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Abstract
Anthropogenic activities are triggering global changes in the environment, causing 
entire communities of plants, pollinators and their interactions to restructure, and 
ultimately leading to species declines. To understand the mechanisms behind com-
munity shifts and declines, as well as monitoring and managing impacts, a global effort 
must be made to characterize plant–pollinator communities in detail, across different 
habitat types, latitudes, elevations, and levels and types of disturbances. Generating 
data of this scale will only be feasible with rapid, high-throughput methods. Pollen 
DNA metabarcoding provides advantages in throughput, efficiency and taxonomic 
resolution over traditional methods, such as microscopic pollen identification and 
visual observation of plant–pollinator interactions. This makes it ideal for understand-
ing complex ecological networks and their responses to change. Pollen DNA meta-
barcoding is currently being applied to assess plant–pollinator interactions, survey 
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1  |  INTRODUC TION

Anthropogenic activities are leading to global changes in the en-
vironment, including habitat loss (Ellis et al., 2010), climate change 
(Hansen et al., 2010), biodiversity decline (e.g., Bowler et al., 2020; 
Butchart et al.,  2010), and the spread of invasive species and dis-
eases (Hulme, 2009; Pyšek et al., 2020). Such global changes can act 
additively or interactively (Didham et al., 2007; Peters et al., 2019) to 
alter species composition through events such as local introductions 
and extinctions (Mathiasson & Rehan, 2020; Portman et al., 2018), 
shifts in phenology (Bartomeus et al.,  2011; Forrest,  2015), and 
changes in the dispersal and connectivity of populations (Damschen 
et al., 2019). These impacts can subsequently affect the spatiotem-
poral overlap of species and their behaviour, which can alter spe-
cies interactions, restructure food webs (Dunn et al., 2018; Kortsch 
et al., 2015; Richardson et al., 2021) and create network instability 
(Brosi & Briggs, 2013; Revilla et al., 2015). The negative influence of 
global change is particularly apparent for plants and their pollina-
tors, where shifts in community composition and function can im-
pair ecosystem services such as pollination (Burkle et al., 2013; Potts 
et al., 2010). Reduced ecosystem functioning threatens pollinator-
dependent crops, which is likely to impact economic productivity 
(Reilly et al., 2020) and human nutrition (Smith et al., 2015). Likewise, 
the changing distribution and phenology of plants with allergenic 
pollen could challenge human health and quality of life (Anderegg 
et al., 2021).

With greater understanding of how plant–pollinator interac-
tions vary across space and time, ecologists can better predict 
how these communities will be affected by global change (Burkle & 
Alarcón, 2011). More detailed characterization of existing plant and 
pollinator communities will enable conservation managers to moni-
tor for change, direct management efforts and to iteratively update 
management processes. To date, there are a handful of ecosystems, 
mostly in Europe, that have been well characterized in terms of net-
work structure, specialization, and annual turnover in species and 

interactions. In these study systems, plant–pollinator networks are 
often nested (i.e., having groups of highly connected species oc-
curring as subsets within larger networks) and modular (i.e., having 
groups of species, or modules, that have more connections within 
than between groups) (Olesen et al.,  2007). Both nestedness and 
modularity have been hypothesized to make networks more stable 
to species loss (Bastolla et al., 2009; Olesen et al., 2007), but net-
works are dynamic within and between seasons (Olesen et al., 2008). 
For instance, multiyear studies in Greece have shown that the same 
pollinator species can interact with a completely different number 
and identity of plants in different years (Petanidou et al.,  2008). 
These studies imply that networks should be assessed at long tem-
poral scales to account for network dynamism. However, it is un-
known whether temporal variation is universal or only apparent 
in the European study system, as very few long-term studies have 
been conducted elsewhere. It is also unknown how plant–pollinator 
networks are changing with anthropogenic disturbances. To fully 
understand these processes, detailed, long-term studies must be 
conducted across the globe, in different habitat types, latitudes, 
elevations and levels of disturbance. To collect such a tremendous 
amount of data on plant–pollinator communities, high-throughput 
methods are necessary.

Molecular methods can be useful to quickly obtain large volumes 
of data on species assemblages, trophic interactions and networks. 
By combining DNA barcoding with high-throughput sequencing 
(HTS), DNA metabarcoding can detect interactions between species 
(Roslin & Majaneva, 2016) or identify whole communities from en-
vironmental samples (Cristescu,  2014). Likewise, complex ecologi-
cal networks can be efficiently derived from DNA metabarcoding 
data, because multiple interactions can be detected from a single 
sample, and taxonomic identification can be obtained for cryptic 
species and developmental stages or parts of organisms that do not 
present diagnostic characters (Roslin & Majaneva,  2016). For ex-
ample, Clare et al.  (2019) used DNA metabarcoding of bat faeces 
in combination with Sanger sequencing of individuals to construct 

ecosystem change and model the spatiotemporal distribution of allergenic pollen. 
Where samples are available from past collections, pollen DNA metabarcoding has 
been used to compare contemporary and past ecosystems. New avenues of research 
are possible with the expansion of pollen DNA metabarcoding to intraspecific iden-
tification, analysis of DNA in ancient pollen samples, and increased use of museum 
and herbarium specimens. Ongoing developments in sequencing technologies can ac-
celerate progress towards these goals. Global ecological change is happening rapidly, 
and we anticipate that high-throughput methods such as pollen DNA metabarcoding 
are critical for understanding the evolutionary and ecological processes that support 
biodiversity, and predicting and responding to the impacts of change.

K E Y W O R D S
DNA metabarcoding, ecosystem change, environmental DNA, global change ecology, 
metagenomics, pollen, pollination
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networks of networks containing 3304 interactions between 762 
nodes of eight trophic functions involving parasitic, mutualistic and 
predatory interactions. This scale of information would require years 
of observation data (Clare et al., 2019), but the authors were able to 
create complex ecological networks, including cryptic species with 
molecular data. They were then able to show that bat–prey interac-
tions are much more generalist than bat–parasite and bat–plant net-
works in their study system, and to identify keystone species based 
on the number of network connections. Similar results collected 
across biomes could greatly improve rapid monitoring of global 
plant–pollinator communities and contribute to the construction of 
long-term data sets.

