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Abstract

In the ligand prediction category of CASP15 the challenge was to predict the positions and 

conformations of small molecules binding to proteins that were provided as amino acid sequences 

or as models generated by the AlphaFold2 program. For most targets we used our template based 

ligand docking program ClusPro ligTBM, also implemented as a public server available at https://

ligtbm.cluspro.org/. Since many targets had multiple chains and a number of ligands, several 

templates and some manual interventions were required. In a few cases no templates were found, 

and we had to use direct docking using the Glide program. Nevertheless, ligTBM was shown 

to be a very useful tool, and by any ranking criteria our group was ranked among the top five 

best performing teams. In fact, all the best groups used template based docking methods. Thus, 

it appears that the AlphaFold2 generated models, in spite of the high accuracy of the predicted 

backbone, have local differences from the X-ray structure that make the use of direct docking 

methods more challenging. The results of CASP15 confirms that this limitation can be frequently 

overcome by homology based docking.
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Introduction

It is now generally recognized that the addition of machine learning methods, particularly 

the development and public release of the neural net program AlphaFold2 (AF2),1 

opened a new chapter in protein structure prediction by generating models with near-

experimental accuracy for a substantial fraction of the proteome. An important, possibly 

even the most important, related question is whether the AF2 generated models are 

accurate enough for docking small ligands, an essential step in the computational approach 

to drug discovery.2–6 Ligand docking methods have been previously tested in public 

experiments. A well-known example is D3R (Drug Design Data Resource) Grand Challenge 

(https://drugdesigndata.org/), a blinded prediction contest for the computational chemistry 

community.7–10 D3R included predicting the poses of ligands binding to proteins provided 

as X-ray structures. In contrast, in the ligand prediction category of CASP15 the target 

proteins were provided as amino acid sequences. Participants could also use AF2 models 

provided by the CASP organizers for some of the targets. Thus, the results of the CASP15 

experiment provide important contributions toward answering the question whether models 

generated by AF2 or other tools are good enough for ligand docking and drug discovery.

Our ClusPro team (group number 350) participating in CASP15 submitted 77 models for 

17 ligand docking targets. As detailed in Methods, our protocol involved three basic steps. 

Step 1, the prediction of the target protein structure, was required if an AF2 model was not 

provided by the CASP organizers. For protein structure prediction in most cases we used 

the standard AF211 or AlphaFold Multimer (AFM)12 protocol, the latter for generating 

structures for multi-chain targets. In cases with limited MSA we have also applied a 

combination of AF2, AFM, and our ClusPro protein-protein docking server to better explore 

the conformational space.13 In Step 2 we generated large conformational ensembles of the 

ligands to be docked if they had multiple feasible conformations. For most ligands we 

used the standard tool ETKDG from RDKIT14 to generate 1000 models. For macrocyclic 

ligands we used BRIKARD, an analytical approach inspired from robotics to sample the 

conformational space of constrained molecular systems.15,16 Step 3 used ClusPro LigTBM, 

a template-based ligand docking program developed in our lab.17 The method searches for 

known complexes with ligands that have partial coverage of the target ligand, performs 

conformational sampling and template-guided energy refinement to produce a variety of 

possible poses, and then scores the refined poses. LigTBM performed extremely well in the 

last round of the D3R (Drug Design Data Resource) Grand Challenge.10,18 Grand Challenge 

4 (GC4) included predicting the poses of 20 ligands binding to beta secretase 1 (BACE 

1). We also implemented the algorithm as the automated server, available to the research 

community as part of the ClusPro docking tools. LigTBM did not provide results if no 

appropriate template was found. In such cases we identified the ligand binding site using our 

FTMap protein mapping algorithm,19 also implemented as a server, and then used the well 

know Glide program for docking.20

On the CASP15 website ClusPro is shown as the 5th best performing group based on the 

prediction accuracy of the 1st pose. However, differences among the top five groups were 

fairly small. In fact, the evaluators also used some other success criteria. Considering all 

predictions within 10% of the best prediction ClusPro was ranked the third, and in terms 
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of the Z-score we were placed as the best performer. We note that the top groups generally 

provided good predictions for the same targets, and there were a few targets that were not 

well predicted by any of the groups. Here we will focus on the targets on which we did 

well, and on some targets that turned out to be very difficult for us. As a general comment 

we emphasize that all successful methods used template-based docking methods rather than 

traditional direct docking tools. This issue will be further discussed after presenting our 

methods and results.

