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1 | INTRODUCTION

The personalization of treatment choice can be informed by comparative effectiveness research that exploits the widespread 
availability of electronic health records (EHRs), but requires methods that address confounding and heterogeneity. For conven-
tional linear Instrumental Variable (IV) methods, such as two-stage least squares (2SLS) to identify policy-relevant estimands 
such as the Average Treatment Effect (ATE) or Conditional Average Treatment Effects (CATEs), it is required that there is 
no essential heterogeneity (Heckman et al., 2006). Essential heterogeneity arises when treatment effects differ over levels of 
unmeasured confounders, in which case 2SLS no longer identifies the ATE, even if the instrument is strong and valid (Heckman 
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Abstract
Local instrumental variable (LIV) approaches use continuous/multi-valued instru-
mental variables (IV) to generate consistent estimates of average treatment effects 
(ATEs) and Conditional Average Treatment Effects (CATEs). There is little evidence 
on how LIV approaches perform according to the strength of the IV or with different 
sample sizes. Our simulation study examined the performance of an LIV method, 
and a two-stage least squares (2SLS) approach across different sample sizes and IV 
strengths. We considered four ‘heterogeneity’ scenarios: homogeneity, overt hetero-
geneity (over measured covariates), essential heterogeneity (unmeasured), and overt 
and essential heterogeneity combined. In all scenarios, LIV reported estimates with 
low bias even with the smallest sample size, provided that the instrument was strong. 
Compared to 2SLS, LIV provided estimates for ATE and CATE with lower levels 
of bias and Root Mean Squared Error. With smaller sample sizes, both approaches 
required stronger IVs to ensure low bias. We considered both methods in evaluating 
emergency surgery (ES) for three acute gastrointestinal conditions. Whereas 2SLS 
found no differences in the effectiveness of ES according to subgroup, LIV reported 
that frailer patients had worse outcomes following ES. In settings with continuous 
IVs of moderate strength, LIV approaches are better suited than 2SLS to estimate 
policy-relevant treatment effect parameters.
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et al., 2006). Essential heterogeneity is a major concern in health care, as it is commonly the case that there are biological corre-
lations between risk factors, some of which remain unobserved to the analyst.

In the presence of essential heterogeneity, Local Instrumental Variable (LIV) approaches can provide consistent estimates 
of the ATE and CATEs (Heckman & Vytlacil,  2005). LIV methods draw on theory about individual's choices to identify 
‘marginal treatment effects’ (MTEs) for individuals at the ‘margin of treatment choice’ (Bjorklund & Moffitt, 1983; Heckman 
& Vytlacil, 1999). These MTEs are identified for individuals for whom the level of the IV is such that observed characteristics 
encouraging treatment (including the IV) and unobserved characteristics discouraging treatment are balanced, so there is equi-
poise about the treatment decision. Here, a small change (or nudge) in the level of a valid, continuous IV ‘tips the balance’ for 
the treatment decision for these marginal patients, without changing the distribution of the underlying risk factors. Therefore, 
comparing mean outcomes between two groups of patients only separated by a small change in the IV, identifies MTEs for 
individuals who comply with the change in treatment, due to that small change in the IV. A continuous instrument with suffi-
cient support allows all individuals to be defined as ‘compliers’ at some level of the IV (Heckman & Vytlacil, 1999). Hence, 
given observed covariates, MTEs can be estimated along the continuum of the IV, and aggregated to provide CATEs and ATEs 
(Heckman & Vytlacil, 1999, 2001, 2005).

The theoretical properties of these LIV methods in settings with essential heterogeneity have been discussed by Heckman 
et al. (2006), Basu et al. (2007) and Angrist & Fernández-Val, 2011 inter alia. However, most simulation studies of IV meth-
ods only consider treatment effects that are homogeneous, or heterogenous according to measured factors (overt heterogene-
ity) (Martínez-Camblor et al., 2019; Terza et al., 2008a, 2008b). Studies that have considered essential heterogeneity, have 
found that 2SLS provides inconsistent estimates of the ATE (Basu, Coe, & Chapman, 2018; Brooks et al., 2018; Chapman 
& Brooks, 2016), whereas Basu (2014) reports that a LIV method could provide consistent estimates of the ATE and CATE 
in finite samples for different types of outcomes. LIV methods have now been applied across a multitude of settings includ-
ing cardiovascular and bariatric surgery, universal child care programs and transfers to intensive care units (Basu, Jones, & 
Rosa Dias, 2018; Cornelissen et al., 2018; Grieve et al., 2019; Reynolds et al., 2021).

A major barrier to wider use of potentially valid IVs in general is that if the IV is only weakly associated with treatment 
assignment, then IV estimators can provide very biased and imprecise estimates (Bound et al., 1995; Nelson & Startz, 1990; 
Stock & Yogo, 2005). Weak IVs can also amplify the bias arising due to violations of the other assumptions (Bound et al., 1995; 
Small & Rosenbaum, 2008). While current practice tends to rely on the first-stage F-statistic exceeding the value of 10 (Staiger 
& Stock, 1997), recent developments in the weak identification literature for IV models have revealed the shortcomings of an 
unequivocal decision rule for assessing weak identification (Andrews et al., 2019; Keane & Neal, 2023; Lee et al., 2021; Moffitt 
& Zahn, 2022). For LIV to provide consistent, precise estimates of ATE or CATEs, requires a strong continuous/multi-valued 
IV with sufficient support to ensure that there is a level of the IV at which each unit ‘complies’ (i.e., is selected into treatment 
according to the level of the IV). However, no study has assessed the levels of IV strength that are required for an LIV estimator 
to perform well, nor how performance may differ according to the sample size available, in settings with essential heterogeneity.