Pollen is a powerful biomarker for detecting spatial and temporal 
variation in plant and pollinator species assemblages and interactions, 
making it ideal for high-throughput assessment of global ecological 
change (Hornick et al., 2021). Traditionally, taxonomic identification 
of pollen is based on the visual observation of pollen morphology, 
but is limited in throughput (Stillman & Flenley, 1996) and taxonomic 
resolution (Lau et al., 2019; Mander & Punyasena, 2014; Richardson 
et al.,  2019). Research identifying species or genotypes of plants 
using DNA from pollen began in the 1990s and was based on ge-
notyping of individual pollen grains (Petersen et al., 1996; Suyama 
et al., 1996). With the advent of HTS technology, DNA-based pol-
len identification is no longer dependent on the time-consuming 
isolation and analysis of DNA from individual pollen grains (Aziz & 
Sauve, 2008; Matsuki et al., 2007). Instead, with HTS, researchers 
have been able to sequence pollen from bulk samples using DNA 
metabarcoding, following procedures available in most molecular bi-
ology laboratories (Figure 1). This breakthrough has allowed rapid, 
large-scale identification of species within mixtures. Early proof-
of-concept papers on pollen DNA metabarcoding demonstrated 
the feasibility of the method (e.g., Cornman et al.,  2015; Hawkins 
et al., 2015; Keller et al., 2015; Kraaijeveld et al., 2015; Richardson 
et al.,  2015) and it has since been used in a range of applications 
(Appendix S1: Methods S1, Figure S1, Table S2; Appendix S2).

Pollen DNA metabarcoding provides an important tool for un-
derstanding and monitoring ecosystems under global change. Here, 

we review current knowledge on the impacts of global change on 
plants, pollinators and their interactions, and the knowledge gaps 
that pollen DNA metabarcoding is well placed to address (Section 2); 
provide an assessment of progress on technical issues that may be 
preventing the application of pollen DNA metabarcoding to research 
questions (Section 3); and envisage additional concepts that could 
be addressed with methods development and incorporation of new 
and emerging technologies (Section 4).

2  |  CONTEMPOR ARY APPLIC ATIONS OF 
E XISTING POLLEN DNA METABARCODING 
METHODS IN GLOBAL CHANGE ECOLOGY

Traditional observation-based plant–pollinator interaction research 
and network theory have generated predictions of how species 
and their interactions might respond to environmental changes 
(Bascompte & Jordano,  2007; Burkle & Alarcón,  2011; Revilla 
et al., 2015). Plant–pollinator interaction networks are predicted to 
be quite plastic, with many species persisting following disturbance. 
Network stability can be maintained after a disturbance through 
changes in mutualistic partners until a certain threshold is reached, 
where the ecosystem collapses (Fortuna & Bascompte,  2006). 
Network responses are expected to be heterogeneous with re-
spect to time and space, and the impacts of specific changes such 
as habitat loss, climate change and biological invasions are poorly 
understood (Burkle & Alarcón, 2011). These hypotheses have been 
tested at local scales using traditional methods, and results have 
been consistent with the expectation that many interactions are lost 
but the overall network structure is stable (e.g., Burkle et al., 2013). 
However, large amounts of data are needed to test whether this ex-
pected heterogeneity occurs across geographical ranges and distur-
bance types. Given the scalability of pollen DNA metabarcoding, this 
method has the potential to improve our conceptual understand-
ing of plant–pollinator network structure and response to change, 
including understanding cascading impacts of changing interac-
tions on pollinator health, impacts of land-use change, impacts of 

F I G U R E  1  Research workflow when 
using DNA-based pollen identification. 
Methods will vary depending on the 
ecological question of interest, the 
study system, the availability of existing 
reference sequences and funding. Much 
of the contemporary research on pollen 
metabarcoding has focused on methods 
development (Figure S1), but recent 
applications in global change ecology 
have risen over the past 2 years (Table S1), 
highlighting pollen metabarcoding's 
capacity for addressing ecological 
hypotheses.
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biological invasions and impacts of climate change on plant phenol-
ogy and diversity (Figure 2). Several recent pollen DNA metabarcod-
ing studies have corroborated the broader theory developed from 
traditional methods, and addressed specific hypotheses related to 
management that would not have been practical if relying on mor-
phological identification of pollen by expert palynologists (Gresty 
et al.,  2018). Analysis of pollen provides a further opportunity to 
improve our understanding of the impacts of ecosystem change 
on pollinator health, because the same pollen sample can be used 
for detection of plant–pollinator interactions, analysis of nutritional 
value (Donkersley et al., 2017), and analysis of microbiome species 
diversity and composition (Leonhardt et al.,  2022). Finally, pollen 
DNA metabarcoding can be used for high-throughput biodiversity 
monitoring of plant community composition (Leontidou et al., 2021; 
Milla et al., 2022), and the transport and deposition of airborne al-
lergenic pollen in current environments and under different climate 
change scenarios (Campbell et al., 2020; Rowney et al., 2021; Uetake 
et al., 2021).

