each bandwith the iBAQ values expressed on a natural log scale. See also Table S1

intensity-based absolute quantitation (iBAQ) values were used for the

overall protein‒protein interaction mapping in P. gingivalis. A heat map

of iBAQ intensities of all proteins across gel bands 1–12 was plotted.

If the iBAQ intensities of proteins X and Y showed a similar migration

profile, then that indicated a potential interaction.

3 RESULTS AND DISCUSSION

3.1 The P. gingivalis protein‒protein interactome

Analysis of PPI networks is a powerful approach to dissect protein

function, potential signal transduction, and virulence pathways. In this

study, we investigated the global PPI network of the human pathogen

P. gingivalis using BN-PAGE/mass spectrometry. We selected the ABK-

strain for the PPI study, as the three gingipains are amongst the most

abundant proteins in P. gingivalis; hence, their elimination allowed us

to detect many less abundant proteins by BN-PAGE. Furthermore,

gingipains are proteases, and their removal minimised protein degra-

dation in the cell lysate. However, one limitation of using this strain is

that gingipains process some surface proteins, such as Fim and Mfa

pilins, to enable their polymerisation. Our data would not provide

accurate polymerisation status of these proteins. BN-PAGE was

performed with P. gingivalis cells (four biological replicates) lysed in 1%

DDM. After electrophoresis, each lane was excised into 12 gel bands

(Figure 1a) and subjected to tryptic digestion, mass spectrometry and

MaxQuant analysis. A total of 1232 proteins were identified, and the

protein abundances (iBAQ) were plotted as a heatmap for each gel

band (Figure 1b, Table S1). Proteins with a similar native migration

profile may be part of the same protein complex. Using this analysis,

a large number of potential PPIs were seen. Twelve potential protein

complexes consisting of proteins expressed from adjacent genes are

shown in Figure 1c and described below. The putative components

of a P. gingivalis respiratory chain were predicted from bioinformatic

studies and proposed to consist of six subunits (PG2177/PGN_0119-

PG2182/PGN_0114) (Meuric et al., 2010). Previously, two of these,

PGN_0119 and PGN_0116, were shown to interact (Glew et al., 2014).

Here, we observed all but one of the subunits to peak at bands 8 and

9, suggesting that at least five are part of one complex. Similarly, RagA

and RagB (PGN_0293, PGN_0294) co-migrated by BN-PAGE, as did

Omp40 and Omp41 (PGN_0728, PGN_0729) (Figure 1c). PGN_0557

(HmuR) and PGN_0558 (HmuY) peak at bands 10–11, but HmuY

appears to also produce higher molecular weight (MW) complexes,

perhaps due to its association with poorly soluble heme. Direct

interactions between these protein pairs were reported previously

(Nagano et al., 2007; Olczak et al., 2008; Veith et al., 2001). Several



GORASIA ET AL. 37

F IGURE 2 Subcomplexes of the T9SS identified by BN-PAGE analysis of P. gingivalisABK-. The label-free quantitation (LFQ) intensities for the
T9SS proteins identified from each BN-PAGE bandwere converted to a percentage with the highest LFQ intensity being assigned 100% for each
protein in the group except for PorT, PorL and PorN, where the intensity at band 10was assigned 100% to aid visualisation of the highmolecular
weight bands. Proteins that comigrated on a BN-PAGE gel were grouped and plotted together (a) PorK, PorL, PorM, PorN and PorT, (b) Sov and
PorW, (c) PorE, PorP and PorF and (d) PorU, PorV, PorQ and PorZ

other sets of proteins also had migration profiles that suggested they

formed complexes: PGN_1124-PGN_1125, PGN_1172-PGN_1174,

PGN_1529-PGN_1530, PGN_1890-PGN_1891, PGN_1930-

PGN_1933 and PGN_1965-PGN_1966 (Figure 1c). Interactions

between the proteins in these groups have not been reported previ-

ously, but putative homologues for some of these proteins are thought

to interact in other species according to STRING (Szklarczyk et al.,

2019) (Table S2). These potential PPIs are a useful resource for further

studies of P. gingivalis.

Protein interaction networks play key roles in almost all biological

processes. A thorough understanding of PPIs should facilitate elucida-

tion of cellular activities and targeted drug design. A study by Glew

et al. identified more than 100 proteins forming multisubunit com-

plexes using 2D Blue Native PAGE (Glew et al., 2014). The interactions

identified byGlew et al. were also found in this study, and nativemigra-

tion profiles of more than 1000 proteins were mapped, which can be

used to identify potential PPIs. Collectively, our study substantially

increases the available resources for the protein‒protein interaction

networks in P. gingivalis, and therefore, we have generated a valuable

dataset for the study of protein‒protein interactions in the periodontal
pathogen P. gingivalis and related bacteria.

3.2 Native migration profiles of the T9SS proteins

Very recently, with the help of this dataset, we reported the protein

interactome of the T9SS components (Gorasia, Lunar Silva, et al., 2022;

Gorasia, Seers, et al., 2022) and the native MW profiles of outer mem-

brane proteins in general (Veith et al., 2021). For example, to show

how this dataset can be used, the native migration profiles of the T9SS

proteins are analysed. The LFQ intensities of the T9SS proteins were

normalised and plotted (Figure 2a–d). The proteins are grouped based

on their migration profiles as well as previous knowledge of the sub-

complexes of the T9SS. PorK and PorN were the predominant T9SS

proteins observed in gel bands 1, 2 and 3. Asmentioned above, we have

shown that PorK and PorN form large ring-shaped structures (Gorasia

et al., 2016; Song et al., 2022). In gel bands 4 and 5, PorK and PorN

intensities were increased and joined by PorL and PorM (Figure 2a).