Methods

Using templates to generate “refined” protein models using AlphaFold2 and AlphaFold 
Multimer

An ensemble of protein models were generated using AlphaFold Multimer,12 template-based 

modeling,21,22 and a combination of Alphafold2 and the protein docking web server 

Cluspro.13 For AlphaFold Multimer, 25 models were generated using an unmodified 

version of the algorithm, with the maximum template release date set to May 14th, 

2022. Additionally, 5 models of the target were generated using AlphaFold Multimer with 

template searching disabled, and MSAs generated from the MMSeqs2 API.23 Template-

based protein models were constructed using the ClusPro-TBM protocol.21 Finally, docked 

structures were generated by running Alphafold2 with the pTM parameter set to obtain a 

model of each chain in a protein–protein complex. Then the single chain predictions were 

docked using ClusPro.24 For homomeric structures the multimer docking mode of ClusPro 

was used to generate additional docked complexes.24 All structures were collected in an 

ensemble, and each structure of the ensemble was provided as a template to AlphaFold 

Multimer to generate final “refined” complexes. AlphaFold2 and AlphaFold Multimer 

produce a predicted local distance difference test (pLDDT) score for each residue. Values 

greater than 90 indicate high confidence, whereas values below 50 indicate low confidence 

in the accuracy of the residue coordinates.

Generating macrocycle conformations using BRIKARD

The structure of the ligand (2:3 Fe-bisucaberin) involved in complex with target Q9I116 

(CASP ID T1118) was sampled using the program BRIKARD.16 BRIKARD uses an exact 

analytical approach inspired from robotics to exhaustively sample the conformational space 

of constrained molecular systems such as complex fused ring macrocycles and protein loops. 

BRIKARD accepts as input a MOL2 model of the molecule to be sampled, either in open 

form with specified closure geometry or as produced by some modeling program such as 

RDKIT,14 using canonical values for bond lengths and bond angles. The full flexibility of 

the torsional degrees of freedom including peptide bonds, is explored while bond lengths 

and angles are maintained at their canonical values. The resulting diverse ensemble is energy 

minimized to relieve strain, and the lowest energy structures are clustered and ranked by 

energy.

Template based ligand docking using ligTBM

ClusPro ligTBM is a template-based docking program introduced at D3R (Drug Design 

Data Resource) Grand Challenge.17 The input data are the receptor structure as a PDB file 
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and the ligand chemical structure provided as a SMILES string. A similarity search for 

the complex is performed in the Protein Data Bank (PDB) database to find templates of 

highly-homologous protein chains with similar ligands. We first use BLAST to search for 

the sequence-similar (e-value = 10−20, sequence identity ≥ 30%) proteins. For each ligand 

in the found structures we calculate the Maximum Common Substructure (MCS) and the 

Tanimoto score based on Daylight molecular fingerprint as implemented in RDKit.14 The 

ligands with Tanimoto score ≥ 0.4 and MCS coverage ≥ 50% located within 8 Å of the 

selected chain are retained, thus forming protein-ligand template structures. An ensemble 

of initial conformations is generated for the ligand. For each of the templates found, the 

next steps are carried out independently. In the general case we used the ETKDG method 

from RDKit to generate 1,000 conformers for the target ligand.14 For macrocyclic ligands 

we used the program BRIKARD as described. For each template, we aligned all conformers 

to the template’s MCS and retained only one conformer with the lowest Root Mean Square 

Deviation (RMSD) of the MCS. The resulting protein-ligand structures were subjected to 

restrained all-atom energy minimization to remove possible clashes and “relax” the ligand. 