This paper addresses this gap in the literature by contrasting LIV with the commonly used 2SLS estimator in Monte Carlo 
simulations, motivated by a case study which highlights typical issues pertaining to heterogeneity, sample size and IV strength. 
We simulate four scenarios: two of them under restrictive assumptions about heterogeneity (A: homogeneity; B: overt heteroge-
neity), one where treatment effects are allowed to be heterogenous according to an unmeasured confounder (C: essential heter-
ogeneity), and one where both forms of heterogeneity are present (D: overt and essential heterogeneity). Across all scenarios, 
ATE and CATE are the parameters of interest.

This paper is structured as follows. In Section 2, we outline the motivating example. In Section 3, we define the estimands 
and identification assumptions for 2SLS and LIV and present the methods for the simulation study. In Section 4, we present 
the results of the simulation study and the case study. In Section 5, we discuss how this study adds to the literature and the 
implications for further research.

2 | MOTIVATING EXAMPLE: THE ESORT STUDY

The ESORT (Emergency Surgery OR noT) study evaluated the effectiveness of ES for acute gastrointestinal conditions. 
The primary outcome of the study was the number of ‘days alive and out of hospital’ (DAOH) at 90-days (see (Hutchings 
et al., 2022) for details), which encompasses mortality and total length of hospital stay (LOS). The study exemplifies the key 
issues that arise when applying IV methods to EHR data to provide policy-relevant estimates of comparative effectiveness 
(ESORT Study Group, 2020; Hutchings et al., 2021, 2022). Patients presented as emergency admissions and were selected 
for either ES, or alternative non-emergency surgery (NES) interventions such as medical management or delayed surgery, 
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according to unmeasured characteristics such as the severity of the disease, and hence unmeasured confounding and essential 
heterogeneity were major concerns.

The ESORT study followed Keele et al. (2018) and developed a continuous preference-based IV for ES receipt to evaluate 
the effectiveness of ES for three acute gastrointestinal conditions: acute appendicitis, gallstone disease and abdominal wall 
hernia, using routine hospitalization data from the hospital episode statistics (HES) inpatient database in England. The IV was 
the hospital's tendency to operate (TTO), a proxy measure of the hospital's latent preference for ES, defined as the proportion 
of eligible emergency admissions in each of 174 hospitals who had ES in the year preceding each admission. Given a relevant 
IV, two main assumptions need to hold: (i) conditional on the variables included in the models, the hospital's TTO was not 
correlated with the patient's outcome except through treatment assignment, (ii) it does not increase the probability of treatment 
for an individual at some value of the IV, but decrease it for higher values. The study design had some important features to 
support this assumption. First, in this emergency setting, patients were unlikely to select the hospital according to quality of 
care. Second, the study only included direct admissions to hospital, so there was no scope to transfer the patient according 
to physician or patient choice. Third, information was collated on a rich set of proxies for the hospital's quality of acute care, 
including rates of mortality and emergency admissions in previous years, which were included in the models as fixed effects. 
Fourth, observed covariates, were balanced across all levels of the TTO, which helped support the requisite assumption that the 
IV also balanced unmeasured confounders (Hutchings et al., 2022; Moler-Zapata et al., 2022). The requisite assumption that 
the IV has a monotonic effect on treatment receipt could not be formally tested on the data. However, it was deemed plausible 
in this setting, as it seems unlikely that there are patients who would receive ES when admitted to hospitals with low TTO but 
receive NES when admitted into a hospital with high TTO.

The ESORT study highlighted several outstanding concerns pertaining to IV methods in general, and LIV approach in 
particular. While the study reported estimates of the ATE, from the outset, there was policy interest in estimating the CATEs, 
according to baseline covariates including age, number of comorbidities, and levels of frailty. While the sample sizes for 
each condition, were relatively large, they also differed across conditions, from 268,144 (appendicitis) and 240,977 (gallstone 
disease), to 106,432 (hernia) patients. There were also differences in the strength of the IV with F-statistics ranging from 141 
(acute appendicitis), 739 (hernia) to 9053 (gallstone disease). Hence, the ESORT study further motivated the interest in what 
strength of continuous IV was required to provide unbiased, efficient estimates of policy relevant estimands such as CATEs in 
settings with essential heterogeneity, and according to different sample sizes.

3 | METHODS

3.1 | Instrumental variables methods

Throughout we use the Neyman-Rubin potential outcomes framework (Neyman, 1990; Rubin, 1974). Let 𝐴𝐴 𝐴𝐴  denote the outcome, 
𝐴𝐴 𝐴𝐴 denote the treatment status, and 𝐴𝐴 𝐴𝐴 denote the IV. Let 𝐴𝐴 𝐴𝐴𝑍𝑍 denote the potential treatment status that would be observed if 𝐴𝐴 𝐴𝐴 

would be set to 𝐴𝐴 𝐴𝐴 = 𝑧𝑧 , and 𝐴𝐴 𝐴𝐴𝐷𝐷 denote the potential outcome that would be observed if 𝐴𝐴 𝐴𝐴 would be set to 𝐴𝐴 𝐴𝐴 = 𝑑𝑑 , with 𝐴𝐴 𝐴𝐴 ∈ {0, 1} , 
such that we observe 𝐴𝐴 (𝑌𝑌𝐷𝐷,𝐷𝐷𝑍𝑍,𝑍𝑍) for each individual. For each patient, let 𝐴𝐴 𝐴𝐴

1
= 𝜇𝜇

1
(𝑋𝑋𝑂𝑂,𝑋𝑋𝑈𝑈 , 𝜗𝜗) and 𝐴𝐴 𝐴𝐴

0
= 𝜇𝜇

0
(𝑋𝑋𝑂𝑂,𝑋𝑋𝑈𝑈 , 𝜗𝜗) denote 

the potential outcomes, where 𝐴𝐴 𝐴𝐴𝑂𝑂 is the vector of observed covariates, 𝐴𝐴 𝐴𝐴𝑈𝑈 is a vector of unmeasured confounders, and 𝐴𝐴 𝐴𝐴 
captures all the remaining unobserved random variables. Throughout, we assume exogeneity of the covariates (A1), so that the 
treatment assignment is the only source of endogeneity, such that 𝐴𝐴 (𝑋𝑋𝑂𝑂,𝑋𝑋𝑈𝑈 ) ⟂ 𝜗𝜗 and 𝐴𝐴 𝐴𝐴𝑂𝑂 ⟂ 𝐴𝐴𝑈𝑈 .

