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Background: Determination of survival time in women with endometrial cancer using clinical features remains imprecise.
Features from MRI may improve the survival estimation allowing improved treatment planning.
Purpose: To identify clinical features and imaging signatures on T2-weighted MRI that can be used in an integrated model
to estimate survival time for endometrial cancer subjects.
Study Type: Retrospective.
Population: Four hundred thirteen patients with endometrial cancer as training (N = 330, 66.41 � 11.42 years) and valida-
tion (N = 83, 67.60 � 11.89 years) data and an independent set of 82 subjects as testing data (63.26 � 12.38 years).
Field Strength/Sequence: 1.5-T and 3-T scanners with sagittal T2-weighted spin echo sequence.
Assessment: Tumor regions were manually segmented on T2-weighted images. Features were extracted from segmented
masks, and clinical variables including age, cancer histologic grade and risk score were included in a Cox proportional haz-
ards (CPH) model. A group least absolute shrinkage and selection operator method was implemented to determine the
model from the training and validation datasets.
Statistical Tests: A likelihood-ratio test and decision curve analysis were applied to compare the models. Concordance
index (CI) and area under the receiver operating characteristic curves (AUCs) were calculated to assess the model.
Results: Three radiomic features (two image intensity and volume features) and two clinical variables (age and cancer
grade) were selected as predictors in the integrated model. The CI was 0.797 for the clinical model (includes clinical vari-
ables only) and 0.818 for the integrated model using training and validation datasets, the associated mean AUC value was
0.805 and 0.853. Using the testing dataset, the CI was 0.792 and 0.882, significantly different and the mean AUC was
0.624 and 0.727 for the clinical model and integrated model, respectively.
Data Conclusion: The proposed CPH model with radiomic signatures may serve as a tool to improve estimated survival
time in women with endometrial cancer.
Evidence Level: 4
Technical Efficacy: Stage 2
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Endometrial cancer is the most common gynecological can-
cer, with 417,000 new cases diagnosed globally in 2020.1,2

The 5-year overall survival rate of endometrial cancer patients
ranges from 74% to 91%.3–5 To study the survival time of
endometrial cancer patients, survival analysis methods have been
extensively applied.4–6 Currently utilized examples include the
non-parametric Kaplan–Meier method and the semi-parametric
Cox’s proportional hazards (CPH) method.4,5,7–11 Based on the
CPH model, it is possible to evaluate a single covariate’s and/or
the combination joint covariates effects on the survival time esti-
mation. For instance, a combination of age, cancer histologic
grade, socioeconomic factors, and other clinical prognostic fac-
tors have been investigated in endometrial cancer survival studies
within the framework of the CPH model.12–15

Until the advent of radiomics, image biomarkers have been
insufficiently studied as potential survival predictors for endome-
trial cancer. Radiomics is a rapidly expanding field of research in
oncology.16,17 There have been studies evaluating the application
of radiomics, usually based on multi-sequence MRI features, for
example Kurtosis from contrast-enhanced T1-weighted MRI to
predict survival time in endometrial cancer, but these studies had
several limitations.17–19 Specifically, these studies employed a
dataset with less than 200 cases, thus with a small number of
sample sizes and radiomic features (less than 100 features), which
could lead to a large bias for the model estimation.20,21 Moreover,
as these studies did not conduct a validation using independent
external testing data, there was no model validation for survival
time prediction.17–19 Finally, these studies did not include or
combine clinical prognostic variables in the CPH model for the
survival time prediction.17–19 As a result, these previous studies
have most likely not evaluated the true potential of radiomic fea-
tures for survival time prediction in endometrial cancer.17–19

To overcome these limitations, this retrospective study
aimed to identify a radiomic signature using pelvic MRI data
that could estimate survival time in endometrial cancer. Further-
more, we sought to develop and validate an integrated clinical-
radiomic model that might be used to tailor adjuvant manage-
ment for women based on their personalized risk features.

Materials and Methods
This retrospective study protocol was approved by the Institutional
Review Board (IRB), and the Research Ethics Committee reference
number for this study is 17/LO/0173. The requirement for written
informed consent was waived due to the retrospective design of this
study. This retrospective study will develop and test a model which
will be further validated as part of a larger prospective study
(ClinicalTrials.gov NCT03543215, https://clinicaltrials.gov/).

