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Abstract
Campylobacter jejuni and Campylobacter coli infections are the leading cause of food-
borne gastroenteritis in high-income countries. Campylobacter colonizes a variety of
warm-blooded hosts that are reservoirs for human campylobacteriosis. The propor-
tions of Australian cases attributable to different animal reservoirs are unknown but
can be estimated by comparing the frequency of different sequence types in cases and
reservoirs. Campylobacter isolates were obtained from notified human cases and raw
meat and offal from the major livestock in Australia between 2017 and 2019. Isolates
were typed using multi-locus sequence genotyping. We used Bayesian source attri-
bution models including the asymmetric island model, the modified Hald model, and
their generalizations. Some models included an “unsampled” source to estimate the
proportion of cases attributable to wild, feral, or domestic animal reservoirs not sam-
pled in our study. Model fits were compared using the Watanabe–Akaike information
criterion. We included 612 food and 710 human case isolates. The best fitting models
attributed >80% of Campylobacter cases to chickens, with a greater proportion of C.
coli (>84%) than C. jejuni (>77%). The best fitting model that included an unsam-
pled source attributed 14% (95% credible interval [CrI]: 0.3%–32%) to the unsampled
source and only 2% to ruminants (95% CrI: 0.3%–12%) and 2% to pigs (95% CrI:
0.2%–11%) The best fitting model that did not include an unsampled source attributed
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12% to ruminants (95% CrI: 1.3%–33%) and 6% to pigs (95% CrI: 1.1%–19%).
Chickens were the leading source of human Campylobacter infections in Australia in
2017–2019 and should remain the focus of interventions to reduce burden.

K E Y W O R D S
Bayesian analysis, Campylobacter, source attribution

1 BACKGROUND

Campylobacter infections are a major cause of zoonotic food-
borne gastroenteritis worldwide and the leading cause in
high-income countries (Li et al., 2019), with a global bur-
den of over 166 million cases and 3.7 million disability
adjusted life years circa 2010 (Kirk et al., 2015). In Aus-
tralia, foodborne Campylobacter causes an estimated 179,000
cases and 3200 hospitalizations each year (Kirk et al., 2014).
Although the genus Campylobacter comprises 41 species (as
of June 2022) (Euzéby, 2021), two species, Campylobac-
ter coli and Campylobacter jejuni, cause >90% of human
campylobacteriosis cases (Kaakoush et al., 2015). The most
widely used sub-species classification for Campylobacter
research is seven-gene multi-locus sequence typing (MLST)
(Dingle et al., 2001). Campylobacter coli and C. jejuni
are typed in the same scheme, and this “Campylobacter”
scheme contains more than 11,800 sequence types (STs)
(Jolley et al., 2018). A range of warm-blooded animals—
including wild bird species and food production animals
such as chickens, pigs, sheep, and cattle—can act as Campy-
lobacter reservoirs. Human cases are often foodborne (Vally
et al., 2014) and occasionally waterborne (Kaakoush et al.,
2015), with some direct zoonotic transmission (Varrone
et al., 2020) and rare person-to-person transmission (Kuhn
et al., 2021). In Australia, most Campylobacter infections are
sporadic, that is, not associated with recognized outbreaks
(Kaakoush et al., 2015; Moffatt et al., 2020), making it dif-
ficult to identify the source of infection for most individual
cases.

Bayesian source attribution models (e.g., Hald et al., 2004;
Liao et al., 2019; Miller et al., 2017; Mullner, Jones, et al.,
2009; Wilson et al., 2008) have been used to estimate the pro-
portion of human campylobacteriosis attributable to sources
by comparing the relative abundance of Campylobacter STs
observed in sources and cases. Some methods attempt to
account for the relative transmissibility and virulence of dif-
ferent strains (e.g., Hald et al., 2004; Miller et al., 2017;
Mullner, Jones, et al., 2009), while others attempt to model
organism genetic recombination and mutation to improve
estimates of relative abundance of rare types in sources (e.g.,
Liao et al., 2019; Wilson et al., 2008). In many source attri-
bution studies, including the present study, the sources of
interest are animal reservoirs (e.g., chickens and pigs) rather
than individual classes of food products, risk factors for infec-
tion, transmission routes, or systemic food safety failures.
Nevertheless, source attribution estimates have been used
to identify the primary animal reservoirs, inform effective
food safety policy and interventions (Mullner, Spencer, et al.,

2009; Sears et al., 2011), and identify human subpopulations
with differing patterns of attribution (Lake et al., 2021; Liao
et al., 2019).

The aim of this study was to estimate the proportion of
Campylobacter infections attributable to chickens, pigs, and
ruminants (cattle and sheep) in Australia during 2017–2019.
We compared attribution estimates across a range of model-
ing frameworks, including models that considered a fourth
“unsampled” source to reflect potential reservoirs for which
no data were available.

2 METHODS

2.1 Data collection

Study data were collected as part of the broader
CampySource project, a collaboration between Australian
academic institutions, government agencies, and industries.
A detailed description of study methods and data collection
can be found elsewhere (Cribb et al., 2022; Varrone et al.,
2018; Walker et al., 2019; Wallace et al., 2021, 2020). The
sequence readset for each food isolate (Bioproject Accession:
PRJNA591966), case isolates sampled as part of the case–
control study (Bioproject Accession: PRJNA592186), and
the case isolates included in the national snapshot (Bioproject
Accession: PRJNA560409) are available through GenBank
(Clark et al., 2016).

Cases were enrolled as part of a case–control study and a
national snapshot of campylobacteriosis for which detailed
sampling methods have been described previously (Cribb
et al., 2022; Varrone et al., 2018; Wallace et al., 2021). We
defined a case as a person with acute diarrhea where Campy-
lobacter spp. was cultured from stool. Campylobacteriosis is
a nationally notifiable disease in Australia, with a legislative
requirement for all confirmed cases to be notified to the
relevant health department. Cases were identified through a
combination of state or regional notifiable disease surveil-
lance systems and pathology service databases. Cases were
excluded from the case–control study if they had traveled
overseas at all in the previous two weeks; if they had traveled
to another jurisdiction within Australia for the entirety of the
previous two weeks; if they or their household members had
diarrhea in the four weeks previous to their Campylobacter
infection; if they were unable to answer the questionnaire in
English; if they could not be contacted over telephone; or if
enteric pathogens other than Campylobacter spp., Blastocys-
tis hominis, or Dientamoeba fragiles were detected in their
stool.
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We collected and sequenced 531 Campylobacter isolates
from human cases between February 2018 and October
2019 in three Australian jurisdictions: The Hunter New
England (HNE) public health district of New South Wales
(NSW), Queensland (Qld), and the Australian Capital Terri-
tory (ACT). We collected and sequenced an additional 184
human isolates from Victoria (Vic), Western Australia (WA),
Tasmania (Tas), South Australia (SA), and the Northern Ter-
ritory (NT) over the period of 2017–2019. Of the 715 case
isolates described above, 164 were collected over a short time
(October 2018—February 2019) across all sampled jurisdic-
tions and have been published previously as part of national
snapshot of campylobacteriosis (Wallace et al., 2021). After
removing five isolates with indeterminate MLST assignments
(two from Vic and three from Qld), 710 human case isolates
were included in the analysis. Cases from three jurisdictions
(HNE, Qld, and ACT) were interviewed regarding potential
exposures for a case–control study (Varrone et al., 2018).
We considered responses on age, gender, rurality of resi-
dence, notification date, and jurisdiction as potential model
covariates.