3.1.1 | Identification assumptions

Angrist et al. (1993) defined a series of structural assumptions for the identification of the LATE. Here, following Abadie (2003) 
and Tan (2006) we make the following assumptions which are the conditional version of the assumptions outlined by Angrist 
et al. (1993):

(A2) Unconfoundedness of Z 𝐴𝐴
(
𝑌𝑌𝑑𝑑𝑧𝑧 , 𝐷𝐷𝑧𝑧

)
⟂ 𝑍𝑍|𝑋𝑋𝑂𝑂

(A3) Exclusion restriction 𝐴𝐴 𝐴𝐴𝑑𝑑𝑧𝑧 = 𝐴𝐴𝑑𝑑 with probability 1

(A4) Relevance 𝐴𝐴 0 < 𝑃𝑃 (𝑍𝑍 = 𝑧𝑧) < 1

(A5) Monotonicity If 𝐴𝐴 𝐴𝐴
′
> 𝐴𝐴 then 𝐴𝐴 𝐴𝐴𝑧𝑧′ ≥ 𝐴𝐴𝑧𝑧 with probability 1

(A6) Stable unit treatment value assumption 𝐴𝐴 𝐴𝐴 = 𝐴𝐴𝑍𝑍 and 𝐴𝐴 𝐴𝐴 = 𝐴𝐴𝐷𝐷
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Assumption (A2) requires that 𝐴𝐴 𝐴𝐴 is as good as randomly assigned within levels of 𝐴𝐴 𝐴𝐴𝑂𝑂 . Assumption (A3) rules out the possi-
bility that 𝐴𝐴 𝐴𝐴 has a direct effect on the outcome other than through 𝐴𝐴 𝐴𝐴𝑧𝑧 . Assumptions (A2) and (A3) ensure that the only effect 
of the 𝐴𝐴 𝐴𝐴 on the outcome is through 𝐴𝐴 𝐴𝐴𝑧𝑧 . This is sometimes called the independence assumption. Assumption (A4) ensures that 

𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑧𝑧 are correlated conditional on 𝐴𝐴 𝐴𝐴𝑂𝑂 . Assumption (A5) requires that an increase in 𝐴𝐴 𝐴𝐴 always results in a higher or equal 
level of treatment assignment. Assumption (A6) requires that one individual's potential outcomes (𝐴𝐴 𝐴𝐴𝐷𝐷 ) and treatments (𝐴𝐴 𝐴𝐴𝑧𝑧) are 
not influenced by other individuals' levels of 𝐴𝐴 𝐴𝐴 (i.e., no interference), nor by how the instrument or treatment is delivered (i.e., 
no different versions of 𝐴𝐴 𝐴𝐴 or 𝐴𝐴 𝐴𝐴𝑧𝑧 ).

3.1.2 | Estimands

Imbens and Angrist (1994) and Angrist et al. (1993) show that, under the assumptions outlined above, the LATE can be defined 
as 𝐴𝐴 ∆𝐿𝐿𝐴𝐴𝐿𝐿𝐿𝐿

(
𝑥𝑥𝑜𝑜, 𝑧𝑧, 𝑧𝑧

′
)
= 𝐿𝐿[𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝐷𝐷𝑧𝑧 < 𝐷𝐷𝑧𝑧′ ] and is identified by the IV estimand:

𝐸𝐸
[
𝑌𝑌 |𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝑍𝑍 = 𝑧𝑧

′
]
− 𝐸𝐸[𝑌𝑌 |𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝑍𝑍 = 𝑧𝑧]

𝐸𝐸[𝐷𝐷|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝑍𝑍 = 𝑧𝑧′] − 𝐸𝐸[𝐷𝐷|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝑍𝑍 = 𝑧𝑧]
 

Vytlacil  (2002) and Tan (2006) showed that the independence (A2 and A3) and monotonicity assumptions (A5) of the 
LATE framework are equivalent to those imposed by a non-parametric selection model, where treatment assignment depends 
on whether a latent index 𝐴𝐴 (𝜇𝜇𝐷𝐷(𝑋𝑋𝑂𝑂,𝑍𝑍)) crosses a particular threshold (𝐴𝐴 𝐴𝐴𝑈𝑈𝐷𝐷

 ):

𝐷𝐷𝑧𝑧 = 1

{
𝜇𝜇𝐷𝐷(𝑋𝑋𝑂𝑂,𝑍𝑍) ≥ 𝑋𝑋𝑈𝑈𝐷𝐷

}
 

where 𝐴𝐴 𝐴𝐴𝑈𝑈𝐷𝐷
 is a random variable that captures 𝐴𝐴 𝐴𝐴𝑈𝑈 and all other factors influencing treatment assignment but not the 

outcomes. As in Heckman and Vytlacil  (1999, 2001), we can rewrite this equation as 𝐴𝐴 𝐴𝐴𝑧𝑧 = 1{𝑃𝑃 (𝑋𝑋𝑂𝑂,𝑍𝑍) > 𝑉𝑉 } , where 
𝐴𝐴 𝐴𝐴 = 𝐹𝐹𝑋𝑋𝑈𝑈𝐷𝐷