Training and Validation Datasets
Images were acquired between Feb 2007 and Aug 2017 (Fig. 1),
and 270 of the initially considered 611 subjects were obtained from
a previous study.22 The training and validation datasets were
obtained from 15 UK hospitals and centers with different parameters
and protocols (Table 1). Table 1 shows the scan parameters for col-
lecting 411 subjects of training/validation dataset which excluded
two subjects because the scan parameters information was not avail-
able. The sagittal T2-weighted image was chosen for radiomic analy-
sis as this was part of the standard protocol from all referral centers
whereas availability of other sequences was more variable. As
T2-weighted images were included from different centers in the
study, image pre-processing and image normalization was required
to minimize the difference between different scanners and sequences.

Clinical data, including the patient age at diagnosis, date of sur-
gery, type and grade of tumor, the international federation of obstetri-
cians and gynecologists (FIGO) stage, presence of lymphovascular
space invasion, and any adjuvant or neoadjuvant treatment of these
subjects were obtained from an online medical records system.23 Sur-
vival time was defined as the time from the date of surgery until the
date of death, with final censor date on August 3, 2020.

The inclusion criteria regarding MRI were as follows: 1) no
severe motion artifacts in T2-weighted images that obscured the
tumor mass, as determined by radiologists subjectively, 2) sufficient
size of the tumor on images (i.e., the tumor could be identified on
more than one MRI slice before image resampling), and 3) the
T2-weighted sequence passed the image pre-processing steps (see
step two in Fig. 2). The inclusion criteria regarding clinical data
were: 1) availability of censoring or noncensoring survival informa-
tion, information on lymphovascular space invasion, histological risk,
and histological type, 2) availability of age at diagnosis and surgery

Figure 1: Flow chart of patient selection. After exclusion, 413 cases were included and used to generate the final model. Eighty-two
cases were used as external testing dataset.
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date, 3) no other type of co-existing cancer. After exclusion of
patients based on image and clinical criteria, 413 cases were used in
this study (Table 2). The ratio for splitting the training and valida-
tion was 80:20 (N = 330 for the training data; N = 83 for the vali-
dation data) with balance the survival object (i.e., the combination
of time and death information) distributions within the splits.

Testing Dataset
Overall, 82 additional patients from three hospitals in the UK with
endometrial cancer were included in the testing dataset, the scans
being acquired between May 2017 and July 2019 (Table 2). For the
testing dataset, the beginning time was the surgery date also, of
which the earliest was in May 2017, and the ending time was in July
2019, and the close of the study was on December 1, 2021. 74 of
the 82 cases were right censoring; at the close of the study on

December 1, 2021, eight patients had died and 74 patients had sur-
vived. The right censored survival times underestimate the true (but
unknown) time to event/death.6 The distribution of the training and
testing datasets are displayed in Fig. 3.

Radiomics Study Pipeline
Figure 2 shows the radiomics study pipeline for the survival analysis.
There were five steps in this pipeline. The first and second steps
were designed to analyze images, including manual image segmenta-
tion (prior to image re-sampling), MRI nonuniformity correction,
image resampling, and image normalization. Specifically, Digital
Imaging and Communications in Medicine file formats were down-
loaded from the picture archiving and communication systems, de-
identified and converted to the simpler Neuroimaging Informatics
Technology Initiative (NIFTI) format.

TABLE 1. Scan information for training/validation datasets

GE Philips Siemens

MRI manufacturer (413 cases) 108 163 142

Scanner parameters (411 cases) Mean Median Std

Echo time (msec) 101.81 100 16.64

Repetition time (msec) 4653.02 4100 2100.78

Slice thickness (mm) 4.31 4 0.66

Spacing between slices (mm) 4.95 5 0.55

Reconstruct matrix size 441.47 512 113.71

Magnetic field strength (T) 1.51 1.5 0.15

Std = standard deviation; msec = millisecond; mm = millimeter; T = tesla ; GE = General Electric Company, NY, USA.