Detailed sampling methods for food products have been
described previously (Walker et al., 2019; Wallace et al.,
2020). Jurisdictional health departments sampled retail meat
products for Campylobacter testing between October 2016
and March 2019 in the ACT (Canberra), NSW (Hunter Val-
ley and Greater Sydney regions), Qld (Brisbane, Toowoomba,
Rockhampton, Townsville, and Cairns hospital and health
districts), and Vic (Bendigo and Melbourne; chicken only),
with isolates collected after March 2017 considered for
sequencing. Samples included pre-packaged (fresh or frozen)
meats and delicatessen products. The prevalence of Campy-
lobacter spp. contamination was expected to be low for
muscle meat from pigs and ruminants (New South Wales
Food Authority, 2018). Therefore, we sampled offal (kid-
ney and liver) to maximize the total number of isolates
from these sources. For chicken, a combination of muscle
meat (with and without skin or bones) and offal (giblet and
liver) products were sampled. We attempted to sequence all
isolates from pig and ruminant samples, but due to bud-
getary constraints we only sequenced a subsample of isolates
from chicken, aiming for a total of 500 isolates from this
source. In Qld, Campylobacter spp. isolates from chicken
were subsampled for genotyping to optimize coverage using
a judgmental-stratified approach across the following strata
in order of isolate selection priority: time (calendar year and
quarter), region (hospital and health district), Campylobac-
ter species (C. jejuni, C. coli), abattoir/processor, temporal
occurrence across calendar quarter, and meat type. Subsam-
pling selected at least one isolate within each stratum defined
by combinations of Campylobacter species, calendar quar-
ter, and region, but otherwise proportional to abundance.
Where there was a choice of isolates in a stratum, they were
selected (in order of priority) to maximize the total number of
abattoirs/processors sampled, spread multiple isolates from

a single abattoir/processor across the calendar quarter, and
maximize the diversity of chicken meat types sampled.

2.2 Campylobacter Isolation, sequencing,
and genotyping

We isolated and confirmed C. coli and C. jejuni from the meat
and offal samples according to ISO 10272−1:2017 (Inter-
national Organization for Standardization, 2017) and AS
5013.06.2015 (Standards Australia, 2015) with minor modi-
fications (Walker et al., 2019). Isolation and genomic analysis
of isolates from food (Wallace et al., 2020) and clinical spec-
imens (Wallace et al., 2021) has been described in detail
elsewhere. Briefly, C. coli and C. jejuni isolates were grown
from patient fecal samples, with samples stored at 2−8◦C
and processed for Campylobacter culture within 48 h of col-
lection. We extracted Campylobacter DNA from food and
patient isolates using the QiaSymphony DSP DNA Mini kit
(Qiagen) according to manufacturer’s instructions. We used
the Nextera XT DNA Library Prep kit (Illumina, San Diego,
CA, USA) to prepare DNA for whole genome sequencing
which was performed on the Illumina Next-Seq500 with 150
base-pair paired-end reads using the NextSeq 500 Mid Out-
put kit (300 cycles) (Illumina). MLST was performed on de
novo assembled contigs, searching with a BLAST-based tool
(Seemann, n.d.) against the PubMLST allele database (Jolley
et al., 2018).

2.3 Source attribution modeling approach

We employed a generalization of existing Bayesian source
attribution methods (Liao et al., 2019; Mullner, Jones, et al.,
2009) to estimate attribution proportions including covariates
for the cases and adjusting for differences between types, as
applied previously (McLure et al., 2022). We modeled the
proportion of human cases in subpopulation s attributable to
transmission from each source j (𝜉js) given the number of
cases in each subpopulation s due to each pathogen type i
(Yis), the number of isolates of each type observed in each
putative source (Xij), and weights for the relative exposure
of humans to these putative sources wj. The proportion (𝜃ijs)
of cases in subpopulation s that were due to pathogen type i
from source j was modeled as:

𝜃ijs ∝ ajswj rij qi,

with constraints
∑
i,j
𝜃ijs = 1 and

∑
i

rij = 1, where ajs was the

ability of source j to act as a source of infection for group s, rij
was the relative abundance of type i in source j, and qi was the
relative ability of subtype i to transmit from a source and lead
to a reported case (which we call type transmission poten-
tial). The proportion of cases in subpopulation s attributed to
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source j was modeled as :

𝜉js =
∑

i

𝜃ijs ∝ ajs wj

∑
i

rij qi,

while the proportion of cases due to each type, 𝜇is, was
modeled as :

𝜇is =
∑

j

𝜃ijs ∝ qi

∑
j

ajs wj rij.

We considered two models for the relative abundance of
sequence types in sources (rij). The first was the Dirichlet
model of Liao et al. (2019), which adopts independent
symmetric Dirichlet priors for the relative abundance of
sequence types in sources and models the numbers of isolates
of each type observed in each source (Xij) as independent
multinomial distributions:

p
(
r.j
)
∼ Dirichlet (𝛼, 𝛼, … , 𝛼) , p

(
X⋅j|r) ∼ Multinomial

(
r⋅j
)
.

The second approach was the asymmetric island model,
first proposed for source attribution by Wilson et al. (2008)
and developed further and implemented in an R package,
islandR by Liao et al. (2019). The asymmetric island model
uses the observed number of MLST types and frequency of
alleles at each locus to estimate mutation rate (new allele gen-
eration), recombination (new sequence generation types from
novel allele combinations extant in the sources), and trans-
mission between sources, to estimate the relative abundance
of all types in each source (rij).