[
𝑋𝑋𝑈𝑈𝐷𝐷

|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑂𝑂,𝑍𝑍 = 𝑧𝑧
]
 with 𝐴𝐴 𝐴𝐴  𝐴𝐴 ⟂ (𝑍𝑍𝑍𝑍𝑍𝑂𝑂) and 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑂𝑂, 𝑧𝑧) = 𝐹𝐹𝑋𝑋𝑈𝑈𝐷𝐷

|𝑥𝑥𝑂𝑂,𝑧𝑧[𝜇𝜇𝐷𝐷(𝑋𝑋𝑂𝑂,𝑍𝑍)] is the propensity for treatment, and 
𝐴𝐴 𝐴𝐴  represents a cumulative distribution function. Therefore, for any arbitrary distribution of 𝐴𝐴 𝐴𝐴𝑈𝑈𝐷𝐷

 conditional on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 , by defini-
tion � ∼ Uniform[0, 1] conditional on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 . Then, the MTE can be defined as, 𝐴𝐴 ∆𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥𝑂𝑂, 𝑝𝑝) = 𝑀𝑀(𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑂𝑂, 𝑉𝑉 = 𝑣𝑣) 
and Heckman and Vytlacil (1999, 2001) showed that, under the standard IV assumptions, it can be identified by:

𝜕𝜕𝜕𝜕𝜗𝜗(𝑌𝑌 |𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜,𝑍𝑍 = 𝑧𝑧)

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜗𝜗[(𝑌𝑌1 − 𝑌𝑌0)|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑜𝑜, 𝑉𝑉 = 𝑣𝑣] 

MTEs can be aggregated directly to obtain estimates of the ATE, as shown in Heckman et  al.  (2006). Basu  (2014) 
showed that MTEs can be used to derive personalized treatment (PeT) effects for each individual that take into account 
the plausible range of values that 𝐴𝐴 𝐴𝐴  may take for each patient, in addition to their observed covariates, IV and actual treat-
ment assignment (see Section 3.1.3). The rationale for this approach is that the treatment assignment status provides some 
information on 𝐴𝐴 𝐴𝐴𝑈𝑈𝐷𝐷

 . For patients in the treatment group (𝐴𝐴 𝐴𝐴𝑧𝑧 = 1 ), the propensity to choose treatment based on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 
must outweigh the propensity to choose the comparator strategy based on 𝐴𝐴 𝐴𝐴𝑈𝑈𝐷𝐷

 , that is, 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑂𝑂, 𝑧𝑧) > 𝑣𝑣 . For patients in the 
comparator strategy (𝐴𝐴 𝐴𝐴𝑧𝑧 = 0 ), the opposite is true. The PeT effect for an individual is obtained by averaging the MTEs 
corresponding to that individual's level of 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 over those values of unobserved variables that are compatible with that 
patient's treatment assignment. Hence, 𝐴𝐴 ∆𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑂𝑂, 𝑝𝑝,𝑝𝑝) = 𝐸𝐸(𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑂𝑂, 𝑃𝑃 (𝑧𝑧, 𝑥𝑥𝑂𝑂) > 𝑣𝑣) for individuals with 𝐴𝐴 𝐴𝐴𝑧𝑧 = 1 and 

𝐴𝐴 ∆𝑃𝑃𝑃𝑃𝑃𝑃 (𝑥𝑥𝑂𝑂, 𝑝𝑝,𝑝𝑝) = 𝐸𝐸(𝑌𝑌1 − 𝑌𝑌0|𝑋𝑋𝑂𝑂 = 𝑥𝑥𝑂𝑂, 𝑃𝑃 (𝑧𝑧, 𝑥𝑥𝑂𝑂) < 𝑣𝑣) for individuals with 𝐴𝐴 𝐴𝐴𝑧𝑧 = 0.

All of the treatment effect estimands, including ATE and CATEs, can be derived by appropriately aggregating the PeT 
effects since these are defined at the individual level (see Section 3.1.3).

3.1.3 | Estimation methods

Two-stage least squares estimator
2SLS is a common approach to the implementation of IV methods that consistently estimates the ATE parameter under homo-
geneity, or the LATE parameter under essential heterogeneity given a binary IV. Under assumptions (A1)-(A6), the 2SLS 
(Wald) estimator involves: (i) estimating 𝐴𝐴 𝐴𝐴[𝐷𝐷𝑍𝑍 |𝑋𝑋𝑂𝑂,𝑍𝑍] by regressing 𝐴𝐴 𝐴𝐴𝑧𝑧 on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 , and (ii) estimating 𝐴𝐴 𝐴𝐴[𝑌𝑌𝐷𝐷|𝐷𝐷𝑧𝑧,𝑋𝑋𝑂𝑂,𝑍𝑍] 
by regressing on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 �̂�𝐸[𝐷𝐷𝑍𝑍 |𝑋𝑋𝑂𝑂,𝑍𝑍] . When the instrument is continuous, 2SLS reports a weighted average of LATEs, which 
requires careful interpretation (Baiocchi et al., 2014).
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Local Instrumental Variables estimator: Estimating PeT effects
Basu (2014, 2015) describe in detail the series of steps required to estimate PeT effects using the LIV methodology. Briefly, 