Figure 2: Pipeline for the study. Five steps were included as shown in the column. LR = likelihood-ratio test; gLASSO = group Least
Absolute Shrinkage and Selection Operator; CPH = Cox proportional hazards model; DCA = decision curve analysis; AUC = area
under the receiver operating characteristic (ROC) curve.
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TABLE 2. Training (including validation) and testing patient demographics

Clinical Information N (training) % (training) N (testing) % (testing) P value

Age: mean (SD) 66.64 � 11.5 63.25 � 12.4 0.024

Under 50 29 7 11 13.4 0.79

50–59 78 18.9 24 29.3 0.55

60–69 133 32.2 15 18.3 0.18

70 and older 173 41.9 32 39.0 0.18

Histological type 0.0011

Endometrioid 304 73.6 69 84.1

Carcinosarcoma 44 10.7 1 1.2

Serous 39 9.4 4 4.9

Clear cell 18 4.4 2 2.4

Mixed high grade 7 1.7 2 1.7

Undifferentiated 1 0.2 3 3.7

NET small cell 1 1.2

Grade 3.72 e-04

1 (low grade) 124 30.0 43 52.4

2 (intermediate grade) 130 31.5 20 24.4

3 (high grade) 159 38.5 19 23.2

Overall FIGO stage 0.1738

Stage I 292 70.7 59 72

IA 199 48.2 45 54.9

IB 93 22.5 14 17.1

Stage II 31 7.5 5 6.1

Stage III 64 15.5 7 8.5

IIIA 18 4.4 4 4.9

IIIB 6 1.4 0 0

IIIC 40 9.7 3 3.7

Stage IV 25 6.1 1 1.2

IVA 18 4.4 0 0

IVB 7 1.7 1 1.2

Other (missing) 1 0.2 1 1.2

Clinical risk score 0.0388

Low 150 36.3 41 50

Intermediate 78 18.9 15 18.3

High 96 23.2 9 11.0

Advanced 89 21.5 16 19.5

Unknown 1 1.2
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An interactive tool (ITK-snap, version 3.6.0, http://www.itksnap.
org) for semi-automatic segmentation of sagittal orientation
T2-weighted MRI was employed for manual slice-by-slice tumor seg-
mentation by two radiologists in-training (JR, 5 years, with assistance
from AS, 3 years).24 After loading the T2-weighted MRI, the paint-
brush tool was used to label all voxels containing visible tumor on each
sagittal slice. Once all slices containing tumor had been labeled, the seg-
mentation mask was saved as NIFTI format for pre-processing steps.
This process was repeated for T2-weighted MRI in every image set.
This was then checked by two radiology consultants (AR, 19 years’
experience and NB 15 years’ experience), who corrected the segmented
tumor masks, without further went through all cases together again.
The radiologists were blinded to the outcome measures. One example
of the image segmentation is displayed in step 1 of Fig. 2.

The T2-weighted images were pre-processed according to step
two as shown in Fig. 2. First, all image voxel sizes were obtained

from NIFTI files with T2-weighted MRI header files, and the
median voxel size of all data was calculated. The image reconstruc-
tion matrix size in sagittal orientation was between 256 and
864 (Table 1). The median resolution (image voxel size) of all
T2-weighted images (including both training/validation and testing
datasets) was 0.625 mm � 0.625 mm � 5 mm. Then, T2-weighted
images were processed using an N4 toolbox for MRI nonuniformity
bias correction, and to remove artifacts due to the inhomogeneity of
magnetic fields (https://github.com/ANTsX/ANTs/wiki/
N4BiasFieldCorrection).25 Following bias correction, T2-weighted
MRI and its masks were resampled to median voxel resolution
(Fig. 2). For T2-weighted MRI resampling, the cubic spline interpo-
lation method was adopted. For segmented tumor masks (binary
image), a nearest neighbor interpolation method was used for image
resampling. Next, the intensity of resampled T2-weighted images
was normalized using the following equation:

TABLE 2. Continued

Clinical Information N (training) % (training) N (testing) % (testing) P value

Censored 0.0096

Censoring 317 76.8 74 90.2

Death 96 23.2 8 9.8

N = 413 (training/validation), N = 82 (testing). SD = standard deviation; NET = neuroendocrine tumor; FIGO = The International
Federation of Gynecology and Obstetrics. Staging version.

Figure 3: Histograms of the survival data for all training/validation (a) and testing (d) datasets and histograms of the censoring and
the noncensoring datasets. The noncensoring data (b) and the right censoring data (c) distributions from the training dataset. The
noncensoring data (e) and the right censoring data (f) distributions from the testing dataset.
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I normalized ¼ 100
I � I
std Ið Þ , ð1Þ

where I is image intensity, I is the mean value of the image intensity
within the volume, and std is the standard deviation of the image
volume. Finally, the TexLAB tool (version 2.0) on MATLAB (ver-
sion R2019a; The MathWorks Inc., Natick, MA, USA; http://www.
mathworks.com/), PyRadiomics (version 3.0.1, https://github.com/
AIM-Harvard/pyradiomics), and Scikit-image (version 0.19.2,
https://scikit-image.org/), both implemented in Python (Python
Software Foundation, version, Python3.8, https://www.python.org/)
were used to perform feature extraction as shown in Fig. 2.26,27 After
elimination of identical features by a correlation method, in total
958 radiomics features were extracted from T2-weighted MRI and
its associated segmentation masks. T2-weighted MRI was included
because image intensity-based features were derived from
T2-weighted MRI images. Endometrial cancer tumor region was the
only region of interest in this study.