Parameters were estimated either by joint inference of
all parameters (joint Dirichlet model) or in two steps (two-
step Dirichlet and asymmetric island model). In two-step
approaches, the relative abundance of sequence types in each
source (rij) was estimated first, with all other parameters then
estimated repeatedly using draws from the posterior distri-
bution of rij. In estimating the remaining parameters, the
transmission potential of each type (qi) and the exposure
weights (wj) were assumed to be the same for each subpopu-
lation s, but the ability of each source to transmit to humans
(ajs) was allowed to vary and modeled as:

ajs = exp

(∑
n

Fsn𝛽nj

)
,

where F was a model matrix defining a linear predictor based
on binary, categorical, or ordinal covariates for each subgroup
s of the cases, and 𝛽 was a matrix of parameters for each
source j. A reference source was assigned, and the associ-
ated parameters in the matrix 𝛽 were fixed to 0, while the
remaining parameters were given unit normal priors.

The number of human cases in subpopulation s due to
pathogen type i was modeled as independent multinomial
variables, that is, p(Y⋅s|𝜇) ∼ Multinomial(𝜇⋅s). The type
transmission potential terms, qi, were constrained with a

log-normal prior:

p (qi|𝜎) ∼ logNormal
(
0, 𝜎2

)
, p (𝜎) ∼ HalfCauchy (0, 5) .

Since Campylobacter is primarily foodborne (Vally et al.,
2014), the exposure weights wj were approximated by the rel-
ative exposure to contaminated food products derived from
each source, modeled as wj = Mj kj, where Mj was the appar-
ent consumption (per capita, per year) of food derived from
source j (Australian Bureau of Agricultural and Resource
Economics and Sciences, 2020), and kj was the prevalence
of the pathogen in muscle meat derived from source j. The
prevalence of Campylobacter in the muscle meat of each
source j was modeled with the binomial model and a flat
prior: p(Pj|Nj, kj) ∼ Bin(Nj, kj), p(kj) ∼ Beta(1, 1), where
Nj was the number of total tests and Pj the number of
positive tests. Data for prevalence in chicken muscle meat
were derived from the CampySource study (Walker et al.,
2019). CampySource collected offal rather than muscle meat
samples for pigs and ruminants. Since Campylobacter preva-
lence was likely to be higher on offal than muscle meat,
and Australians consume relatively little offal, we estimated
prevalence in these meats from a separate survey (New South
Wales Food Authority, 2018).

When employing the Dirichlet model for the relative abun-
dance of sequence types in sources, an “unsampled source”
was modeled by including an additional source j∗ without any
observed samples: that is, Xij∗ = Pj∗ = Nj∗ = 0. Consump-
tion statistics could not be used to determine the exposure
weight for the unsampled source. We therefore assumed the
“consumption” for the unsampled source was equal to the
least consumed product (pork).

The Modified Hald model proposed by Müllner, Jones,
et al. (2009) can be seen as a special case of the modeling
framework presented here, using the Dirichlet model of rela-
tive abundance of sequence types in sources and no covariates
for cases. The attribution model proposed by Liao et al.
(2019) can also be seen as a special case of our framework,
using the asymmetric island model for the prevalence of types
in sources and assuming all type transmission potential terms,
qi, were equal to 1.

2.4 Source attribution models

We considered ten base models (Table 1), varying the
assumptions for the type transmission potential terms and
the model for the relative abundance of sequence types in
sources (Dirichlet vs. asymmetric island). With the asymmet-
ric island models (M7 and M10), we assumed the mutation
and recombination rates of Campylobacter were the same
across sources. With the Dirichlet models, we compared mod-
els with and without an “unsampled source” and primarily
used a flat Dirichlet (1,1,…,1) prior for the relative abundance
of sequence types in sources. However, we used an even less
informative Dirichlet (0.1, 0.1,…,0.1) prior as a sensitivity
analysis.
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TA B L E 1 Source attribution models considered, with model numbers for those that converged

Model
Type transmission
potential terms (q)a

Model of relative abundance of STs in
each source | prior

Joint vs. two-step
inference?b

With unsampled
source?

M1 Varied Dirichlet Dirichlet (1,…,1) Joint Yes

M2 No

M3 Dirichlet (0.1,…,0.1) Yes

M4 No

M5 Dirichlet (1,…,1) Two-step Yes

M6 No

M7 Asymmetric island

* Equal Dirichlet Dirichlet (1,…,1) Joint Yes

* No

* Dirichlet (0.1,…,0.1) Yes

* No

M8 Dirichlet (1,…,1) Two-step Yes

M9 No

M10 Asymmetric island

Abbreviation STs, sequence types.
*The fitting procedure for these models failed to converge, so results are omitted.
aType transmission potential terms were either all set to 1 or estimated using a log-normal hyperprior with unknown variance.
bIn joint models, all parameters were estimated simultaneously in fully joint Bayesian inference; otherwise, the posterior distribution of the relative abundance of STs in each source
was estimated separately, and 100 draws from this posterior were used to estimate the remaining parameters in a second inference step.

We then included covariates (age, rurality, gender, juris-
diction and season) into each of the base models. We used
four age categories (0-4, 5–18, 19–64, and 65 and over).
Rurality was categorized as urban or rural, with those report-
ing residence in an inner city, urban, suburban, or town area
categorized as urban, and those reporting residence in rural
or remote areas categorized as rural. Season was classified
by the date the case was reported as: Summer (December
to February), Autumn (March to May), Winter (June to
August) and Spring (September to November). Cases with a
missing value for gender, age, rurality, jurisdiction, or season
were excluded from only analyses involving the missing
covariates.

2.5 Relative attributable proportion

To compare the risk associated with different animal sources,
we calculated a quantity we call the relative attributable pro-
portion (RAP). For each source, j, the RAP was estimated by
the proportion of cases attributed to that source divided by
the domestic annual consumption of meat products from that
source (Australian Bureau of Agricultural and Resource Eco-
nomics and Sciences, 2020), normalized against one of the
sources as a reference:

RAPj =
𝜉jMref

𝜉ref Mj
.

We chose the most commonly consumed meat prod-
uct in Australia—chicken—as the reference source, which
therefore had an RAP of one.

2.6 Implementation

All analyses were conducted in the R software environment
(R Core Team, 2021), with data cleaning and visualiza-
tions using tidyverse packages (Wickham et al., 2019)
and ggVennDiagram (Gao, 2022). In the two-step Dirich-
let and asymmetric island models, the relative abundance
of sequence types in sources was estimated using the R
package, islandR, created by Liao et al. (2019). Inference
for the asymmetric island model was done with Markov
Chain Monte Carlo (MCMC) using the Metropolis–Hasting
Algorithm, with 1000 iterations of warmup and thinning post-
warmup draws to one in every 100 iterations. Using 100
draws from the posterior distribution of the relative abun-
dance of sequence types in sources, inference for remaining
parameters for all models was performed using Hamiltonian
MCMC using the No U-Turn Algorithm implemented with
the Stan language (Stan Development Team, 2020b) via the
R package, Rstan (Stan Development Team, 2020a). The
Hamiltonian MCMC step used four independent chains, 2000
warmup iterations, and 100 post-warmup draws, for a total
of 40,000 post-warmup draws per model. In fully joint mod-
els, all inference was conducted using Hamiltonian MCMC
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with four chains, 2000 warmup iterations, and 2000 post-
warmup draws, for a total of 8000 post-warmup draws per
model. Convergence checking for Hamiltonian MCMC was
done using the “R hat” statistic (Vehtari et al., 2021) across
the four chains.