The poses were ranked based on their coverage and similarity to the template.17

Protein preparation and direct docking using Glide

The structures of the receptors were prepared using the Schrödinger protein preparation 

wizard,25 which provides minor structure optimization, ensuring the best performance of the 

following Glide runs.20 We used the standard setting of the wizard, added and optimized 

the positions of the hydrogen atoms and altered residue ionization/tautomer states using 

PROPKA26 at pH 7, removed the water molecules further than 3 Å away from the HET 

atoms, and performed restrained structure minimization with the OPLS4 force field27 

converging the heavy atoms to RMSD of 0.3 Å. The prepared structures were used to 

generate the Glide receptor grids. The center of each grid box was placed in the location 

identified by FTMap19 clusters in the complex with the inner and outer box sizes equal 

to 20 Å and 40 Å, respectively. We used an extra-precision XP Glide protocol for the 

docking and scoring. The best Glide models were selected based on the Glide XP and 

Emodel Glide scores.20 The models were energy minimized using backbone-constrained 

minimization in OpenMM with Amber parametrization (ff19SB, GAFF2, AM1-BCC, Open 

Babel protonation at pH = 7.4, and OBC2+ACE GBSA).28 Ligand heavy atoms were fixed 

while hydrogen atoms were free to move.

Results

In our predictions, we utilized a combination of template-based modeling and free docking, 

with template based-approach playing the dominant role due to the nature of target ligands. 

Here, we talk some of the successes of TBM (H1114, T1124, T1146, T1152, T1170, T1186, 

T1158v4) and direct docking (T1158v1-v2), and discuss some of the more challenging 

targets (T1127, T1158v3). Table 1 is a summary of the results for all targets discussed in the 

paper.
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T1124

Target T1124, was represented by a homodimeric structure of the MfnG protein from 

Streptomyces drozdowiczii. The goal for this target was to produce a model of the 

homodimeric receptor in complex with two ligands, S-adenosyl-L-homocysteine (SAH) and 

tyrosine (TYR). In this case, we relied on AlphaFold Multimer (v2) to generate the initial 

model of the receptor (the highest plDDT model was selected) and manually resolved the 

clash between residues TRP254 and GLN274 in the final model of the protein dimer.

Since we were required to predict the positions of 2 SAH ligands and 2 TYR ligands 

in a homodimeric structure, we assumed that one copy of each ligand is present in each 

subunit, and used LigTBM to identify template protein-ligand complexes for SAH (PDB 

ID: 6M83) and TYR (PDB ID: 4KIG). The template structure used for modeling SAH 

contained an actual SAH molecule, which made pose generation straightforward. For 

TYR, 3-(4-Hydroxy-phenyl)pyruvic acid (ENO) was identified as a template, and TYR 

was superimposed on ENO using the MCS match between the two ligands using the 

LigTBM protocol. The high similarity of the templates allowed for high accuracy of the 

SAH modeled poses, with our top-1 submissions featuring 0.764/0.920 Å RMSD for the two 

SAH molecules. Our selection of the template for TYR, however, proved to be suboptimal, 

and while the placement of the TYR ring was broadly correct, the overall pose of the ligand 

was inadequate, featuring 5.715/5.678 Å RMSD.

T1146

Target T1146 required modeling an isomerase from Bdellovibrio bacteriovorus in 

complex with 2-acetamido-2-deoxy-beta-D-glucopyranose (NAG). While the original target 

description presumed 2 copies of NAG molecule interacting with the receptor, only a 

single NAG was observed in the final X-ray structure. Here we used the organizer-provided 

AlphaFold2 models as receptor structures and relied on the LigTBM modeling approach to 

identify the templates for ligand placement. For the submission we used the 4Q5K and 4Q68 

templates for final pose prediction, however, the latter turned out to be irrelevant due to the 

updated experimental results. The remaining high-quality template contained an actual NAG 

molecule, which straightforwardly resulted into a high-quality final prediction with 0.560 Å 

RMSD.

T1152

Target T1152 represented another protein–carbohydrate complex and involved the 

interaction between the Clostridium thermocellum Spore coat assembly protein SafA with 

a beta-1,4-GlcNAc trisaccharide. The interesting aspect of this target was that a single 

trisaccharide molecule interacted with two protein receptors simultaneously. From the 

modeling perspective, this target represented another straightforward TBM-centric case. 