2.1  |  Understanding the impact of ecosystem 
change through high-resolution plant–pollinator 
interaction networks

How does land-use intensification and urbanization affect bee for-
aging (Peters et al., 2022)? Which bee species can or cannot cope 
with such anthropogenic changes (Peters et al.,  2022)? How does 

this in turn affect pollination of plants (Hornick et al., 2021)? How 
is bee foraging, insect migration and pollination linked to climatic 
changes (Mayr et al., 2021; Suchan et al., 2019; Figure 2)? Answering 
such questions requires deep taxonomic resolution of networks and 
the inclusion of different levels of human impact, at multiple time 
points, locations and habitat types, each with appropriate replica-
tion due to natural variation (Burkle & Alarcón, 2011). Visitation net-
works can be constructed through a range of methods which that 
are focused on the perspective of the plant, animal or a combination 
of both (Lowe et al., 2022). To address the impacts of anthropogenic 
changes on insect health, the dietary intake of the flower-visiting 
animal is required, information which cannot be achieved com-
pletely through most plant-focused surveys (Arstingstall et al., 2021; 
Parreño et al.,  2022; Popic et al.,  2013; Ruedenauer et al.,  2016). 
Pollen-based methods, such as DNA metabarcoding, provide the an-
imal perspective and allow exploration of the dietary input obtained 
from these interactions (Piko et al., 2021; Pornon et al., 2017; Zhao 
et al., 2018). Dietary input can be explored at different scales from 
the preferences of individual foragers (Biella et al., 2019; Casanelles-
Abella et al., 2021; Elliott et al., 2021; Piko et al., 2021) to colony-, 
nest- or species-level assessments (Danner et al., 2017; Nürnberger 
et al.,  2019; Sickel et al.,  2015). Furthermore, analysing resource 
partitioning and specialization at different scales, from the com-
munity to the individual, improves our understanding of how plant–
pollinator relationships are organized and how vulnerable they are to 
ecosystem change (Brosi, 2016; Elliott et al., 2021; Lucas et al., 2018; 
Peters et al., 2022). The ability to characterize an individual's entire 

F I G U R E  2  Many perennial questions 
in global change ecology are constrained 
by technical difficulties in identifying 
plant–pollinator interactions or 
environmental pollen at global scales. 
The major advantage of pollen DNA 
metabarcoding is improved detection and 
quantification of plant species from pollen 
samples. DNA methods can accommodate 
increased sampling (higher throughput), 
more accurately identify plant species 
and plant–pollinator interactions (higher 
resolution) and characterize plant–
pollinator networks across unique habitats 
and gradients (e.g., climate, land-use) 
for regional and global comparisons 
(scalability). Thus, we highlight three 
research themes and affiliated research 
questions where pollen metabarcoding 
could be applied to help society continue 
to understand, anticipate and adapt to 
global ecological change.
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pollen assemblage makes metabarcoding uniquely placed to explore 
novel questions on individual specialization at a large scale and is a 
promising area of future research (Lowe et al.,  2022). Using DNA 
metabarcoding to characterize resource partitioning throughout a 
network has identified that generalized networks and species are 
composed of specialized individuals (Lucas et al.,  2018; Pornon 
et al., 2019). Prior to the application of high-throughput and high-
resolution methods such as metabarcoding, individual-based 
networks were seldom explored due to construction being time 
consuming, owing to the high sampling effort required for visual sur-
veys or the morphological identification of pollen (Tur et al., 2014). 
Longer-term sampling and analysis of museum specimens (Gous 
et al., 2021) can provide comprehensive insights into the complete 
foraging spectrum and species' dietary niche, co-evolution and long-
term responses to changes (Kaluza et al., 2017; Vaudo et al., 2020; 
Wilson et al., 2021).

2.2  |  Relationships between pollinator foraging, 
nutrition and health

Pollinator health has been affected by anthropogenic change, but 
the mechanisms behind these impacts are still poorly understood. 
There are likely to be synergistic interactions between loss of nu-
tritional and nesting resources as well as other factors such as land-
scape composition, pesticide exposure and pathogens (Parreño 
et al.,  2022; Woodard & Jha,  2017). Holistic approaches that link 
nutrition, microbial community structure, pathogen, parasite and 
viral load allow us to understand the complex interactions between 
the individual factors (López-Uribe et al., 2020). For example, using 
pollen DNA metabarcoding coupled with chemical analyses of nu-
tritional composition, several recent studies have shown that plant 
resource diversity is directly linked to pollinator nutrition, devel-
opment and health, and reduced resource diversity in intensive 
agricultural landscapes can negatively impact nutritional profiles 
(Donkersley et al., 2017; Peters et al., 2022; Trinkl et al., 2020). This 
information is only traceable with bee-derived data as produced 
by DNA metabarcoding. Knowing the pollen composition, we can 
identify malnutrition risks caused by switching to unfavourable or 
fewer food sources (Brodschneider & Crailsheim,  2010; Eckhardt 
et al.,  2014; Peters et al.,  2022; Ruedenauer et al.,  2016; Trinkl 
et al., 2020; Vanderplanck et al., 2018).

Recently, the importance of transmitting microbes between 
plants and pollinators by hitchhiking on pollen grains, nectar and an-
imal bodies has been recognized (Keller et al., 2021; McFrederick & 
Rehan, 2016; Zemenick et al., 2021). This accounts both for microbes 
with beneficial (Dharampal et al.,  2019; Leonhardt et al.,  2022; 
Vuong & McFrederick,  2019) and detrimental (Keller et al.,  2018; 
Voulgari-Kokota et al., 2020) effects on host ecology, nutrition and 
health (Engel et al., 2016; Leonhardt et al., 2022; Vannette, 2020; 
Voulgari-Kokota et al.,  2018). Land-use changes are known to not 
only affect the diversity of plants but also lead to reduced diver-
sity and homogenization of microbial communities in flowers (Gaube 

et al., 2021) and, with less pollination network modularity and re-
source competition on dominant hubs, increase the risk of pathogen 
transmission (Keller et al., 2021; Zemenick et al., 2021). Coupled pol-
len and microbiome DNA metabarcoding has already been applied 
to understand the role of pollen foraging on microbiome composi-
tions, for example that florally derived microbes largely shape the 
pollinator microbiomes of the nest, larvae and adults, especially for 
solitary bees (Keller et al., 2018; Leonhardt et al., 2022; McFrederick 
& Rehan,  2016, 2019; Voulgari-Kokota et al.,  2019). Microbial ge-
nomics coupled with pollen foraging assessments through metabar-
coding allow us to understand how microbes influence interaction 
networks by changing resource attractiveness (Keller et al.,  2021; 
Vannette,  2020) or bee cognitive adaptation capabilities (Zhang 
et al.,  2022), where microbe symbioses might mitigate nutri-
tion deficits (Kwong et al.,  2014; Leonhardt et al.,  2022; Vuong & 
McFrederick, 2019) or dietary toxicity (Zheng et al., 2016), and what 
the risk and epidemiology of pollinator diseases (Castelli et al., 2020) 
are in changing landscapes (Figure 2).