𝐴𝐴 𝐴𝐴𝑧𝑧 is regressed on 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑂𝑂 , as above, using appropriate methods for binary outcomes and the propensity for treatment 
𝐴𝐴 𝐴𝐴(𝑥𝑥𝑂𝑂, 𝑧𝑧) is estimated. Next, 𝐴𝐴 𝐴𝐴  is regressed on 𝐴𝐴 𝐴𝐴𝑂𝑂 and a function of 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑂𝑂, 𝑧𝑧) including interactions with 𝐴𝐴 𝐴𝐴𝑂𝑂 . The approach 

outlined in Basu (2014) involves differentiating the outcome model 𝐴𝐴 𝐴𝐴(𝑌𝑌 ) by 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑂𝑂, 𝑧𝑧) . Next, PeT effects for each individual can 
be obtained by performing numerical integration, with MTE 𝐴𝐴 (𝜕𝜕 𝜕𝜕𝜕(𝑌𝑌 )∕𝜕𝜕 𝜕𝜕𝜕) evaluated by replacing 𝐴𝐴 𝐴𝐴𝐴 using 1000 random draws 
of � ∼ unif (min(�̂(��, �)),max(�̂(��, �))) . Then, 𝐴𝐴 𝐴𝐴

∗ = Φ−1{�̂�𝑝(𝑥𝑥𝑂𝑂, 𝑧𝑧)} + Φ−1(1 − 𝑢𝑢) can be computed. Personalized treatment 
effects can be computed by averaging 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴(𝑌𝑌 )∕𝐴𝐴 𝐴𝜕𝜕 over values of 𝐴𝐴 𝐴𝐴 for which 𝐴𝐴 𝐴𝐴

∗
> 0 if 𝐴𝐴 𝐴𝐴 = 1 ; or over values of 𝐴𝐴 𝐴𝐴

∗ ≤ 0 if 𝐴𝐴 𝐴𝐴 = 0. 
Finally, averaging PeT effects over all of the observations provides an estimate of the ATE for the population, and over strata of 

𝐴𝐴 𝐴𝐴𝑂𝑂 gives the CATE for the subpopulation of interest. Standard errors can be computed using bootstrap methods (Basu, 2015). 
We now consider the design of the simulation study to contrast the relative performance of the LIV and 2SLS approaches.

3.2 | Simulation study

Motivated by the gaps in the extant literature, and the motivating example, this simulation study was designed to consider the 
relative performance of 2SLS and LIV approaches across settings that differed with respect to the form of heterogeneity, the 
sample size and the strength of the IV. We report the performance of the methods in a Monte Carlo Simulation study according 
to their mean bias (%) and Root Mean Squared Error (RMSE) for each estimand (ATE and CATE).

3.2.1 | Data generating process

We create 5000 datasets each containing N 𝐴𝐴 ={5000, 10000, 50000} units, of which 50% are assigned to the treated group. The 
data generating process (DGP) includes one observed (𝐴𝐴 𝐴𝐴𝑂𝑂 ) and one unmeasured (𝐴𝐴 𝐴𝐴𝑈𝑈 ) covariate. We draw 𝐴𝐴 𝐴𝐴𝑂𝑂 , 𝐴𝐴 𝐴𝐴𝑈𝑈 and the 
instrument, 𝐴𝐴 𝐴𝐴 from normal distributions with mean 0, and standard deviation 3. Three subgroups of interest are defined by 
whether the individuals' values for 𝐴𝐴 𝐴𝐴𝑂𝑂 are more than 0.5 standard deviations below or above its mean.

Treatment model
The treatment assignment is determined by the latent variable 𝐴𝐴 𝐴𝐴

∗ , defined as:

𝐷𝐷
∗ = 𝛿𝛿𝐷𝐷 + 3𝑋𝑋𝑂𝑂 − 3𝑋𝑋𝑈𝑈 + 𝛿𝛿𝑍𝑍𝑍𝑍 + (4 − 𝛿𝛿𝑍𝑍 )𝜖𝜖𝐷𝐷 

where 𝐴𝐴 𝐴𝐴𝐷𝐷 has a normal distribution with mean 0 and standard deviation, 1. Treatment is then determined as 𝐴𝐴 𝐴𝐴 = 1 if 𝐴𝐴 𝐴𝐴
∗
> 0 

and 𝐴𝐴 𝐴𝐴 = 0 otherwise. The parameters 𝐴𝐴 𝐴𝐴𝑍𝑍 and 𝐴𝐴 𝐴𝐴𝐷𝐷 are chosen to ensure the average F-statistic, 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 , across the datasets equals the 
desired level 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = {10, 25, 50, 100, 500, 1000} . 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼  is the Cragg and Donald (1993) F-statistic computed in each dataset as,

��� = (� − ��� − 1) ∗
�2�� �� − �2��

�2��
 

where 𝐴𝐴 𝐴𝐴
2

𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛
 and 𝐴𝐴 𝐴𝐴

2

𝐼𝐼𝐼𝐼
 indicate the residual variance from regressing 𝐴𝐴 𝐴𝐴 on 𝐴𝐴 𝐴𝐴𝑂𝑂 in a model without interactions with or without 

including the IV respectively, and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 is the number of parameters in the model excluding the IV (i.e., 𝐴𝐴 𝐴𝐴𝐴𝐴𝑚𝑚 = 2 here). For a 
given F-statistic, a larger sample size implies a lower compliance rate, which in turn will imply a weaker instrument. At low 
compliance rates, the RMSE of IV estimates can increase substantially (Little et al., 2009). We estimate the compliance rate for 
each sample size and F-statistic, by contrasting treatment uptake at the 1 st and 99 th percentiles of the IV.