ClusPro LigTBM identified PDB ids 4B9H and 4B8V as suitable templates, the latter having 

higher resolution and containing a fusion protein containing 3 copies of the same domain 

interacting with quad-saccharide molecule. Using this structure as a template for ligand 

placement and relying on AF2 for a receptor model gave us an 1.622 Å RMSD prediction, 

while our best in the top-5 prediction featured an RMSD of 1.047 Å (Figure 1A).
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T1170

Target T1170 was based on an electron microscopy structure of a hexameric RuvB complex 

derived from Streptococcus thermophilus (Figure 1B). The complex was resolved with 

3 adenosine diphosphate (ADP) molecules, 3 adenosine triphosphate-gamma-S (AGS) 

molecules, and 3 magnesium ions (MG). As such, the goal was to predict the structure of 

the multimeric complex, and then place all 9 ligands accurately within it. Our model of the 

receptor complex was based on AlphaFold2 prediction obtained with a manually-prepared 

template, which, in its turn, was based on the structure with PDB ID 3PFI, selected as the 

result of the template search performed using ClusProTBM. The ligand poses, were based 

on the templates identified using ClusPro LigTBM (PDB ID 6BLB for ADP and PDB ID 

5DAC for AGS and MG). While the placement of ADP could be done straightforwardly 

using the 6BLB template, the pose of AGS/MG could not be carried over from 5DAC 

due to clashes of Adenosine moiety of AGS with our RuvB model. To resolve this issue, 

we therefore prepared a chimeric template for AGS using a combination of 5DAC and 

6BLB by taking the thiophosphate moiety and MG coordinates from 5DAC and adenosine 

moiety from 6BLB. Finally EKTDG method was used to generate the conformation of a 

complete AGS molecule, which was placed using the chimeric template described above. 

The resulting top-1 model featured RMSDs in the range of 0.972–1.006 Å (all copies) for 

AGS, RMSDs in the range of 0.864–0.873 Å (all copies) for MG, and RMSD in the range of 

6.469–6.479 for ADP.

T1186

Target T1186 was a beta-lactamase in complex with the covalent acyl-intermediate during 

cleavage of dicloxacillin, and represented another straightforward template-based modeling 

case. The top template from ligTBM search (PDB ID: 7K2Y) contained a ligand providing 

structural support for approximately a half of the target small molecule, and combining it 

with an AlphaFold2 model of the receptor resulted into a 1.121 Å RMSD top-1 model, and 

0.814 Å best in top-5 model.

T1158v1-v4

The T1158v1-v4 series of targets was based on co-crystals of Multidrug Resistance Protein 

4 with a set of ligands (XPG, P2E, and MRP, respectively, for v1, v2, and v3, and 2xATP 

and 2xMG for v4). It is known that a homologous protein (Multidrug Resistance Protein 1) 

has two spatially separated binding sites, the substrate binding site and the ATP binding site, 

and undergoes conformational change from an open to a closed state upon ATP binding.29 

With these considerations in mind, we assumed that non-ATP target ligands of T1158 v1, 

v2, and v3 bind to the substrate binding site of the open conformation, and the target ligands 

of T1158 v4, which include ATP, bind to the ATP binding site of the closed conformer. 

We, therefore, took two different approaches to modeling targets T1158v1-v3 and T1158v4. 

Since our template identification protocol provided no hits for T1158v1-v3, we turned to 

direct docking with Glide to predict the binding poses of the target ligands within the 

substrate binding site. We selected the first and fifth AF2-predicted structures provided by 

the organizers as receptor models, and used a bounding box limited to the extent of the 

substrate binding site for Glide docking runs. The final predictions were hand-picked from 
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top Glide results and resulted into 0.368 Å, 2.981 Å, and 4.225 Å RMSDs for T1158v1, 

T1158v2 and T1158v3, respectively (Figure 2).

In modeling of ligand poses for T1158 v4 we followed a more conservative template-based 

approach as suitable templates were available. LigTBM identified a number of experimental 

structures containing exact target ligands and receptor templates with above 30% sequence 

identity. We retained the hits with resolutions higher than 3.5 Å, ending up with PDB 

IDs 6BHU, 7SVD, and 5W81 as potential templates for our ligand pose prediction. 

Additionally, since all of these templates take a closed conformation, we generated a closed-

like conformation of the receptor by aligning the components of the receptor model involved 

in the hinge motion determining the open/closed conformation to the closed state templates. 

This, however, did not affect the ATP binding site. Our top-1 model featured 0.443/0.374 Å 

RMSDs for the two MG ions and 0.918/1.561 Å RMSDS for the ATP molecules.