Model posterior predictive fits were compared using the
Watanabe–Akaike information criterion (WAIC) (Watanabe
& Opper, 2010) using the R package, loo (Vehtari et al.,
2017), with a difference greater than five standard errors
considered to be substantive evidence of superior model pre-
dictions. The WAIC uses log-likelihood of each datapoint
averaged across the posterior to assess how well models
match points in the training data. For comparing joint models
to one another (including models with and without covari-
ates for cases), each isolate from either a case or source was
considered a datapoint for calculating WAIC. However, for
models where inference was conducted in two steps, only the
data from the second step (i.e., case isolates) could be consid-
ered, and the WAIC on these data was the primary measure
of model fit used to compare across all models.

3 RESULTS

3.1 Isolates and sequence types in cases and
sources

After removing nine isolates with indeterminate ST assign-
ments (five case isolates and four chicken isolates), the final
dataset comprised genotyped isolates from 710 human cases,
480 chicken meat and offal samples, 88 ruminant (sheep and
cattle) offal samples, and 44 pig offal samples. Campylobac-
ter coli was more common in chickens (59%, 283/480) and
pigs (64%, 28/44), and C. jejuni was more common in human
cases (82%, 585/710) and ruminants (82%, 72/88). The 1322
isolates represented 175 different STs, 74 C. coli and 101
C. jejuni. STs shared across multiple sources, or sources and
cases, were usually more common than those found only in
cases or a single source. While 66 of 118 human case STs
were not found in any sampled food source (18/31 C. coli STs
and 48/87 C. jejuni STs), these types only accounted for 19%
of all isolates from cases. Conversely the eight STs found
in cases and every source (STs 21, 42, 50, 538, 827, 1181,
2083, and 7323) together accounted for 31% (221/710) of
isolates from cases, 47% (41/88) of isolates from ruminants,
30% (146/480) of isolates from chickens, and 34% (15/44) of
isolates from pigs. Fifteen C. coli STs (18 isolates) and two
C. jejuni STs (two isolates) were found in pigs but no other
sources. Three C. jejuni STs (three isolates) were only found
in ruminants but no other sources. Similarly, 29 C. coli STs
(101 isolates) and 31 C. jejuni STs (91 isolates) were only
found in chicken (Figure A1, Table 2, Tables A1 and A2).

3.2 Overall attribution proportions

In almost all models, chickens were estimated to be the most
common source for both C. jejuni (9/10 models) and C. coli

(all models). The proportion of cases attributed to chickens
was lower for C. jejuni than for C. coli (Figure 1). Dirich-
let models with an unsampled source—in which we consider
attribution to an unknown fourth source for which the relative
abundance of sequence types in unknown due to an absence
of samples (see Section 2 for details)—had reduced attribu-
tion to ruminants and pigs but similar attribution to chickens
in most models. Performing joint inference compared to two-
step inference resulted in only slightly higher attribution to
chickens and unsampled sources and reduced attribution to
ruminants and pigs.

Including covariates for cases in the joint attribution
models (M1-M4) did not lead to substantive improvements
in model posterior predictions as measured with WAIC.
Although the point estimates for the proportions of C. coli
and C. jejuni cases attributed to chickens were lower in
rural than urban areas for all models except M10, the 95%
credible interval for the differences included zero (no differ-
ence; Figure A3). This absence of substantive improvement
in model fit was observed across all covariates (gender,
age group, jurisdiction, and season) and models. As models
with covariates could only be fit to the subset of the cases
enrolled via the case–control study (n= 531), models without
covariates were preferred.

3.3 Variability of transmission potential by
sequence type

Our data indicate that transmission potential (ability to
transmit and cause disease) varied between sequence types
in our study. For instance, ST48 was more common among
cases (4.2%) than in any of the sources (ruminants: 1.1%,
chickens: 0.8%, and pigs: 0.0%), indicating high transmis-
sion potential (Table A3). Conversely, ST827 was more
common in every source (ruminants: 9.1%, chickens: 9.6%,
and pigs: 4.5%) than in cases (1.8%) (Table A4), and ST832
accounted for 3.3% and 2.3% of chicken and pig isolates
but none of the cases, indicating low transmission potential.
Models allowing transmission potential to vary between STs
(M1–M7) had a much better fit to the relative abundance
of STs in cases (Figure A4) and substantially better WAIC
values than models that assumed that all STs had equal
transmission potential (M8–M10) (Table A5). These models
with variable transmission potential (M1–M7) attributed
more cases to chicken meat and the unsampled source and
fewer cases to ruminants compared to those that assumed all
STs had equal transmission potential (M8–M10) (Figure 1).
Campylobacter coli STs were generally estimated to have
lower transmission potential than C. jejuni STs, although
there was substantial variation within each species (Figure 2).
STs isolated from cases but none of the animal meat sources
(e.g., ST2398) were estimated to occur rarely in the sampled
sources but have a relatively high transmission potential.
When sequence type transmission potential and relative
abundance of STs in sources were estimated in two steps
(M5–M7), transmission potential was more variable between
STs than in models where all parameters were jointly esti-
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TA B L E 2 Number of distinct sequence types (STs) and isolates from humans and food sources. Percentages denote of the fraction of all STs/isolates
from that origin. See Table A1 for C. coli numbers and Table A2 for C. jejuni numbers

Origin STs Isolates Unique* STs (%)

Isolates from
Unique* STs
(%)

STs without
cases (%)

Isolates from STs
without cases
(%)

Human 118 710 66 (55.9) 134 (18.9) N/A N/A

Chicken 88 480 60 (68.2) 192 (40) 38 (43.2) 90 (18.8)

Pig 33 44 17 (51.5) 20 (45.5) 21 (63.6) 25 (56.8)

Ruminant
25 88 3 (12) 3 (3.4) 2 (8) 2 (2.3)

*Unique types for sources are types that were found in that source and no other source (except potentially in humans), while unique types for humans are those found in cases but not
in any of the three sources.