Outcome model
The outcome models under treatments (𝐴𝐴 𝐴𝐴

1
 ) and control (𝐴𝐴 𝐴𝐴

0
) can be written as:

𝑌𝑌
0
= 𝛽𝛽

0
+ 𝛽𝛽

1
𝑋𝑋𝑂𝑂 + 𝛽𝛽

2
𝑋𝑋𝑈𝑈 + 𝜖𝜖𝑌𝑌

0
 

𝑌𝑌
1
= (𝛽𝛽

0
+ 𝜏𝜏

0
) + (𝛽𝛽

1
+ 𝜏𝜏

1
)𝑋𝑋𝑂𝑂 + (𝛽𝛽

2
+ 𝜏𝜏

2
)𝑋𝑋𝑈𝑈 + 𝜖𝜖𝑌𝑌

1
 

Implying the treatment effect is 𝐴𝐴 𝐴𝐴 = 𝐸𝐸(𝑌𝑌1 − 𝑌𝑌0) = 𝐴𝐴0 + 𝐴𝐴1𝑋𝑋𝑂𝑂 + 𝐴𝐴2𝑋𝑋𝑈𝑈 . Specifically we define the outcome under control 
as follows:

𝑌𝑌0 = −10 − 10𝑋𝑋𝑂𝑂 + 10𝑋𝑋𝑈𝑈 +𝑁𝑁(0, 1) 
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We consider 4 scenarios for the outcome under treatment, 𝐴𝐴 𝐴𝐴
1
 . In Scenario A, effects are homogeneous (𝐴𝐴 𝐴𝐴 = 50 ). In Scenario 

B, effects are heterogeneous but depend only on observed confounders (overt heterogeneity) (𝐴𝐴 𝐴𝐴 = 40 + 20𝑋𝑋𝑂𝑂 ). In Scenario C, 
𝐴𝐴 𝐴𝐴𝑈𝑈 influences both the treatment assignment and the gains from treatment (𝐴𝐴 𝐴𝐴 = 40 + 20𝑋𝑋𝑈𝑈 ). In this Scenario, there is essential 

heterogeneity but no overt heterogeneity. Finally, in Scenario D there is both overt and essential heterogeneity (𝐴𝐴 𝐴𝐴 = 20 + 20𝑋𝑋𝑂𝑂 
𝐴𝐴 +20𝑋𝑋𝑈𝑈 ). Table 1 displays the parameter values for each scenario. The parameter combinations of interest consist of combina-

tions of 𝐴𝐴 𝐴𝐴 = {5000, 10000, 50000} and FTarget 𝐴𝐴 ={10, 25, 50, 100, 500, 1000} .
For each parameter combination for each scenario, we create 5000 datasets using the DGP described above and estimate the 

treatment effects as described below.

3.2.2 | Implementation of methods

For the 2SLS model, we control for 𝐴𝐴 𝐴𝐴𝑂𝑂 and instrument 𝐴𝐴 𝐴𝐴 by 𝐴𝐴 𝐴𝐴𝐴 To capture heterogeneity, we also include an interaction 
between 𝐴𝐴 𝐴𝐴𝑂𝑂 with 𝐴𝐴 𝐴𝐴 , and instrument this with interactions of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑂𝑂 . To obtain effect estimates, we use the recycled 
predictions approach, whereby the two potential outcomes (𝐴𝐴 Y0 and 𝑌𝑌1 ) are predicted from the second stage model after setting 

𝐴𝐴 𝐴𝐴 = 0 or 𝐴𝐴 𝐴𝐴 = 1 and the interaction 𝐴𝐴 𝐴𝐴𝑂𝑂 * 𝐴𝐴 𝐴𝐴 = 0 or𝑋𝑋𝑂𝑂 (Basu & Rathouz, 2005). The individual level effect is then estimated as 
𝐴𝐴 𝐴τ = 𝐴Y1 − 𝐴Y0 , allowing us to calculate the ATE, and CATEs for the three subgroups (CATE1, CATE2, and CATE3).

For the LIV approach, we first estimate the propensity for treatment conditional on 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴 , and in the second stage 
outcome model we include 𝐴𝐴 𝐴𝐴𝑂𝑂 , 𝐴𝐴 𝐴𝐴 , the estimated propensity score, 𝐴𝐴 𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐴 * 𝐴𝐴 𝐴𝐴𝑂𝑂 and 𝐴𝐴 𝐴𝐴𝐴 2. We then estimate PeT effects for each indi-
vidual as described in Basu (2015) using the petiv command in Stata. The estimated PeT effects are then aggregated to obtain 
estimates of the ATE, CATE1, CATE2, and CATE3. Before applying either method, we remove observations at those levels of 
the estimated propensity score where there is insufficient overlap (Basu, 2015).

4 | RESULTS

4.1 | Simulation study

Figures 1–4 present mean (%) bias in the ATE and CATE estimates (Figures 1 and 2, respectively) and the corresponding plots 
for RMSE (Figures 3 and 4, respectively). The results for the three subgroups showed similar patterns, and hence, for brevity, 
we only report the results for one of them.

In settings with homogenous treatment effects, or with overt heterogeneity, levels of bias in the ATE estimates were gener-
ally low (<5%). When the F-statistic was below 50 or the sample size was smaller (n = 5000), the bias for the 2SLS estimates 
was somewhat higher (5%–10%) (Figure 1). In settings with essential heterogeneity, 2SLS reports relatively high (>10%) levels 
of mean bias across almost all combinations of IV strength and sample size. The levels of mean bias are only similar between 
the methods when the target F statistic is high (>100). For 2SLS, the confidence intervals (CI) around the estimates of mean 
bias are generally wide. For 2SLS to provide estimates with moderate to small levels of bias, with narrow CI around those 
estimates required an F statistic of at least 100 and a sample size of 50,000. The LIV estimator reports low levels of bias in 
ATE estimates across all scenarios, aside from those with both a smaller sample size (n = 5000) and a F-statistic of 25 or less 
(Figure 1).