2.3  |  Pollinator responses to land-use change

In recent decades, there have been broad-scale shifts in land use 
with subsequent changes in resource diversity and availability to 
pollinators (Burkle et al., 2013; Jones, Brennan, et al., 2021; Scheper 
et al., 2014). Overall, there has been deforestation in the tropics but 
widespread reforestation and afforestation in temperate regions, 
often with monocultures or small numbers of tree species replac-
ing previous flora (Song et al., 2018). In addition, land cover changes 
from increasing urbanization and afforestation (He et al., 2019; Song 
et al., 2018) often occur at the expense of grassland and herbaceous 
areas, which probably contain important pollinator habitat. How do 
these landscape-scale changes in resource availability and diversity 
affect plant–pollinator communities and their interactions? Are there 
land-use changes that destabilize or alter plant–pollinator networks?

DNA metabarcoding can detect higher numbers of species than 
observational data (Arstingstall et al.,  2021; Pornon et al.,  2017), 
which is a significant advantage when considering how landscape 
context influences plant–pollinator interactions. This advantage 
has been used to assess the extent of seed mix utilization (Gresty 
et al., 2018; McMinn-Sauder et al., 2020) and highlighted the need 
for a landscape perspective of foraging (Piko et al., 2021). Likewise, 
landscape-scale resource diversity is frequently important for so-
cial pollinators (Kaluza et al., 2017). Social bees often collect a high 
diversity of plants at low densities (de Vere et al., 2017; McMinn-
Sauder et al., 2020; Wilson et al., 2021), especially when consider-
ing foraging at longer timescales (Sponsler, Grozinger, et al., 2020). 
This is true even in resource-poor landscapes, where honey bees 
communicate to maximize pollen collection from diverse plant re-
sources (Nürnberger et al.,  2019). Likewise, Danner et al.  (2017) 
showed that honey bees adapt to reduced landscape plant diversity 
by increasing foraging ranges, and both Tommasi et al.  (2021) and 
Peters et al.  (2022) linked increasing urbanization and agricultural 
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land-use with greater generalization and foraging niche overlap 
among pollinators. In all these cases, pollen metabarcoding enabled 
more detailed detection of how pollinators use floral resources at 
landscape scales. These findings advance our understanding of the 
role of plant diversity in supporting generalist pollinators and imply 
that landscape-scale management is critical for maintenance of 
plant–pollinator networks.

In addition, pollen DNA metabarcoding has been used to under-
stand the flexibility of pollinator species' dietary niche in response 
to changing landscapes (Casanelles-Abella et al.,  2021; Vaudo 
et al., 2020). These studies have confirmed that generalist species 
switch host plants depending on availability across landscape types 
(Casanelles-Abella et al.,  2021) while oligolectic and mesolectic 
bee species exhibit diet conservatism to host-plant species within 
their preferred plant families (Casanelles-Abella et al., 2021; Vaudo 
et al., 2020). Dietary flexibility enables pollinators to adapt to chang-
ing environments and maintain the stability of plant–pollinator net-
works, but dietary niche breadth remains poorly characterized for 
most species. Thus, pollen metabarcoding has an important role in 
evaluating bee diets and understanding the mechanisms underlying 
ecosystem resilience to land-use change.

Much of the work in landscape-scale assessments of pollinator 
foraging has focused on agroecosystems. Expansions in agricultural 
land cover can have a range of impacts on pollinators, including de-
creasing floral resource diversity (da Rocha-Filho et al., 2021; Jones, 
Brennan, et al.,  2021; Lucek et al.,  2019;Richardson et al.,  2021; 
Samuelson et al.,  2020), and increasing pesticide and parasite 
exposure (Cohen et al.,  2021; Douglas et al.,  2020; Douglas & 
Tooker, 2015). Pollen DNA metabarcoding can be used to elucidate 
and monitor how pollinator foraging responds to changing agroeco-
systems. For instance, a comparison of modern-day honey with sam-
ples collected 65 years previously demonstrated shifts in honeybee 
forage composition in response to changes in agricultural practices 
and the distribution of invasive species within the UK, illustrating 
adaptability in major forage use by honey bees (Jones, Brennan, 
et al., 2021). Recent studies, using both molecular and morpholog-
ical pollen identification, have also found that honeybees situated 
in modern agricultural landscapes tend to collect a lower diversity 
of forage relative to nearby nonagricultural landscapes (Richardson 
et al.,  2021; Samuelson et al.,  2020), and land-use intensification 
decreases pollinator richness (Tommasi et al.,  2021). As agroeco-
systems continue to expand and incorporate new management, it 
is increasingly important to ask: how does agricultural intensifica-
tion and diversification influence pollinator foraging behaviour and 
health, and the stability of the pollination services they provide 
(Figure  2)? To answer this, greater spatial replication and compar-
isons over a broader diversity of alternative landscape types are 
needed, two challenges to which molecular pollen identification is 
uniquely suited.