F I G U R E 1 Source attribution proportions of C. jejuni and C. coli cases to three sampled sources (chicken, pig, and ruminant) in 10 models (M1–M10,
left to right). Four models (M1, M3, M5, M8) also include a fourth, “unsampled source.” The asymmetric island model is intrinsically unable to accommodate
an unsampled source. See Table 1 for the list of assumptions for each model.

mated (M1–M4). When comparing models, estimates of
transmission potential and abundance varied most for those
types that were found in cases but not in sources (e.g.,
ST2398). In joint Dirichlet models, using a weaker prior or
including an unsampled source increased estimates of the
relative abundance of these types in sources (Table A4) and

correspondingly reduced the estimates of their transmission
potential (Table A6). For the Dirichlet models, transmission
potential varied at most by a factor of 220 across sequence
types and varied by less than a factor of 45 across the most
common sequence types in cases (Figure 2 and Table A6).
However, under the asymmetric island model, types such as
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F I G U R E 2 Posterior median and 95% credible intervals for type transmission potential (relative ability of a sequence type to transmit from a source
and lead to a reported campylobacteriosis case) of the 15 most common C. coli and C. jejuni multi-locus sequence types (STs) in human cases for four
models. STs have been ordered by posterior median type transmission potential in model M1. Note the x-axis is on a log scale, with wider limits for M7
(asymmetric island model). See Table 1 for details of the four models.

ST2398 (observed in cases but not sources) were estimated
to have a trillion times greater transmission potential than
other types (Figure 2 and Table A6), which is implausible

3.4 Model diagnostics and comparisons

The joint Dirichlet model with variable type transmission
potential had very good convergence metrics (Rhat < 1.008).
When type transmission potential terms were set to be equal,
the joint Dirichlet model failed to converge (Rhat > 1),
further highlighting the importance of including type trans-
mission potential terms. Two-step inference with variable
or equal type transmission potential converged adequately
(Rhat < 1.04).

Comparison of observed and estimated relative abundance
of sequence types in sources (Tables A1 and A2) suggested
the default priors for these quantities in the Dirichlet model
may be too strong, with better concordance under a weaker
prior. Use of a weaker prior for the Dirichlet model leads to
substantively poorer model fit to case data as measured with
WAIC (Table A5). However, the weaker prior improved fit
to source data such that the WAIC calculated over cases and
sources was lower (though not substantively) for models with
a weaker prior (Table A5). Using the weaker prior had little
effect on the attribution proportions for C. coli, but substan-
tially increased the proportion of C. jejuni cases attributed to

ruminants and unsampled sources while reducing attribution
to chickens.

The asymmetric island models produced source attribution
estimates with narrower credible intervals than Dirich-
let models, both at the species (Figure 1) and ST level
(Figure A2). This was particularly notable for sequence types
such as ST2398 (which was found in cases but not in sources)
for which models M7 and M10 attributed 97% (95% credible
interval [CrI]: 83%−100%) and 65% (95% CrI: 55%−74%)
of cases to chicken (Figure A2). The asymmetric island
model also attributed a larger proportion of cases to chicken
meat and a smaller proportion to ruminants and pigs.

Model M1 had the best predictions for the relative abun-
dance of STs in cases as measured with WAIC (Table A5).
M1 had substantively better model predictions than all other
models except M2 (same as M1 but without an unsampled
source) and M7 (asymmetric Island model with variable type
transmission potential) (Table A5). When WAIC was calcu-
lated for predictions of sequence type abundance in cases
and sources, M3 had the best predictions, although the differ-
ence between M3 and M1 was not substantive (less than five
standard errors) (Table A5). As the only difference between
M1 and M3 is that the latter has a weaker prior on rela-
tive abundance of sequence types in sources, this indicates
that the strength of this prior involves a trade-off between
prediction in cases compared to sources. As we were pri-
marily interested in cases, M1 was our preferred model. With
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model M1, the proportions of cases attributed to each source
were 80% (95% CrI: 61%–92%) to chickens, 2% (CrI: 0.3%–
12%) to ruminants, 2% (CrI: 0.2%–11%) to pigs, and 14%
(CrI: 0.3%–32%) to the “unsampled source” (Figure 1). With
model M2, the proportions of cases attributed to each source
were similar to M1 for chicken (81% [CrI: 59%–96%]) but
with greater attribution to ruminants (12% [CrI: 1.3%–33%])
and pigs (6% [CrI: 1.1%–19%]) (Figure 1). Attribution pro-
portions with M7 were similar to M1 for ruminants (2% [CrI:
0.3%–9.6%]) and pigs (2% [CrI: 0.1%–14%]), but with more
attribution to chicken (96% [CrI: 80%–99%]) (Figure 1).

3.5 Relative attributable proportion by
source

When comparing the relative attributable proportion (RAP)
for each source—calculated by dividing proportion of cases
attributed to a source by per capita domestic consumption of
meat from that source—all models estimated chickens had
a higher RAP than pigs (Figure A5). Half of the models
estimated that RAP of chicken was higher than ruminants,
and the remaining models (which included the three worst
fitting models, M8–M10) were inconclusive (i.e., 95% cred-
ible intervals for RAP include 1, i.e., equal RAP). Our best
fitting model (M1) estimated that chickens had an RAP 22
times that of pigs (95% CrI: 3.6–240) and 27 times that of
ruminants (95% CrI: 4.0–190). However, models without an
“unsampled source” attributed a greater percentage of cases
to ruminants and pigs when compared to similar models with
an “unsampled source,” increasing the estimates of RAP for
these sources. For instance, model M2 (which had similar
fit statistics to M1) estimated that chickens had an RAP 7.3
times that of pigs (95% CrI: 2.1–47) and 4.8 times that of
ruminants (95% CrI: 1.3–51) (Figure A5).

4 DISCUSSION

We estimate that approximately 80% of campylobacteriosis
in Australia during 2017–2019 was attributable to transmis-
sion from chickens, with greater attribution to chickens for
C. coli than C. jejuni. Our models attributed to meat sources
(e.g., chicken vs. ruminant), not transmission routes (e.g.,
consumption of contaminated chicken meat compared to
contact with chicken feces). However, as most campylobac-
teriosis in Australia is believed to be foodborne (Vally et al.,
2014), we can approximate the risk posed by the consumption
of meat from a source with the relative attributable propor-
tion, that is, by dividing the proportion of cases attributed
to that source by its domestic consumption. Applying this
method, we estimate consuming chicken meat posed a 22–
27 times greater risk of campylobacteriosis than consuming
meat from pigs and ruminants, in accord with the findings of
the case–control study (Cribb et al., 2022).