The bias plots for the CATE estimates have a somewhat similar pattern, although for this estimand the 2SLS estimator 
reports high levels of mean bias even in settings with overt heterogeneity, unless the sample size is relatively large (n = 50,000) 

Scenario Sample size Target F-statistic 𝐴𝐴 𝐴𝐴0 𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 

Scenario A: Homogeneity All sample sizes 
𝐴𝐴 (𝑛𝑛 = {5000, 10000, 50000})

All target F-statistic values 
𝐴𝐴 (𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = {10, 25, 50, 100, 500, 1000})

50 0 0

Scenario B: Overt heterogeneity 40 20 0

Scenario C: Essential heterogeneity 40 0 20

Scenario D: Overt and essential 
heterogeneity

20 20 20

Note: For each particular scenario, across all sample sizes and target F-statistic values, the form of treatment effect heterogeneity is defined by the values of 𝐴𝐴 𝐴𝐴0 , 𝐴𝐴 𝐴𝐴1 and 
𝐴𝐴 𝐴𝐴2 .

T A B L E  1  Definition of the simulation scenarios.
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and/or the F-statistic is above 100 (Figure 2). The LIV estimator reports lower levels of bias than 2SLS across the majority of 
scenarios.

In general, for both methods, across most scenarios, for a given sample size, the levels of mean (%) bias decrease at higher 
levels of the F-statistic (Figure 2). The RMSE in the estimates of the ATE are substantially lower for the LIV than the 2SLS 
estimator, except for those settings with an F-statistic of 500 or 1000 (Figure 3). 1 For the CATE, in general, the RMSE estimates 
mirror the bias results, in that they are substantially lower across all settings for LIV (Figure 4).

Compliance rates for a given F-statistic were sensitive to the sample size available (see Table 2 below). For a sample size 
of 5000, increasing the F-statistic from 10 to 1000 increases the compliance rate from 8% to 73%, while for a sample size of 
50,000, the compliance rate only increases from 3% to 29%.

4.2 | Case study

4.2.1 | Case study: Implementation of 2SLS and LIV approaches

LIV estimated PeT effects of ES versus NES on DAOH at 90 days, for each individual allowing for treatment effect heterogene-
ity and confounding. These PeT effects were aggregated to report the effects of ES overall, and for each pre-specified subgroup 
of interest. Since DAOH at 90 days was left skewed due to the maximum being 90 days, we rescaled this to lie between 0 and 
1 (90-DAOH)/90) and effects were then rescaled back to the original scale. Probit regression models were used to estimate 
the initial propensity score (first stage), while GLMs were applied to the outcome data, with the most appropriate family 
and link function chosen according to RMSE, with Hosmer-Lemeshow and Pregibon tests also used to check model fit and 

F I G U R E  1  Bias plot for Average Treatment Effect (ATE) estimates across scenarios, with sample sizes of 5000 (left), 10,000 (middle) and 
50,000 (right). 2SLS, Two-Stage Least Squares; CI, Confidence Interval; LIV, Local Instrumental Variables.
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appropriateness (Hosmer & Lemeshow, 2000; Pregibon, 1980). The logit link and binomial family were selected for all three 
conditions. Models at both stages adjusted for baseline measures, time period, and proxies for hospital quality, defined by rates 
of emergency readmission and mortality in 2009–10 (time constant), and in the year prior to the specific admission concerned 
(time-varying).

Estimates of mean differences in DAOH between the comparison groups, overall and for pre-specified subgroups (CATEs) 
were reported with standard errors and CI obtained with the non-parametric bootstrap (300 replications), allowing for the clus-
tering of individuals within hospitals. The 2SLS approach used the same model specification and selection (including covari-
ates used for confounding adjustment) to report estimates overall and for subgroups.

4.2.2 | Case study: Results

The study reported somewhat similar that for both methods the 95% CIs surrounding the mean differences included zero 
(Figure 5). Beneath this overall result, the LIV approach reported evidence that the effectiveness of ES was heterogeneous 
according to pre-specified subgroups. In particular, for all three conditions, ES led to lower DAOH for patients who had 
severe levels of frailty, and for those with acute appendicitis, ES was less effective for older patients (aged 80–84) or those 
with three of more comorbidities. By contrast, the 2SLS approach, which failed to account for unobserved heterogeneity 
(e.g., disease severity), did not report any substantive differences in relative effectiveness according to patient subgroup 
(Figure 5).

F I G U R E  2  Bias plot for Conditional Average Treatment Effect (CATE) estimates across scenarios, with sample sizes of 5000 (left), 10,000 
(middle) and 50,000 (right). 2SLS, Two-Stage Least Squares; CI, Confidence Interval; LIV, Local Instrumental Variables.
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5 | DISCUSSION

This paper formally assessed the performance of the LIV methodology developed by Heckman and Vytlacil (1999, 2001) and 
further extended by Basu (2014) to provide policy relevant estimates of ATE and CATE in settings that differed according to 
the form of heterogeneity, the sample size, and level of IV strength. We contrasted the performance of LIV with that of the 
widely-used 2SLS approach. The scenarios considered in the simulation study were directly motivated by gaps in the litera-
ture and by a comparative effectiveness study that used LIV in evaluating ES for three acute gastrointestinal conditions for 
subgroups of prime policy relevance. In the case study, overt and essential heterogeneity were important concerns, amid differ-
ing levels of IV strength and sample sizes, and these issues motivated the scenario of prime interest for the simulation study 
(Scenario D). However, we also considered scenarios, which can, in principle provide accurate estimates of ATE and CATEs 
with conventional IV methods such as 2SLS (Scenarios A and B). We compared the performance of the two methods, according 
to bias and statistical efficiency (RMSE).

Four preliminary findings of the simulation study are worth emphasizing. First, our results suggest that while LIV performs 
better according to increasing levels of IV strength and sample size, this estimator reports relatively low levels of bias in esti-
mates of the ATE and CATEs across all scenarios including those with essential heterogeneity. These findings compliment 
those of Basu (2014) in evaluating the reliance of the estimator on the relevance condition as well as the consistency of the 
estimator, but also by considering a wider range of assumptions about heterogeneity.