PorL and PorM have also been shown to form a complex (Gorasia et al.,

2016; Hennell James et al., 2021; Vincent et al., 2017). PorT was found

in gel bands 1–5 following a similar profile to PorK and PorN, sug-

gesting that it may interact with the PorK-PorN complex (Figure 2a).

Further studies are needed to validate this finding. Figure 2b shows the

native migration profiles of the Sov and PorW proteins. The Sov and

PorW proteins had similar native profiles, showing increased amounts

between gel bands 5 and 7, suggesting that these proteins may inter-

act to form a complex (Figure 2b). Using affinity purification and mass

spectrometry (AP-MS), we recently showed that Sov, PorW and PorD

form a complex (Gorasia, Lunar Silva, et al., 2022). Figure 2c shows the

native migration profiles of PorP, PorE and PorF. PorE, PorP and PorF

weremainly detected in gel bands 9–10 (Figure 2c). Although PorF had

a similar migration profile, there were no changes to its migration pro-

file in the absence of PorE or PorP, suggesting that its similar native

profile may be coincidental (Gorasia, Seers, et al., 2022). Again, using
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F IGURE 3 The PorZ and PorQ complex is formed independently of PorU and PorV. Porphyromonas gingivalis T9SSmutants (porT, porQ, porP,
porE, porW, sov, porZ, porU and porV) were lysed in 1% n-dodecyl-β-D-maltoside (DDM) and electrophoresed on a 3%–12%BN-PAGE gel. The gel
lanes were sliced at the same positions as in Figure 1a. The tryptic fragments were analysed bymass spectrometry andMaxQuant software. The
label-free quantitation (LFQ) intensities of (a) PorZ and (b) PorQ in each T9SSmutant and ABK– were plotted.

AP-MS, we showed that PorP and PorE interact (Gorasia, Seers, et al.,

2022). Finally, Figure 2d shows the nativemigration profile of the well-

characterised attachment complex comprising PorU, PorV, PorQ and

PorZ. A peak of PorU, PorV, PorQ and PorZ consistent with the com-

plete complex was observed in gel band 7 in the BN-PAGE analysis of

P. gingivalis ABK- (Figure 2d). We also observed PorQ and PorZ peaks

at gel band 10 (Figure 2d), suggesting the presence of a PorQ-PorZ

subcomplex. Together, the native migration profiles provide an indi-

cation of whether two or more proteins of interest interact. Further

insights into the protein interactions can be obtained by methods such

as AP-MS.

3.3 The PorQ-PorZ subcomplex is formed
independently of PorU and PorV

PorQ is anoutermembrane β-barrel protein,whilePorZ is a cell surface
protein that is also a substrate of the T9SS (Lasica et al., 2017). Pre-

viously, PorZ was shown to localise to the cell surface in the absence

of PorU. To investigate which other T9SS components are essential

for the formation of the PorQ-PorZ subcomplex, we performed BN-

PAGE analysis on P. gingivalis T9SS mutants (Figure 3). The attachment

complex was not observed in any of the mutants, but the putative

PorQ-PorZ subcomplex was observed in the porU and porV mutants,

suggesting that the PorQ-PorZ subcomplex can form in the absence of

PorU and PorV.

Glew et al. identified a complex of PorZ with the OM β-barrel pro-
tein PorQ in the PorUC690A catalytic mutant, providing a mechanism

for PorZ to be anchored to the cell surface (Glew et al., 2017). Pre-

viously, Lasica et al. showed that PorZ is on the cell surface in the

absence of PorU (Lasica et al., 2017). Therefore, it is likely that PorZ

is on the surface bound to PorQ in the porVmutant as well. Together, it

appears that PorZ can translocate through the T9SS secretion channel

in the absence of PorU or PorV. PorU and PorZ both have conserved

F IGURE 4 Proposedmechanism of PorQ-Z complex formation.
Schematic diagram showing the proposed association of PorQwith
the Sov translocon. (1) PorZ in the periplasm passes through the Sov
translocon. (2) PorQ collects PorZ from the Sov translocon. (3) The
PorQ-Z subcomplex dissociates from the Sov translocon. Q: PorQ, Z:
PorZ. Abbreviation: OM, outer membrane

CTD domains and are known to be T9SS substrates as well as compo-

nents. However, unlike other CTD proteins, the CTD signals of PorU

and PorZ are not cleaved (Glew et al., 2012; Lasica et al., 2017). Kulka-

rni et al. have shown that there are at least two types of CTD signals,

types A and B (Kulkarni et al., 2017). Flavobacterium johnsoniae type

A CTD proteins are dependent on PorV for secretion, whereas many

type BCTDproteins are not (Kharade&McBride, 2015; Kulkarni et al.,

2019). A similar observation was also noted in P. gingivalis, as the type

B CTD protein PG1035 was found to be PorV independent of com-

plex formation with PorP and PorE (Gorasia, Seers, et al., 2022). PorZ

appears to have a CTD that is neither type A nor type B (Lasica et al.,

2017). Since PorV forms a complex with Sov (Lauber et al., 2018) and

binds to newly secreted CTD proteins before shuttling them to the
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attachment complex (Glew et al., 2017), we suggest that PorQ, partic-

ularly in the absence of PorV, can target the same Sov binding site as

PorV and recruit its respective substrate accordingly (Figure 4).

In conclusion, we generated a useful dataset for the study of protein

interactions inP. gingivalis. Using this dataset and further analysis of the

T9SSmutants, we providemechanistic insight into the formation of the

PorQ-PorZ subcomplex of the T9SS.
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