Our modeling of sporadic campylobacteriosis cases aligns
with outbreak investigation findings in Australia, the major-

ity of which have linked cases to chicken or dishes containing
chicken (Moffatt et al., 2020). Source attribution studies in
other high income countries have also identified chicken as
the leading source of Campylobacter infections, for exam-
ple, Switzerland (Kittl et al., 2013), New Zealand (Liao
et al., 2019; Mullner, Spencer, et al., 2009), Germany (Rosner
et al., 2017), Denmark (Boysen et al., 2014), the Netherlands
(Mughini-Gras et al., 2018), and the United Kingdom (Thé-
pault et al., 2017). In our study, only a small number of C. coli
and C. jejuni campylobacteriosis cases were attributed to
pigs, similar to studies conducted in Denmark (Boysen et al.,
2014), Switzerland (Kittl et al., 2013), and the Netherlands
(Mughini-Gras et al., 2018) and findings for C. jejuni in Ger-
many (Rosner et al., 2017). However, our attributions contrast
with findings in Germany where pigs have been identified
as a major source of C. coli campylobacteriosis. Our attri-
bution proportion estimates for ruminants were sensitive to
model assumptions (e.g., inclusion/exclusion of an “unsam-
pled source”), with up to one quarter of C. coli and one-half
of C. jejuni infections attributable to ruminants in some mod-
els, but less than 5% of infections in other models. However,
the model with best fit to data (M1) and the two models with
similar fit (M2 and M7) all attributed <12% to ruminants.
We did not find inclusion of case covariates such as rurality,
age, sex, or jurisdiction substantially improved model predic-
tions. However, point estimates of attribution to chicken meat
were higher in urban than rural populations, in agreement
with studies in New Zealand (Liao et al., 2019).

The number of isolates from ruminants and pigs was low
despite extensive sampling, as the prevalence of Campylobac-
ter was lower than anticipated. Observed ST diversity in
each source indicated sampling was far from reaching satu-
ration for pigs and ruminants. Up to one third of cases were
attributed to an “unsampled source” when this was included
in models. However, in the model with the best fit, only
14% of cases were attributed to the unsampled source. Mod-
els without an unsampled source attributed more cases to
all three sampled sources, but primarily ruminants and pigs.
Attribution to the unsampled source may genuinely indicate
one or more unidentified sources (e.g., companion animals,
environmental sources including from wildlife, water, over-
seas acquisition), but may also be driven by uncertainty
introduced by low isolate numbers from ruminants and pigs
and the high ST diversity.

Although all models identified chickens as the primary
source of campylobacteriosis, there were substantial differ-
ences in attribution dependent on model assumptions. The
most influential assumption concerned the relative transmis-
sion potential of sequence types. In our model, sequence type
transmission potential captured any ST organism-intrinsic
differences affecting the risk of developing a (notified) infec-
tion following exposure to a contaminated food source, for
example, ST-specific differences in abundance on contam-
inated food, survival, or virulence. Our findings indicated
transmission potential varied between STs. Models that made
the strong assumption that all types had equal transmission
potential had attribution estimates with narrower credible
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intervals, but with substantially poorer fit to the data. Unlike
the Dirichlet model, the asymmetric island model incor-
porates locus-level information about STs relatedness by
considering shared alleles. However, including differences in
type transmission potential in the asymmetric island model
resulted in biologically implausible estimates of transmis-
sion potential for STs that were not detected in sources. In
our models, ST48 was estimated to have high transmission
potential, in agreement with a study in New Zealand (Miller
et al., 2017). Given emerging Campylobacter virulence fac-
tor research (e.g., Bolton, 2015; Zhang et al., 2016), it may
prove valuable to investigate whether these factors are asso-
ciated with ST transmission potential in source attribution
studies. If estimates of type transmission potential are con-
sistent over time and across studies, transmission potential
could be used to differentiate STs of substantial concern (e.g.,
ST48) or limited concern (e.g., ST827 and ST832).

Models that allowed for differences in transmission poten-
tial between STs suggested C. coli STs generally had lower
transmission potentials than C. jejuni STs, possibly explain-
ing why C. coli predominated in chickens and yet C. jejuni
predominated in human cases. Salmonellosis source attri-
bution models have often accounted for variable serotype
transmission potential (e.g., Hald et al., 2004; Miller et al.,
2017; Mughini-Gras et al., 2014; Mullner, Jones, et al., 2009).
Our findings are consistent with our previous study that found
that assuming Salmonella serotypes had equal transmission
potential distorted attribution estimates, particularly underes-
timating attribution to sources harboring a mix of serotypes
with low and high transmission potential, namely, broiler
chickens (McLure et al., 2022).

Many source attribution studies rely on secondary anal-
ysis of multiple datasets, often adopting different sampling
approaches for different food animals, including targeted
sampling (e.g., outbreak investigations) and sampling at dif-
ferent stages of the food production process (e.g., farm,
processor, or retail). In contrast, our study applied a common
sampling approach, sampling specific animal sources, all
from retail meats over the course of two years. This included
samples from the four major food animals consumed in Aus-
tralia (chickens, pigs, cattle, and sheep). We included cases
from every Australian state and two most populous territo-
ries (the ACT and NT). We collected food isolates from four
jurisdictions including Australia’s three most populous states
(NSW, Qld, and Vic). We did not find any differences in the
human cases between jurisdiction in this or previous studies
(Wallace et al., 2021) and therefore believe our estimates of
source attribution are generalizable to the general Australian
population. By adopting a model comparison approach, we
were able to identify findings consistent across models and
assumptions, including high attribution to chicken.

Our study has some limitations. Given the generally low
prevalence of Campylobacter on muscle meat from pigs
and ruminants, we chose to sample offal meats, which
have previously been found to have much higher prevalence
of Campylobacter contamination (New South Wales Food
Authority, 2018). If the STs present on muscle meat and offal