Feature Selection
The fourth step was to select features for survival analysis. Radiomic
and clinical feature selections were performed within the framework
of statistical model selection, and the CPH model was used to study
the relationship between predictor variables and survival time. In the
CPH model, the time and event/death were treated as dependent
variables (survival object); 958 radiomics features, cancer risk score
(which includes FIGO stage), cancer grade, and age were included as
predictors (independent variables) for model selection.9 Cancer risk
score and grade were defined according to FIGO.23,28 Before apply-
ing the model selection method, all 959 features (958 MRI features
+ age) were normalized using a Z-score method (similar to Eq. 1,
except multiply 100). To avoid model overfitting, a 10-fold cross
validation for penalized Cox regression models with grouped
covariates was adopted to determine the optimal regularization
parameter lambda (λ). Specifically, a group exponential least absolute
shrinkage and selection operator (gLASSO) was used to select statis-
tical models.29 The maximum iteration of the 10-fold cross valida-
tion was set to be 1 million times in the model fitting. The final
selected CPH model was then applied to calculate the survival time.

Statistical Analysis
The R software (version 4.0.2; R Foundation for Statistical
Computing, Vienna, Austria; http://www.R-project.org) was used
for statistical analysis. Model selection package “grpreg” (version
3.4.0, https://cran.r-project.org/web/packages/grpreg/index.html)
was applied to determine the optimal CPH model. The criteria for
the optimal model were model simplicity and accuracy
(i.e., minimize the combination of the L1 and L2 norm).29,35 The
“Survival” package (version 3.4.0, https://cran.r-project.org/web/
packages/survival/index.html) was used to implement CPH model.
A bootstrap resampling method was developed to assess the predic-
tive performance of the CPH model using a Score() function from a
“riskRegression” R library (version 2021.10.10, https://cran.r-
project.org/web/packages/riskRegression/index.html). Nomograms
were generated using a “regplot” R package (version 1.1, https://
cran.r-project.org/web/packages/regplot/index.html).

Survival analysis was implemented based on the selected inte-
grated model as shown in step five of Fig. 2. The gLASSO method
produced model selection results with randomness. The most com-
mon output by the gLASSO method was adopted. Once the survival
time prediction according to the CPH model was established with
the gLASSO method, a nomogram was created as a graphical repre-
sentation of the integrated model. The nomogram was applied to
visualize the prediction survival probability. To study the influence
of the radiomic features on the survival probability, two models were
constructed and compared for the estimation. The first model was
based on clinical information only; the predictors of the model
included only age and cancer grade. The risk score was not included
in the final model as it had not been selected by the gLASSO
method, which may because the cancer grade and risk score are cor-
related. The second model used both clinical information (age and
cancer grade) and three radiomic features selected by the gLASSO
method.

Additional analyses were performed to validate the model
based on the prediction using the “riskRegression” library. The
time-dependent area under the receiver operating characteristic
(ROC) curve (AUC) was calculated from the validation (AUC is
specified for AUC of ROC in this study). For the model validation,
80% of the 413 cases were used to generate the CPH model, while
the rest of the datasets were employed to validate the predictive per-
formance. Using a stratified sampling method, the training and vali-
dation datasets were split with survival objects (time/death). To
validate the CPH model, the bootstrap resampling method with a
sample size of 10 at each time point was adopted. Because the boot-
strap method and stratified sampling method have randomness, and
as a typical example, the AUC was calculated and displayed because
AUC is widely used criterion for measure discrimination. To reduce
the effect of the randomness in the evaluation study by using boot-
strap method, the concordance index (CI), which measures the pre-
diction accuracy, was calculated with 10 repetitions (with different
training validation datasets splits). The time point started at
100 days and terminated at 1825 days with a 5-day interval. Simi-
larly, additional external testing cases were used to test the CPH
model prediction performance.