While both agricultural and urban intensification can nega-
tively impact pollinator communities through habitat loss (Potts 
et al., 2010), many urban environments also support rich pollinator di-
versity (Baldock et al., 2015; Hall et al., 2017; Turo & Gardiner, 2019), 

especially when landscapes exhibit moderate or intermediate levels 
of urbanization (Wenzel et al., 2020). Improved characterization of 
urban foraging networks is therefore important for understanding 
why certain pollinators perform well in cities and for informing the 
development of urban pollinator habitat, which frequently does 
not consider pollinator foraging preferences or nutrition (Garbuzov 
& Ratnieks,  2014). Pollen DNA metabarcoding is ideal for quanti-
fying plant–pollinator interactions and pollinator diets in urban 
environments. Traditional methods for monitoring plant–pollinator 
interactions (e.g., flower–visitor observations, hand-netting) can be 
challenging to use in urban areas due to restrictions on sampling 
private property and the high floral diversity present in the urban 
matrix (Sponsler, Shump, et al., 2020).

Recent metabarcoding studies circumvent these challenges and 
illustrate how pollinators partition floral resources (especially na-
tive and non-native forage) (Potter et al.,  2019; Sponsler, Shump, 
et al.,  2020) within unique urban contexts and across large-scale 
urbanization gradients (Casanelles-Abella et al., 2021). Importantly, 
these studies found that urban pollinators forage pollen from a wide 
range of native and introduced plants (e.g., ornamental, weeds) 
and reveal a highly seasonal structure of floral resources (Potter 
et al.,  2019; Sponsler, Grozinger, et al.,  2020); however, they also 
showed that diet composition of urban pollinators changes de-
pending on the level of urbanization (Casanelles-Abella et al., 2021). 
Future application of pollen DNA metabarcoding in urban environ-
ments could build off these studies by connecting whether certain 
diets, for example higher proportions of tree pollen (Casanelles-
Abella et al., 2021) or native forage (Potter et al., 2019), are asso-
ciated with improved reproductive success. Likewise, genomic data 
could promote greater understanding of unique urban challenges. 
For instance, molecular reconstruction of urban pollinator foraging 
could be used to test whether warming associated with urban heat 
islands leads to reduced complexity of foraging networks (Hamblin 
et al.,  2018), or if interspecific competition for floral resources by 
non-native pollinators depletes the diet of native species (Fitch 
et al., 2019).

Further opportunity to examine the impacts of land-use change 
on pollinators is available through historical samples. Examination of 
historical bee specimens in the Netherlands and pollen identification 
by microscopy has shown that the decline of preferred host plants 
was associated with bee decline (Scheper et al., 2014). Pollen DNA 
metabarcoding of museum specimens provides a higher through-
put and higher resolution method for comparing foraging changes 
through extended time periods (Gous et al., 2019; Gous et al., 2021; 
Jones, Brennan, et al., 2021). More recently, pollen DNA metabar-
coding of museum specimens has been used to assess the relation-
ship between host plant availability and declines of the endangered 
Bombus affinis in North America (Simanonok et al., 2021). In contrast 
to earlier research in other study systems, they observed no dramatic 
changes in pollen composition over time on bee specimens dating 
back 100 years, illustrating that the B. affinis decline is probably not 
driven by changes in specific floral resources. To clarify how polli-
nator diet has changed throughout the Anthropocene, researchers 
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should conduct further DNA metabarcoding of pollen from museum 
specimens across a variety of pollinator taxa and landscapes. Such 
historical perspectives will elucidate if pollinator declines are con-
nected to host plant availability and how plant–pollinator interac-
tions change in relation to changes to climatic variables, allowing 
more precise predictions for future climate change scenarios.

2.4  |  Impacts of biological invasions on plant–
pollinator interactions

The impacts of biological invasions on plant and pollinator commu-
nities are wide-ranging and variable. The integration of non-native 
plants into native plant–pollinator networks requires the attraction 
of pollinators (native or introduced), successful reproduction and 
population growth, and an impact on plant–pollinator interaction 
network structure (Parra-Tabla & Arceo-Gomez, 2021). Novel plants 
may be visited by pollinators that are already present in the network, 
or may attract new generalist pollinators into the network (Russo 
et al., 2014). Either strategy increases generalization in the network, 
which can impact the modularity and nestedness and therefore net-
work stability (Albrecht et al., 2014; Stouffer et al., 2014). While the 
impacts of non-native species on plant–pollinator interaction net-
works have been studied in detail for many study systems, these 
impacts have been shown to be context-specific, varying with phy-
logenetic relatedness and phenotypic matching of native and non-
native neighbours (Gibson et al., 2012; Morales & Traveset, 2009; 
Vaudo et al.,  2020), as well as invasion intensity (Kaiser-Bunbury 
et al., 2011). Further experimental research is needed to determine 
the impacts of non-native species in plant–pollinator networks and 
should consider the role of functional traits (Gibson et al.,  2012; 
Johnson & Ashman,  2019), overlap in phenology of native and 
non-native plants (Bartomeus et al.,  2008), and what threshold of 
non-native abundance disrupts plant–pollinator networks (Vilà 
et al., 2009).

Because the impacts of non-native species are context-specific, 
improving conceptual understanding will require detailed analysis 
across a diverse range of study systems. Pollen DNA metabarcod-
ing has begun to provide answers to questions on non-native spe-
cies and the restructuring of interaction networks, by improving 
detailed species-level understandings (Vaudo et al.,  2020; Wilson 
et al., 2021). These studies tend to be focused on foraging behaviour 
of non-native pollinators. This has improved conceptual understand-
ings of how pollinators choose their host plants, and the level of flex-
ibility in these choices, as well as what foraging preferences enable 
certain pollinators and their host plants to thrive in their non-native 
range. Research using DNA metabarcoding to investigate foraging 
behaviour of non-native solitary bees has shown that pollinators are 
flexible in whether they forage on coevolved plants from their na-
tive range, or from their preferred plant families (Vaudo et al., 2020). 
DNA metabarcoding of pollen loads of honey bees and native in-
sect pollinators in Australia found that their pollen diets overlap, and 
that the plant–pollinator network had a high level of generalization, 

which may lead to competition (Elliott et al., 2021). Other studies not 
directly focused on impacts of non-native species have found that 
non-native plant species occur more frequently in the diet of gener-
alist bee species (Casanelles-Abella et al., 2021; Wilson et al., 2021) 
and that increases in distributions of non-native plant species have 
led to increased foraging on these species by honey bees (Jones, 
Brennan, et al., 2021). When additional studies are conducted in a 
broad range of ecosystems, we will begin to understand the context-
dependent impacts of non-native species on plant–pollinator in-
teractions. Thus, pollen DNA metabarcoding is likely to have an 
important role as a high-throughput method enabling such broad 
ranging studies (Figure 2).