are substantially different, our samples may not have been
representative of the STs encountered when consuming meat
from ruminants and pigs. However, the STs in muscle and
offal meats from chicken were similar (Wallace et al., 2020)
supporting the validity of our sampling approach. Despite
extensive sampling efforts, the number of isolates from pigs
and ruminants limited the statistical power of our study
(Walker et al., 2019; Wallace et al., 2020), particularly with
respect to detection sensitivity of differences in attribution by
state, rurality, or other covariates. There is a general lack of
theoretical work to inform questions of power and minimum
sample sizes at the design phase of source attribution studies
(Smid et al., 2013). While Campylobacter has been isolated
from a wide range of wild and domestic animal species, this
study only included samples from the primary retail meat pro-
duction animals in Australia. However, 62%–89% of cases in
Australia are believed to be foodborne (Vally et al., 2014) pri-
marily from meat, in concordance with our best fitting models
that attributed 86% to chickens, pigs, and ruminants, and 14%
to an unsampled source. Attribution to unsampled source
must be interpreted with caution, as it could represent gen-
uine unsampled reservoir(s) (e.g., wildlife and/or companion
animals, water) but might also be an artifact of limited sam-
ple sizes. In particular, the large attribution proportions for the
unsampled sources predicted by the model with weak priors
on the relative abundance of sequence types in sources (M3)
should be interpreted as an uncertain attribution rather than
strong evidence of one or more major unsampled sources.
Some of the attribution to an unsampled source may be due
to travel associated cases, though this was unlikely to be a
major factor in our study, as about 97% of Australian campy-
lobacteriosis cases are believed to be domestically acquired
(Kirk et al., 2014) and 68% of the cases in our study were
from a case–control study that specifically excluded travel-
associated cases. As cases were recruited from notifiable
disease databases, our study only included cases that sought
medical care and had a stool culture, presumably biasing our
sample toward moderate-to-severe cases. Though not repre-
sentative, these cases are the priority for disease prevention.
The sampling periods cases and food were only partially
overlapping (February 2018 to October 2019 vs. March 2017
to March 2019). However, this was unlikely to have biased
our analyses as the relative frequency of STs in sources and
cases were unlikely to have changed substantially over the
sampling period and the multi-year sampling periods allowed
us to average over any seasonal differences. Application of
the asymmetric island model to attribute relative abundance
of STs in sources performed worse than anticipated, lead-
ing to a poor model fit when all STs were assumed to have
equal transmission potential (the standard assumption when
using the asymmetric island model), but resulting in biolog-
ically implausible estimates of transmission potential when
this assumption was relaxed. While the asymmetric island
model in theory could have incorporated more of the genomic
data available (e.g., core genome MLST or single nucleotide
polymorphisms), we anticipate that increased granularity in
typing would only exacerbate the problems with estimating
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transmission potential. Similarly, the Dirichlet model could
not be used on the full genomic data as it performs poorly
when most isolates are assigned a unique type. Further work
is required to better account for differences in type trans-
mission potential when using the asymmetric island model,
for example, improving capabilities for fully joint inference
and modeling correlations in transmission potential between
related types.

Our best fitting model estimated that chickens account for
about 80% of campylobacteriosis and that even after adjust-
ing for the relatively high rates of chicken meat consumption
chicken poses a risk of campylobacteriosis approximately 5–
30 times higher than ruminants and 7–72 times higher than
pigs. Chickens should therefore remain the priority target for
reducing burden of Campylobacteriosis in Australia, includ-
ing increased promotion of safe food handling practices for
all raw meats and reduction of meat contamination during
production and processing.
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A P P E N D I X

TA B L E A 1 Number of distinct C. coli multi-locus sequence types (STs) and isolates from humans and food sources

Origin STs Isolates Uniquea STs (%)
Isolates from
Uniquea STs (%)

STs without
cases (%)

Isolates from STs
without cases (%)

Human 31 125 18 (58) 19 (15) N/A N/A

Chicken 40 283 29 (73) 101 (36) 28 (70) 73 (26)

Pig 23 28 15 (65) 18 (64) 19 (83) 23 (82)

Ruminant 7 16 0 (0) 0 (0) 0 (0) 0 (0)

Note: Percentages, where given, denote of the fraction of all C. coli STs/isolates with the same source (humans, chicken, pig, or ruminant).
aUnique types for sources are types that were found in that source and no other source (but potentially in humans), while unique types for humans are those found in cases but not in
any of the three sources.

TA B L E A 2 Number of distinct C. jejuni multi-locus sequence types (STs) and isolates from humans and food sources

Origin STs Isolates Unique* STs (%)
Isolates from
Unique* STs (%)

STs without
cases (%)

Isolates from STs
without cases (%)

Human 87 585 48 (55) 115 (20) N/A N/A

Chicken 48 197 31 (65) 91 (46) 10 (21) 17 (8.6)

Pig 10 16 2 (20) 2 (13) 2 (20) 2 (13)

Ruminant 18 72 3 (17) 3 (4.2) 2 (11) 2 (2.8)

Note: Percentages, where given, denote of the fraction of all C. jejuni STs/isolates with the same source (humans, chicken, pig, or ruminant).
*Unique types for sources are types that were found in that source and no other source (but potentially in humans), while unique types for humans are those found in cases but not in
any of the three sources.
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TA B L E A 3 Comparison of observed and estimated relative abundance (%) of two multi-locus sequence types (STs) in the three sources and
“unsampled source” (where relevant). ST50 and ST48 were the first and fourth most common STs in humans in our study. The relative abundance is the
percentage of all Campylobacter isolates from a given source that belong to the indicated sequence type

Modela

Sequence type 50 Sequence type 48

Ruminant Pig Chicken Unsampled Ruminant Pig Chicken Unsampled

Observed 24 11 5.2 NA 1.1 0.0 0.8 NA

(21/88) (5/44) (25/480) (0/0) (1/88) (0/44) (4/480) (0/0)

M1 8.4 2.8 4.1 0.6 0.8 0.5 1.0 0.7

(5.4–12.0) (1.1–5.4) (2.8–5.8) (1.8 × 10−2 − 2.2) (0.1–2.2) (1.1 × 10−02 − 1.7) (0.4–1.8) (1.8 × 10−2 − 2.5)

M2 8.4 2.8 4.1 NA 0.8 0.5 1.0 NA

(5.3–12.2) (1.0–5.1) (2.8–5.8) (0.1–2.2) (1.2 × 10−2 − 1.8) (0.4–1.8)

M3 20 8.6 5.2 0.8 1.4 0.2 1.0 2.8

(13–28) (2.9–17) (3.3–7.3) (2.3 × 10−16 − 8.3) (0.1–4.5) (6.9 × 10−17 − 1.8) (0.3–2.0) (7.1 × 10−14 − 13.9)

M4 19.3 8.5 5.1 NA 1.5 0.2 0.9 NA

(13–27) (2.8–17) (3.4–7.2) (0.1–4.5) (2.0 × 10−16 − 2.0) (0.3–2.0)

M5 and M8 8.4 2.7 4.0 0.6 0.8 0.5 0.8 0.6

(5.3–12) (1.0–5.3) (2.6–5.6) (1.5 × 10−2 − 2.1) (0.1–2.1) (1.2 × 10−2 − 1.7) (0.2–1.6) (1.5 × 10−2 − 2.1)

M6 and M9 8.4 2.7 4.0 NA 0.8 0.5 0.8 NA

(5.3–12) (1.0–5.3) (2.6–5.6) (0.1–2.1) (1.2 × 10−2 − 1.7) (0.2–1.6)

M7 and M10 16.6 8.8 4.7 NA 0.8 0.3 0.7 NA

(15–18) (7.3–11) (4.4–5.1) (0.8–0.9) (0.2–0.4) (0.6–0.7)