To study the effect of the radiomic features and clinical vari-
ables on survival time estimation, decision curve analysis (DCA) was
applied to evaluate the clinical, radiomic, and integrated models for
net benefit.30 Net benefit is calculated for each possible threshold
probability which puts benefits and harms on the same scale.
Threshold probability is the expected benefit of treatment is equal to
the expected benefit of avoiding treatment.30 By varying the thresh-
old probability, DCA allows us to examine whether one model is
superior to another at a certain range of threshold probability with
respect to the net benefit.

A likelihood-ratio test method was applied to study the impor-
tance of the radiomic and clinical features for survival time predic-
tion. Furthermore, training and test datasets were compared using
Chi-squared tests for categorical data and two-sample t-tests for con-
tinuous data (Table 2). A P-value <0.05 was considered statistically
significant.

A diagnostic analysis was carried out to study the feature varia-
tion obtained from different types of scanners using 413 training/
validation cases. It is not obvious to inspect the features difference
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from two dimensions, for example, in an image with 413 rows and
958 MRI feature columns. Therefore, dimension reduction method
was applied to obtain the major components of the features from
each type of scanner. Specifically, principal component analysis
(PCA) was applied to study the effect of feature difference from dif-
ferent scanners. All features were normalized using the Z-score
method, and then a PCA was employed to split the feature dataset
into different components. Four principal components were used to
compare the feature variations from different scanners. Three differ-
ent manufacturers GE: 108 cases, Philips: 163 cases, and Siemens:
142 cases were used to acquire sagittal T2-weighted MRI (Table 1).
Feature matrix from these three different scanners were decomposed
into four components. Visual comparison was carried out to evaluate
the distribution of the feature components from different scanners.

Results
Training and Testing Dataset Demographics
Clinical-pathological characteristics of the patients are shown in
Table 2. In addition, Fig. 3 plots the histograms of the testing
dataset and a two-sample t-test that was applied to compare the
training (including validation) and external testing datasets.
Except for the survival time (Fig. 3b,e), all comparisons between
training and testing datasets were significant. For the survival
time (Fig. 3b,e), no significant differences were revealed (training
dataset: 870.6 � 592.1 days, testing dataset: 637.1 � 314.2,
P = 0.09). Table 2 also includes the demographic information
from the testing dataset. The age at diagnosis of the testing
dataset was significantly different from the training dataset
(66.64 � 11.51 years vs. 63.26 � 12.38 years, Table 2).

Feature Selection Results
Figure 4 shows the gLASSO coefficient profiles selected from
961 features. Specifically, Fig. 4a plots the 10-fold cross-
validated error rates, and Fig. 4b shows the amplified version
of the gLASSO selection plot. Five features were selected
from 961 predictors and were included in the integrated

CPH model. They were tumor mask minor axis radius
(minorAxisRad), gray level size zone matrix (GLSZM), first
order statistics (FOS), patient age at diagnosis (Age), and can-
cer grade (Grade). Tumor minor axis radius reflects the size
of the tumor indirectly; the FOS here is the coefficient of varia-
tion, which is defined as the ratio of the standard deviation to
the mean, and these values were computed within the tumor
mask. This was computed after the normalized T2-weighted
image were filtered with low, low, and high wavelet filters in x,
y, and z direction of the 3D image subsequently. The GLSZM
was calculated after the normalized MRI image was converted
into 25 Hounsfield unit gray level, then the large zone low gray
level emphasis was computed within the tumor mask. The FOS
and GLSZM represent image statistical property and intensity
character. These five selected features were refit into a CPH
model without the normalization of the age covariate, for the
purpose of displaying in the nomogram. The survival prediction
was then estimated based on the refit CPH model. The final
integrated model was:

Surv Time, Deathð Þ¼ 0:0548*Ageþ0:0025*Grade2
þ1:684*Grade3
þ0:495*minorAxisRad
�0:263*GLSZM�0:179*FOS:

The corresponding clinical model (excluding radiomic
features) was:

Surv Time, Deathð Þ¼ 0:0455*Ageþ1:881*Grade2
þ2:107*Grade3,

where Surv is the survival object, defined as a response vari-
able in the CPH model and age was not normalized. Time is
the time (number of days) from the date of surgery to the
end of the study for the right censoring data. If the subject