T1127v2

An interesting example of the rather unexpected challenges for the template-based 

approach was Target T1127, a homodimeric structure for Arabidopsis thaliana L-ornithine 

N5-acetyltransferase (Uniprot AC/ID: Q9ZV05/NATA1_ARATH) in complex with two 

occurrences of Coenzyme A (COA). While LigTBM identified two promising templates 

for the protein–COA complex (PDB IDs 2B58 and 2B4B) involving an actual COA 

molecule and 28% receptor sequence identity (51% sequence similarity), our submissions 

only featured rather humble 3.4 Å RMSDs and differed significantly in the placement of 

the Sulfur-containing “tail” (Figure 3). Potential reasons for this underperformance could 

include subtle differences in the residue composition of the binding site, as well as the 

presence of different additional small molecules in the template target structures.

Conclusions

In CASP15 we used the template based ligand docking program ClusPro ligTBM developed 

earlier in our lab.17 LigTBM was also implemented as a public server available at https://

ligtbm.cluspro.org/. However, many of the targets had multiple chains and several ligands 

and other complexities such as bound ions that required manual interventions. Nevertheless, 

with some exceptions the essential protocol used by our group was the one described for the 

ligTBM program.17 Although a number of criteria were used for ranking the performance 

of the different groups, by any of these criteria our group was ranked among the top five 

participating teams. Thus, we conclude that using ligTBM was the right choice. In fact, 

all the best performing groups used template based docking method. Considering these 

results, it appears that the AlphaFold generated models, in spite of the high accuracy of the 

predicted backbone, have local differences from the X-ray structure that make the use of 

direct docking methods challenging. In agreement with this observation, some publications 

conclude that the results of direct docking to AF2 models are substantially poorer than 

docking to holo X-ray structures, but comparable or even slightly better than docking to apo 

structures.6 However, the results of CASP15 confirms that this limitation can be frequently 

overcome by homology based docking. Once a few ligands are placed using such methods, 
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co-minimization of the protein and ligand can results in models more suitable for virtual 

screening with established docking tools.4
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Figure 1. 
Results for LigTBM cases. (A) T1152: protein-carbohydrate complex (PDB ID 7R1L); (B) 

T1170: RuvB complex derived from Streptococcus thermophilus with bound ATP and AGS 

ligands and MG2+ ions (PDB ID 7PBR); (C) T1186: beta-lactamase with dicloxacillin; (D) 

T1158v4: Multidrug Resistance Protein 4 with ATP and MG2+ ions.
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Figure 2. 
Results for Glide docking of ligands to Multidrug Resistance Protein 4 (MRP4) (A) 

T1158v1: MRP4 with XPG; (B) T1158v2: MRP4 with P2E; (C) T1158v3: MRP4 with 

MRP
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Figure 3. 
Result for target T1127v2: Homodimeric structure for Arabidopsis thaliana L-ornithine 

N5-acetyltransferase in complex with two Coenzyme A molecules.
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Table 1.

Summary of ClusPro results in CASP15.

Target ID Target name Uniprot ID Ligand ID Ligand code RMSD, Å

T1124 MfnG A0A0D4WTP2

1 SAH 0.764

2 SAH 0.92

3 TYR 4.781

4 TYR 5.505

T1146 Putative ribosephosphate isomerase Q6MQ80 1 NAG 0.56

T1152 protein-carbohydrate complex --- 1 NAG 1.622

T1170 RuvB Q5M2B1

1 ADP 6.479

2 ADP 6.469

3 ADP* ---

4 AGS 0.919

5 AGS 0.943

6 AGS 1.039

7 Mg 0.926

8 Mg 0.999

9 Mg 0.734

10 AGS 1.191

T1186 beta lactamase A0ESG7 1 LIG 1.121

T1158v1 MRP4(E1202Q) --- 1 XPG 2.368

T1158v2 MRP4(E1202Q) --- 1 P2E 2.981

T1158v3 MRP4(E1202Q) --- 1 XH0 4.226

T1158v4 MRP4(E1202Q) ---

1 ATP 0.918

2 ATP 1.561

3 2MG 0.443

4 2MG 0.374

T1127v2 L-ornithine N5-acetyltransferase NATA1 Q9ZV05

1 COA 3.47

2 COA 3.402

3 EPE† ---

4 EPE† ---

5 MPD† ---

*
Experimental results have shown no presence of this ligand; ligand 10 was determined at the site instead.

†
Ligands were defined as not relevant.
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