Note: Observed values are the percentage of isolates of the given sequence type with numbers given in parentheses. The point estimates for the models are the posterior mean with
95% credible intervals.
aThe pairs of models M5 and M8, M6 and M9, and M7 and M10 use the same model for relative abundance of sequence types in sources. See Table 1 for a full description of the
models.
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TA B L E A 5 Predictive performance of 10 source attribution models, measured with Watanabe–Akaike information criterion (WAIC) for the prediction
of the relative abundance of sequence types in cases (all models: M1–M10) or cases and sources (jointly estimated models only: M1–M4)

Cases Cases and sources

Model WAIC
WAIC
difference

Effective #
parameters WAIC WAIC difference

Effective #
parameters

M1 5819.2 (76.4) 0.0 (0.0) 102.8 (5.6) 10,785.4 (95.8) 112.7 (24.6) 209.6 (7.5)

M2 5822.2 (76.8) 3.0 (1.1) 103.5 (5.7) 10,792.0 (96.3) 119.4 (24.1) 210.1 (7.6)

M3 5870.4 (82.5) 51.1 (9.6) 131.2 (9.0) 10,672.7 (112.1) 0.0 (0.0) 312.7 (14.5)

M4 5881.2 (84.6) 62.0 (12.1) 135.5 (9.4) 10,708.8 (114.1) 36.2 (5.1) 318.7 (14.9)

M5 5828.4 (77.5) 9.2 (1.6) 109.8 (6.2) — — —

M6 5831.1 (78.0) 11.9 (2.2) 110.9 (6.3) — — —

M7 5896.1 (89.5) 76.8 (92.4) 172.8 (13.3) — — —

M8 6690.1 (60.4) 870.8 (51.5) 108.4 (3.3) — — —

M9 6721.2 (63.6) 902.0 (52.6) 116.3 (4.1) — — —

M10 9950.8 (382.8) 4131.5 (361.1) 17.5 (2.0) — — —

Note: Standard errors are given in parentheses. WAIC is smaller in models with better fit. WAIC difference is calculated with respect to the best model (M1 for predictions in cases,
M3 for predictions in cases and sources). However, we only consider differences substantive when greater than five times the standard error for the difference, for example, when
considering predictions in cases, M1 is substantively better than all models except M2 and M7.

TA B L E A 6 Estimates and 95% credible intervals for selected parameters related to type transmission potential in the seven models (M1–M7) that
allowed for transmission potential variability between sequence types. See Table 1 for further details of models

Modela 𝝈 b q2398 q48 q50 q827

M1 1.2 (1.0–1.5) 18 (4.6–85) 15 (4.7–48) 12 (5.2–29) 0.6 (0.3–1.5)

M2 1.2 (1.0–1.5) 22 (5.6–110) 15 (5.6–49) 11 (4.7–25) 0.6 (0.3–1.2)

M3 1.0 (0.6–1.3) 4.8 (0.8–56) 9.2 (1.2–43) 6.0 (2.3–16) 0.5 (0.2–1.0)

M4 1.2 (0.9–1.6) 23 (4.1–210) 16 (4.2–66) 5.0 (2.1–13) 0.3 (0.1–0.6)

M5 1.4 (1.2–1.7) 40 (7.9–270) 19 (6.2–70) 10 (4.5–25) 0.7 (0.3–1.8)

M6 1.4 (1.2–1.7) 34 (6.6–170) 17 (5.6–58) 12 (5.4–29) 0.7 (0.3–1.4)

M7 12 (10–13) 7.6 × 1011 (2.2 × 1011 − 2.5 × 1012) 28 (14–61) 12 (6.4–25) 3.4 × 10−2 (4.2 × 10−2 − 0.4)

aModels M8–M10 assumed all types had equal transmission potential. See Table 1 for a full description of models M1–M7.
bThe standard deviation (on the log scale) of the log-normal distribution of type transmission potential parameters q.
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F I G U R E A 1 Venn diagram summarizing the
number of multi-locus sequence types (STs) found
in cases and sources, or combinations of cases and
sources. For instance, 66 STs were found only in
cases, 26 STs were found in chicken and cases but
not in pigs or ruminants, and 8 STs (representing
32% [423/1322] of study isolates) were found in
cases and all sources.
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F I G U R E A 2 Source attribution proportions of four selected multi-locus sequence types (STs) to three sampled sources in 10 models (M1–M10, left to
right). Four models (M1, M3, M5, and M8) also include a fourth, “unsampled source.” See Table 1 for more details about the models. ST50 (C. jejuni) was
the most observed type in cases, ruminants, and pigs and the fifth most common type in chickens. ST48 (C. jejuni) was fourth most common type in humans,
but rare or absent in all sources. ST827 (C. coli) was the second most common type in chickens, and found in the other sources, but relatively uncommon in
cases. ST2398 (C. jejuni) was more common in cases than ST827, but not detected in any sources. Estimates of relative abundance of these types in the
respective sources can be found in Tables A3 and A4. Estimates of the transmission potential of the four types can be found in Table A6.
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F I G U R E A 3 Percent difference in source attribution proportions between urban and rural populations (urban cases as references) for eight models
(M1, M2, M5–M10). See Table 1 for model details. Vertical bars are 95% credible intervals (CrI). Note that all CrIs include 0% (no difference).
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F I G U R E A 4 The observed proportion of cases due to the five most common multi-locus sequence types (STs) from C. coli and C. jejuni (black
horizontal lines) compared to predictions (colored points and vertical 95% credible intervals) under 10 source attribution models (M1–M10, left to right).
Note that for some STs, the credible intervals for M10 (asymmetric island model) are so narrow that they are not visible.
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F I G U R E A 5 Estimates of relative attributable proportion (RAP) of campylobacteriosis under 10 source attribution models (M1–M10, left to right).
RAP was calculated by dividing attribution proportion by the annual Australian consumption of meat products derived from that source and normalized
against a reference source (chicken). All models indicated pig meat poses less risk (lower RAP) than chicken. Note the y-axis is on a log scale, and that the
“unsampled source” is omitted due to lack of respective consumption statistics or appropriate equivalent exposure measure.


	Source attribution of campylobacteriosis in Australia, 2017-2019
	Abstract
	1 | BACKGROUND
	2 | METHODS
	2.1 | Data collection
	2.2 | Campylobacter Isolation, sequencing, and genotyping
	2.3 | Source attribution modeling approach
	2.4 | Source attribution models
	2.5 | Relative attributable proportion
	2.6 | Implementation

	3 | RESULTS
	3.1 | Isolates and sequence types in cases and sources
	3.2 | Overall attribution proportions
	3.3 | Variability of transmission potential by sequence type
	3.4 | Model diagnostics and comparisons
	3.5 | Relative attributable proportion by source

	4 | DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