Figure 4: Group least absolute shrinkage and selection operator (LASSO) for feature selection. (a) 10-fold cross-validated error rates
for the model selection. (b) Amplified version of Fig. 4a at the optimal lambda value. The vertical dotted lines indicate the minimum
error, and the top of the plot gives the size of each model. Each red dot represents a λ value along the path. In the group LASSO
method, the cross-validation method was applied to select the tuning parameter (λ). Dotted vertical lines were drawn at the optimal
λ values by using the minimum criteria (i.e., cross-validation error). A Lambda value of 0.067 (log(λ) = �2.7) according to the 10-fold
cross-validation method was computed.
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has died before the end of the study, Time is the number of
days from the surgery date to the death date. Death is a status
binary variable, with 1 to represent death of the subject, and
0 to denote the survival of the subject at the close of the
study. Grade2 and Grade3 are the numerical variables to rep-
resent cancer grade 2 and grade 3 which were converted from
cancer grade categorical variable. minorAxisRad is the tumor
minor axis radius which was calculated from the tumor mask
image.

Model Training and Validation
Figure 5a plots the time-dependent AUC based on training
and validation datasets. For the clinical model, the AUC
accuracy was below 80% for the time points after 1250 days,
suggesting that this model is less accurate for long-time esti-
mation. In Fig. 5a, the integrated model had a larger AUC
than the clinical model for all time points, suggesting that the

integrated clinical-radiomic model is superior to the clinical
model for the prediction based on the external testing dataset
for all time points (integrated model AUC: 0.853 � 0.06,
clinical model AUC: 0.805 � 0.058). The results also
showed that the CI value was significantly higher using the
integrated model based on these 413 cases (integrated model
CI: 0.825 � 0.010, clinical model CI: 0.806 � 0.011).

Similarly, AUC curves were computed using the trained
model on the testing dataset and the results are presented in
Fig. 5b. Comparing Fig. 5a with Fig. 5b, the AUC obtained
from the testing dataset is smaller than the AUC computed
from the training dataset (integrated model AUC:
0.727 � 0.085, clinical model AUC: 0.624 � 0.070). This is
because the survival time and age from the testing data were
significantly different from the training and validation
datasets (training and validation data: 1583.4 � 669.6 days,
testing data: 1318.7 � 306.4 days). A likelihood-ratio test

Figure 5: (a) Time-dependent AUC summary at evaluation time points from the training/validation dataset; the AUC values are within
the range of 0.5 and 0.9. The AUC for the integrated model (red curve) is consistently larger than the AUC obtained from using
clinical model (green curve). (b) AUC obtained from the testing data; AUC values are within the range between 0.5 and 0.85.

Figure 6: Nomogram visualization for the survival time prediction. At the top of the nomogram, a point scale was included. Beneath
the scale, three radiomic features, age, and the clinical cancer grade were displayed. The refitted CPH model was adopted to
predict the survival probability for 1 (365 days), 2 (730 days), 3 (1095 days), and 5 (1826 days) year periods as shown at the bottom
of Fig. 6. The dotted red vertical line in the figure indicates one example of observation with an age of 70, cancer grade of 3, minor
axis radius of 0.24, GLSZM of 1.44, and FOS of �0.0018. The aggregate score for this case is 329 as indicated by the red arrow
vertical line at the bottom of the figure. The corresponding probability to the survival for the 5-, 3-, 2-, and 1-year periods is 0.657
(1–0.343), 0.806 (1–0.194), 0.87 (1–0.13), and 0.944 (1–0.056), respectively. GLSZM = gray level size zone; FOS = first order
statistics; CPH = Cox proportional hazards.
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showed a significant difference between the integrated model
and clinical model based on both training and testing
datasets. The CI was 0.797 for the clinical model and 0.818
for the integrated model. Based on the selected model from
training data, the nomogram display the 1-, 2-, 3-, and 5-year
survival probabilities is shown in Fig. 6.

The difference between the clinical model and the inte-
grated model is small in terms of CI using the training and
validation datasets, however, for the independent testing data,
the CI was 0.792 for the model with age and clinical cancer
grades, and the index was 0.882 for the integrated model,
thus showing a significant difference (likelihood-ratio

Figure 7: Decision curve analysis at 500 (a), 1000 (b), 1500 (c), and 2000 (d) days. The net benefit is plotted against the threshold
probability. If the curve is closer to the right top corner, then the corresponding model is better as it has larger net benefit. The
“all” curve shows the net benefit by treating all patients, while the “none” curve denotes net benefit for treating no patients.