2.5  |  Monitoring and surveillance

A practical outcome of understanding the mechanisms behind the 
impacts of global ecological change on plants, pollinators and their 
interactions is the ability to monitor change as it occurs to study the 
dynamics of ecological communities, develop strategies to manage 
impacts of change and monitor the effectiveness of these manage-
ment solutions. Community-level monitoring of plant biodiversity 
through pollen DNA metabarcoding offers a high-throughput al-
ternative to botanical surveys (Johnson et al.,  2021; Leontidou 
et al., 2021; Milla et al., 2022), and could be a valuable tool for the 
surveillance of ecosystem change, particularly when combined 
with other high-throughput techniques such as remote sensing or 
unmanned aerial vehicle surveys (Ancin-Murguzur et al.,  2020). 
Important research questions investigating the effects of environ-
mental disturbances and extreme climate events on community sta-
bility can be addressed with this monitoring approach. Monitoring 
activities will provide valuable data for understanding and predicting 
changes in plant and pollinator communities under environmental 
change. The large amounts of data generated by monitoring activi-
ties could be used to test hypotheses using environmental change 
as a natural experiment. For instance, long-term monitoring of the 
same location under stress from anthropogenic impacts, or broad-
scale monitoring across heterogeneous landscapes could be used 
to assess how plant–pollinator networks restructure with changing 
resource availability (Figure 2).

Similar monitoring strategies are being used to monitor aller-
genic pollen. Pollen allergy, primarily causing allergic rhinitis, has 
significant impacts on human health. The seasonal presence of air-
borne pollen is linked strongly to plant phenology and therefore 
climate (Kurganskiy et al., 2021). Understanding the human health 
impacts of climate change related to pollen allergy requires an un-
derstanding of the relationship between plant phenology, seasonal-
ity and climate. The improved taxonomic resolution of pollen DNA 
metabarcoding can help address key questions about allergenic pol-
len, including: Does the length and timing of plant flowering period 
change according to preseasonal meterological conditions? Will fu-
ture climate change lead to long-term changes in the severity of the 
pollen season (Kurganskiy et al., 2021)? Addressing these questions 
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will enable better forecasting of pollen season severity, with posi-
tive impacts on human health and quality of life. A major barrier to 
addressing these questions has been that plant families with highly 
allergenic pollen are difficult to identify through pollen morphol-
ogy (e.g., Poaceae); however, the increased taxonomic resolution 
provided by DNA metabarcoding can distinguish allergenic species 
from nonallergenic species (e.g., Poaceae: Brennan et al.,  2019; 
Urticaceae: Polling et al., 2022).

Airborne pollen sampling, combined with DNA metabarcod-
ing, can also facilitate monitoring of allergenic species across large 
spatiotemporal scales (Brennan et al., 2019; Leontidou et al., 2018; 
Polling et al., 2022) and can identify seasonal changes in allergenic 
species (Campbell et al., 2020; Uetake et al., 2021). Better forecast-
ing tools can now be developed to model how key allergenic species 
will respond under climate change (Kurganskiy et al., 2021). Finally, 
detailed modelling of allergenic pollen distribution would also be 
valuable for understanding plant–pollinator interactions under cli-
mate change. For example, this knowledge could be used to deter-
mine whether changes in plant phenology and distribution due to 
climate change could lead to a loss of pollinator availability and/or 
availability of novel pollinators, leading to the restructuring of eco-
logical networks.

3  |  RESOLUTION OF TECHNIC AL ISSUES 
AND ONGOING METHOD DE VELOPMENT

Pollen DNA metabarcoding is a relatively new method and is con-
stantly improving. In this section, we highlight how some recent and 
ongoing method developments could enhance our ability to solve 
global change questions.

3.1  |  Quantification, sensitivity and detection 
probabilities

Many ecosystem changes initially present as changes in species 
abundances or interaction intensity rather than species composition, 
meaning that proportional or abundance data are much more in-
formative than presence/absence. Furthermore, quantitative plant–
pollinator networks have been found to reveal patterns that were 
not detectable with qualitative networks, such as asymmetrical de-
pendencies between plants and pollinators (Bascompte et al., 2006), 
and may provide better predictions of secondary extinctions (Kaiser-
Bunbury et al., 2010). DNA metabarcoding is generally considered 
semiquantitative, and the proportion of reads can be considered a 
reasonable approximation of the proportion of species in a mixture 
(Bell et al., 2019; Polling et al., 2022). The quantitative accuracy of 
pollen DNA metabarcoding could be improved with a better un-
derstanding of species biases, method optimization and quantita-
tive corrections. Imperfect quantification in DNA metabarcoding 
could result from biases among species at any step in the technical 
process (Lamb et al.,  2019), or insufficient sequencing depth and/

or replication (Deagle et al.,  2019; Mata et al.,  2019). Corrections 
for biases have been applied for other sample types (Garrido-Sanz 
et al.,  2022; Kembel et al.,  2012; Lamb et al.,  2019; Pawluczyk 
et al., 2015), and could be readily applied to pollen DNA metabar-
coding. Amplification-free methods eliminate the PCR (polymerase 
chain reaction) biases and have been shown in a handful of studies 
to be more quantitative than DNA metabarcoding (Bell et al., 2021; 
Lang et al., 2019; Peel et al., 2019). While existing methods help de-
tect large-scale changes in species proportions, the ongoing method 
development discussed here could lead to further improvements in 
quantification accuracy. This will enable improved understanding of 
ecosystem impacts through the more sensitive analyses that can be 
conducted with quantitative networks, and enable detection of re-
sponses that present as quantitative changes, rather than losses of 
species or links.

A related problem is understanding the sensitivity and expected 
detection limits for species of interest, and the rates of false positives 
and false negatives. This may be particularly relevant to ecosystem 
monitoring, where researchers may be interested in the presence 
or absence of low-abundance species, such as a rare species be-
coming extinct or early detections of non-native invasive species. 
These issues have been addressed in environmental DNA (eDNA) 
monitoring of water samples through site occupancy models which 
determine the confidence of presence/absence results based on 
species-specific quantitative PCR assays (Dorazio & Erickson, 2018; 
Schmidt et al., 2013) and DNA metabarcoding (Ficetola et al., 2015). 
Similar methods would apply to pollen. Improved confidence in the 
presence of a species in a sample can be obtained by understanding 
the overall rate of false positives and false negatives for the study 
system and method. Researchers can increase confidence by using 
field- and laboratory-based negative controls and positive controls 
or mock communities and no-library negative controls to quantify 
sequencing mistag rates (Esling et al., 2015), and by ensuring ade-
quate sequencing depth and replication (Shirazi et al., 2021).

Confidence estimates are also lacking for the classification steps 
in pollen DNA metabarcoding. There is an additional need to develop 
classification programs with more accurate probabilistic confidence 
estimates. While this has been attempted several times, available 
methods do not provide consistent results depending on the gene 
regions and databases used (Edgar, 2018).

3.2  |  Increasing taxonomic and genomic depth of 
reference databases

Having relatively complete reference databases, in terms of both 
species and gene regions, could increase the potential applications 
of pollen DNA metabarcoding. While it is possible to assess some 
ecological questions without identifying all taxa in the system, 
comparison between studies becomes difficult. Understanding the 
impacts of global change on plant–pollinator interactions will only 
be possible if the results of multiple studies can be compared over 
time and across regions. To do this requires fine-scale taxonomic 
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identification, which depends on a comprehensive reference library 
for the gene region being used for the species in the study system(s). 
There are an estimated 450,000 angiosperm species (Pimm & 
Joppa,  2015), and currently, around 25% of these have publicly 
available sequences for standard DNA barcodes (Bell et al., 2021). 
Reference libraries have been compiled for standard DNA barcodes 
for all flowering plants in the UK (Jones, Twyford, et al., 2021) and 
Canada (Kuzmina et al., 2017). The need to develop national data-
bases has been recognized in other countries (Dormontt et al., 2018; 
Yang et al.,  2020). Existing software such as bcdatabaser (Keller 
et al., 2020) or metacurator (Richardson et al., 2020) for creating cus-
tom databases from species lists can be helpful where there is no na-
tional database, different gene regions are being used or a more local 
database is desired. Several large-scale projects are in progress to 
sequence DNA barcodes, organellar genomes and whole genomes 
for a large proportion of global biodiversity (Lewin et al.,  2018). 
Careful archiving of raw data, amplicon sequence variants (ASVs) 
and/or representative sequences for operational taxonomic units 
(OTUs) will enable retrospective taxonomic classification once data-
base gaps have been filled.

4  |  FUTURE RESE ARCH DIREC TIONS

While current methodological constraints should be resolved, we 
also envisage several additional ways in which pollen metabarcoding 
could be developed to advance research on global change ecology.

4.1  |  Understanding the role of pollinators in plant 
population genetics

Pollen DNA metabarcoding currently works for species- or genus-
level identifications, but high-throughput intraspecific identification 
is possible. Previous studies have demonstrated that intraspecific 
genetic variation can be analysed by sequencing single pollen grains 
(Hasegawa et al., 2009; Matsuki et al., 2007). With HTS, the pollen 
mixture on a pollinator could be analysed to reveal the genetic diver-
sity of plant populations. Recent developments in the field of eDNA 
show some precedent for performing such population-level analysis. 
For example, allele frequencies of both whale shark control region 
and nuclear microsatellites from round gobies matched estimates 
obtained from traditional methods (Andres et al.,  2021; Sigsgaard 
et al., 2016). Thus, eDNA sampling of pollen might be an effective 
way of monitoring population-level diversity of plants over time, 
without intensively collecting and sampling individuals. However, 
for high-throughput intraspecific amplicon sequencing to succeed, 
more variable markers must be developed for plants because the 
standard DNA barcodes usually do not show much variation below 
the species level.

If both intra- and interspecific diversity could be examined from 
one pollen sample, micro- and macro-evolutionary processes could 
be assessed at the level of individuals, species and communities. This 

combination of methods would enable new research on the role of 
pollinators in pollen-mediated gene flow (Figure 2). The overall fit-
ness and adaptive potential of plants within an area are closely re-
lated to the influx of diverse genes through pollen (Morente-López 
et al., 2020). Studying the pollen on pollinators at an individual level 
(e.g., plant gametes) can uniquely show the diversity of genotypes 
that pollinators carry, rather than only the genotypes that are rep-
resented in the local plant community. Typically, the diversity of 
pollen transferred is assessed through genotyping parent plants and 
germinated offspring and applying parentage tests. Using an HTS 
approach on pollen could provide a more efficient way to study fun-
damental questions such as: Do changes in pollinator foraging be-
haviour affect outcrossing rates and fitness outcomes for plants? Do 
pollinators with larger foraging ranges carry a greater plant genetic 
diversity in their pollen load? Are the number of pollinators in an 
area proportional to the pollination service provided to plants?