Figure 8: Scanner difference study. Principal component analysis for radiomics features from a different scanner. (a) First principal
component (PC1) vs. second principal component (PC2); a relatively larger variation was observed using the Siemens scanner. (b)
Third principal component (PC3) and fourth principal component (PC4) explain smaller percentages of the total variation, and the
three different scanners show good agreement. The dots in the figure represent samples; the colors represent groups (scanner
types); and the legends have three groups at the top. The ellipse represents the core area added by the default confidence interval
of 68%, which facilitates the separation between the observation groups. No clear separation of the sample based on the three MRI
vendors was observed. var. = variance; PC = principal component.
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χ2 = 12.677). This suggests that the integrated model is
robust to the different distributions of the data because age
(Table 2) is statistically significant difference between the
internal (training/validation) data and external dataset.

Decision Curve Analysis
To study the contribution of radiomic features to survival
time estimation within the CHP model, a DCA was applied
to compare radiomic (includes three radiomic features only),
clinical, and integrated models at 500, 1000, 1500, and
2000 days (Fig. 7). The integrated model was almost consis-
tently on the top of other curves in Fig. 7, suggesting that the
model has more net benefit than the other models for survival
time prediction. The radiomic model had a larger net benefit
than the clinical model when the threshold was below 0.5
(Fig. 7b,c). For a larger threshold probability (>0.45), radi-
omic, clinical, and integrated models had similar net benefit
for a short time range estimation (Fig. 7a,b). However, for
the long-time range (2000 days or more) survival time estima-
tion, the integrated model had a larger net benefit; comparing
Fig. 7a with Fig. 7d, the gap between the curves is larger in
Fig. 7d, suggesting a larger net benefit for estimations longer
than 2000 days.

Features From Different Scanners
From PCA analysis, features components from different scan-
ners were overlaid onto each other in Fig. 8. Similarities in
the feature distribution was observed, although as shown in
Fig. 8a, radiomic features from the Siemens scanners had a
larger variation. For the 3rd and 4th principal components
(PC3/4) (Fig. 8b), the distribution of the radiomic features
obtained from different scanners were smaller, suggesting
good agreement for the features from different scanners.

Discussion
We have developed the CPH model using features from sagit-
tal T2-weighted MRI and clinical variables for survival time
estimation based on gLASSO method. We studied the effect
of the radiomic features within the model and found radiomic
features from MRI are useful biomarkers to predict survival
time in patients with endometrial cancer.

We identified a set of radiomic signatures using pelvic
MRI that could potentially aid in accurately estimating sur-
vival time for patients with endometrial cancer. In combina-
tion with clinical features, our integrated radiomics model
outperformed the clinical model in predicting survival time.
We validated and compared the integrated and clinical
models using both internal (training and validation) and inde-
pendent external (testing) datasets. Furthermore, the CPH
model with a nomogram for visualization provided a graphi-
cal, straightforward, and noninvasive method of predicted
survival, which could be used in clinical settings and therefore
has potential to facilitate personalized medicine. The multiple

centers and scan machines used in this study presented chal-
lenges for model building, but this setup also implies that the
findings are likely to be generalizable. Multiple modeling
techniques were evaluated, and feature selection was utilized
to avoid overfitting of the model. The radiomics quality score
which determines the validity and completeness of radiomics
studies, and transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD)
guidelines were adhered to ensure quality of both scientific
methods and reporting.31

In contrast to quantitative MRI such as apparent diffu-
sion coefficient (ADC) from diffusion-weighted imaging,
T2-weighted MRI signal depends on many variable factors
including the acquisition protocol, the coil profile, the scan-
ner type, and therefore it is not the standard method to nor-
malize the image intensity for cross-subjects comparison. We
adopted Z-score-like method to normalize the image inten-
sity, other methods such as min/max normalization or scaling
the image intensity to common max value can also be used.
An alternative method to reduce the image intensity differ-
ence of T2-weighted images acquired from different centers
and scanners is to normalize to a reference tissue outside the
tumor-affected region such as cerebrospinal fluid in brain or
bladder where baseline water signal can be obtained.
Although the image intensity features such as mean intensity
value within the tumor mask will be affected by different
image normalization steps, the tumor shape, volume, and
image complexity radiomic features will not be affected by
the image normalization step.