Finally, combining novel intraspecific methods with ancient DNA 
technology could generate further research directions based on pol-
len DNA. Genomic DNA from Late Pleistocene bears, retrieved from 
shotgun sequencing, shows that it might be possible to use ancient 
eDNA for intraspecies analysis (Pedersen et al., 2021). This poten-
tially opens not only the monitoring of genetic diversity of current 
populations through eDNA, but also the ability to compare trends 
to a historical record. Applying target capture of mitochondrial and 
nuclear DNA is a promising avenue of research for unlocking the po-
tential stored in eDNA (Jensen et al.,  2021). If these technologies 
were applied to pollen mixtures, pollinators might collect enough 
pollen to assess contemporary and historical trends in plant diversity 
over large areas without the need for labour-intensive and expensive 
sampling of plant populations. This could provide tools to investi-
gate how anthropogenic fragmentation has impacted plant genetic 
diversity, and whether allele frequencies in plant populations have 
changed over time in response to environmental changes.

4.2  |  Reconstructing ancient ecological change

Ecological change can be assessed through the comparison of con-
temporary ecological communities to past communities. Pollen 
preservation in ancient sediments, in combination with ancient 
sedimentary DNA (Capo et al., 2021), provides a resource for under-
standing past ecosystems. Usually, the pollen grains are examined 
morphologically, while the sediments are analysed through DNA se-
quencing to provide complementary data sources (Liu et al., 2021; 
Parducci et al., 2017). The ability to access the DNA inside pollen 
grains, for either single pollen grain analysis or DNA metabarcoding, 
would enable investigation of population dynamics in ancient eco-
systems, something which is otherwise not possible in plants. This 
would improve the potential for using evolutionary approaches to 
understand ecosystem change. For example, the ancestry of popula-
tions could be traced by developing phylogenetic trees that include 
extinct and extant taxa as well as the direct comparison of ancient 
and extant sequences to establish direct links between extant and 
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fossil samples in a species, providing genetic continuity through time. 
Pollen retrieved from lake sediments is an ideal material for ancient 
DNA analyses in plants because it is very abundant; depositional 
conditions are fast if the lake is not too deep (>10 m), reducing the 
degradation of pollen grains; pollen remains in situ once deposited in 
sediments; and there is a high degree of certainty to its stratigraphic 
context (Parducci et al., 2017; Parducci et al., 2019). By accessing the 
DNA in ancient pollen, there is great potential for characterizing past 
ecosystems (Niemeyer et al.,  2017). Although it has been demon-
strated that DNA is present in ancient pollen and can be sequenced 
(Bennett & Parducci,  2006; Parducci et al.,  2005), ancient pollen 
samples are difficult to process, and there is a high risk of contamina-
tion with exogenous DNA. There are many different approaches for 
isolating and cleaning single pollen grains from the abundant pollen 
usually present in sediments. These include hand pipetting under a 
microscope, serial dilution, flow-assisted cell sorting (flow cytom-
etry), microfluidic manipulation (Wang & Navin, 2015), flow sorting 
or micromanipulation (Kron & Husband, 2012). Potential method de-
velopment in this area could focus on improved efficiency and con-
tamination control, and assessments to see if there are any biases 
due to DNA degradation over time. Finally, as we move into the fu-
ture, it will be essential to retain and archive specimens for optimum 
preservation to be re-analysed and compared to future samples, and 
nondestructive DNA extraction methods should be attempted.

4.3  |  Uptake of new sequencing technologies and 
adoption of minimum standards

Future advances in sequencing technology will enable researchers 
to answer questions that are currently logistically or technically dif-
ficult. New fast, portable sequencing technologies, such as Oxford 
Nanopore Technologies' MinION, could allow for analysis while in 
the field, enabling quicker results, management interventions, and 
removing the need for transport of biological material with its asso-
ciated bureaucratic and sample preservation challenges. Use of long-
read technologies on pollen mixtures also has the potential to lead 
to improved understanding of pollinator preferences through more 
accurate quantification and increased resolution (Peel et al., 2019). 
Alternatively, the sequencing of restriction fragments (ddRAD [dou-
ble digest restriction-site associated DNA]) has been used to iden-
tify plant community composition from roots in soil samples (CAM 
et al., 2021), and the same method could easily be applied to pollen 
mixtures.

Pollen DNA metabarcoding represents an ideal method for com-
parative analysis across multiple study systems, to determine gen-
eral mechanisms structuring communities of plants and pollinators. 
Pollen DNA metabarcoding could enable high-quality global synthe-
ses and meta-analyses due to generation of compatible data, and 
its mandatory public deposition, accumulated between different 
workgroups across the globe and over extended periods over time. 
Such accumulated data sets can provide valuable insights into the 
differential effects of agriculture, urbanization and climatic change 

on pollination networks in comparisons between temperate and 
tropical regions, between continents and between different country 
conservation schemes. These types of studies would become more 
useful with adoption of minimum standards for replication, negative 
and positive controls, and method selection, as well as standard-
ization of metadata reporting. The field of microbiomics is more 
advanced in this regard, with published codes of practice, standard-
ization of reporting, and purpose-built data repositories to increase 
the interpretability and comparison across studies (Dundore-Arias 
et al.,  2020; Field et al.,  2008; Mukherjee et al.,  2017; Yilmaz 
et al., 2011), and could serve as a guide for standardization of pollen 
DNA metabarcoding.

5  |  CONCLUSIONS

Plants, pollinators and their interactions are at risk from global eco-
logical change, with implications for ecosystem services, economic 
productivity, and human health and quality of life (Figure 2). To con-
tend with this, high-throughput methods are essential for character-
izing current biotic communities and monitoring how communities 
shift and decline with anthropogenic challenges. Pollen DNA meta-
barcoding and related methods are important tools that characterize 
plant and pollinator communities at a scale and resolution that was 
previously impossible. The global science community should invest 
in applying pollen metabarcoding to assemble a multiyear data set 
of plants, pollinators and their interactions across different habitat 
types, latitudes, elevations and levels of disturbances. Such a glob-
ally representative data set would improve our understanding of the 
mechanisms driving ecosystem change and provide evidence for 
real-time management recommendations to preserve biodiversity 
and the evolutionary and ecological process that support it.
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