Most of the published studies have focused on
addressing the classification problem in endometrial cancer
using radiomics.17–19 Studies have applied this radiomic tech-
nology to endometrial cancer survival prediction models.32,33

Fasmer et al developed an MRI-based whole-volume tumor
radiomic signature for the prediction of high-risk features.19

Radiomic features were studied to predict poor progression-
free survival.19 Meanwhile, Ytre-Hauge et al applied radi-
omics to study survival in women with endometrial cancer.17

They reported that high kurtosis in contrast-enhanced
T1-weighted MRI predicted reduced recurrence and
progression-free survival (hazard ratio 1.5), but their study
used only 180 patients without model validation,17 compared
with 495 cases in this study. Furthermore, they used
contrast-enhanced T1-weighted MRI images.17 However, we
obtained the features from T2-weighted image, which is a
sequence that clearly delineates most endometrial cancers
without the use of gadolinium and the sagittal T2-weighted
sequence is the mainstay of MRI protocols for staging endo-
metrial cancer, enabling the development of a generalizable
tool. We found that tumor size reflected by minor axis radius
was an important biomarker for survival time estimation. The
minor axis radius describes the radius of the minor axis of the
ellipse that reflects the tumor region indirectly.27 For the
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features of GLSZM and FOS, both features are related to the
distribution of image intensities. In this study, the GLSZM
was based on the image converted from Hounsfield unit, this
could be due to the relationship between MRI intensity and
Hounsfield unit values.34

In addition to using CI, we adopted multiple criteria to
evaluate the models. We have applied likelihood-ratio test,
AUC, and DCA methods to compare different models. By
considering the clinical utility of the specific model, DCA
overcomes the limitations of traditional metrics such as AUC
which only measures the diagnostic accuracy of the model.

The pipeline of this study (Fig. 2) can be extended to
other malignancies for survival analysis based on integrated
features. In this method, the sources of error can come from
the first three steps: image segmentation, image processing,
and feature extraction. For example, in the image segmenta-
tion step, error can be generated if the tumor mask is not
parcellated properly. For the image processing step, the image
interpolation method can introduce numerical error. In the
feature extraction step, bias can be produced if only a fraction
of image features is extracted from the image.

Finally, the clinical application of the nomograms could
be in patient management or prioritization; as the survival
time of the patient is known from the model estimation, so
treatment for patients could be arranged in a more efficient
way. The integrated radiomics model may also enable better
stratification of patients enrolling into clinical trials, as it has
higher AUC and CI value than the model with only clinical
variables.

Limitations
This was a retrospective study and therefore, there was a risk
of bias and missing data. The study also only included
patients who had undergone surgery and had an MRI with
paired clinical data available. While the model was assessed
based on the external testing dataset, there was slight variation
in demographics when directly comparing the training and
validation datasets. In the testing dataset, there were less
women in the older 59-to-70-year group and more women
with endometrioid low grade cases, namely more patients
with low-risk scores. Debatably, this would infer that the test-
ing dataset group would be more likely to have better sur-
vival. As radiomics models perform better with more
homogenous datasets such as that generated by the low-risk
cases, this may explain the slightly better performance with
the testing dataset. Second, although we had also tested the
composite minimax concave penalty method for the model
selection in the CPH model (which produced the same model
selection results as the group exponential LASSO method),
other methods such as the regular elastic net and ridge models
method, which may produce better results, have not been
investigated in this study.35,36 Third, survival outcomes do
not only represent the effect of the disease itself, but also of

patient factors (such as age or co-morbidities) and treatment
factors (such as whether the patient underwent neoadjuvant
radiotherapy or chemotherapy). Study has shown that adju-
vant treatment predictably improves survival for high-risk
patients.37 Regional and national differences in patient demo-
graphics along with treatment options offered and delivered
can also impact survival disparities. This study did not con-
sider co-morbidities, which are likely to have a relevant
impact on survival. Finally, although we normalized the
images to minimize the T2-weighted image differences
obtained from different protocols, more work is needed to
study effects on features for radiomics studies.

This study employed only T2-weighted MRI data;
future work could evaluate the use of additional MRI
sequences or quantitative MRI such as diffusion-weighted
images with ADC maps, as well as dynamic contrast-
enhanced MRI (DCE-MRI).38 Also, a possible method to
explore in the future would be the boosting method or the
deep survival model for the study of survival because these
methods do not require the proportional hazards
assumption.39,40

Conclusion
The integrated radiomic model and the nomogram may
enable us to estimate of survival with a high degree of accu-
racy. Furthermore, we found that the integrated model is
robust; it retained a high level of accuracy despite the variabil-
ity of the independent external testing dataset, as the AUC
value showed only a marginal decrease when applied to the
testing dataset, in comparison to the clinical model, in which
the AUC decreased markedly.
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