Second, our results suggest that 2SLS reports biased estimates of the ATE and CATEs in the presence of essential heter-
ogeneity (Scenarios C and D), except in those cases where the instrument is very strong (F-statistic >500), and sample size is 

F I G U R E  3  Root Mean Squared Error (RMSE) plots for Average Treatment Effect (ATE) estimates from 2SLS (dashed line) and LIV 
(solid line) across the scenarios, with sample sizes (N) of 5000 (left), 10,000 (middle) and 50,000 (right). [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://wileyonlinelibrary.com
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large (n = 50,000). These results are consistent with previous findings that 2SLS estimates cannot generally be extrapolated to 
broader populations beyond the compliers unless restrictive assumptions are made about the heterogeneity of treatment effects 
(Brooks et al., 2018; Chapman & Brooks, 2016). In scenarios where essential heterogeneity is absent (scenarios A and B), 2SLS 
reports biases larger than 5% at levels of F < 50, unless the sample size is very large (n = 50,000). It should be noted that at 
those values of F the distribution of the mean bias is quite skewed, and this is reflected in the wide CIs around the estimates of 
mean bias (see Figures 1 and 2). These findings suggest that, in studies without essential heterogeneity, and with large samples 
and a sufficient strong IV, 2SLS is a simple alternative to LIV.

As the sample size increases the magnitude of the bias is reduced for both methods, but for 2SLS an F statistic of at least 
50 (depending on the sample size) is required for estimates of mean bias and the accompanying CI to be <5%. This finding 

F I G U R E  4  Root Mean Squared Error (RMSE) plots for Conditional Average Treatment Effect (CATE) estimates from 2SLS (dashed line) 
and LIV (solid line) across the scenarios, with sample sizes (N) of 5000 (left), 10,000 (middle) and 50,000 (right). [Colour figure can be viewed at 
wileyonlinelibrary.com]

Target F-statistic N = 5000 N = 10,000 N = 50,000

10 8% 6% 3%

25 13% 9% 5%

50 18% 13% 6%

100 26% 20% 9%

500 56% 42% 21%

1000 73% 57% 29%

Note: Each cell shows the compliance rate for each value of the Target F-statistic calculated as the difference 
in treatment probability between highest and lowest quintile of the instrument, 𝐴𝐴 𝐴𝐴 .

T A B L E  2  Compliance rate by sample 
size (N) and F-statistic.

https://wileyonlinelibrary.com
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lends support to existing guidance suggesting that the requisite magnitude of the F statistic depends on other factors such as the 
sample size (Hirano & Porter, 2015; Keane & Neal, 2023). This finding further emphasizes the inadequacy of guidance resting 
solely on a ‘rule of thumb’ for a single setting, the target F-statistic, and highlights the importance of these wider considerations 
of the likely form of heterogeneity, and sample size, as well as the F statistic when interpreting a study's results.

Thirdly, while 2SLS can reliably estimate CATEs in the presence of effect homogeneity or overt heterogeneity given a 
sufficiently strong IV or large enough sample, in the presence of essential heterogeneity, as theory would suggest, 2SLS can 
give extremely biased estimates of CATEs, and so in settings where essential heterogeneity is anticipated, 2SLS should not be 
used to estimate CATEs. In contrast, the LIV method provided estimates with low bias in the presence of overt and/or essential 
heterogeneity, provided the F-statistic was greater than 50. Interestingly, for the estimates of the CATEs, we find that as the 
sample size increases, an increase in the F-statistic is less beneficial in mitigating bias and reducing RMSE, in line with the 
observation that a given increase in the F-statistic has less impact on compliance rates at larger sample sizes.

Finally, LIV generally reported lower levels of RMSE than 2SLS, in particular for estimating the CATEs. However, it is important 
to note that here the propensity score and outcome models underlying the LIV method are correctly specified, and that performance 
may deteriorate where this is not the case. Data adaptive approaches could prove useful where model specification is not known.

The findings from the simulation study are informative in interpreting the CATE estimates in the ESORT study. The results 
offer reassurance that in such settings where essential heterogeneity would appear inevitable, that a LIV approach can provide 
unbiased estimate of policy-relevant estimands such as CATE, with sample sizes and F-statistics smaller than those of the ESORT 
study. Here, the LIV approach was able to report relative effectiveness according to subgroup, and the finding that for patients with 
high levels of frailty ES was not cost-effective (or cost-effective) is of potential importance. Notwithstanding inevitable concerns 
about multiple testing, and it should be noted that no formal adjustment for this was made, it is of potential interest for policy, that 
the finding that the intervention was not cost-effective for the subgroup with severe frailty was replicated across all five conditions 
in the original study. Further research to test this hypotheses in different settings is now warranted (Moler-Zapata et al., 2022).

This study has several strengths. First, it builds on insights and hypotheses raised by a large observational study using EHRs 
from England. The ESORT study illustrates the main challenges of using LIV methods for comparative effectiveness research 

F I G U R E  5  Mean differences in days alive and out of hospital (DAOH) between emergency surgery (ES) and non-emergency surgery for 
appendicitis (left), gallstone disease (center) and hernia (right) subgroups. 2SLS, two-stage least squares; CI, Confidence Interval; LIV, Local 
Instrumental variables.
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and its findings in relation to IV strength, sample size requirements directly informed the scenarios considered in the simula-
tion study. Second, while the uptake of LIV methods has been limited almost entirely to settings with essential heterogeneity, 
the simulation study considers different forms of heterogeneity of treatment effects as well as the scenario where treatment 
effects are assumed to be homogeneous in the study population. Future work will expand the simulation study to incorporate 
other well-known issues of IVs methods, including the challenges in applying IV estimation methods to non-linear outcome 
data (Clarke & Windmeijer, 2010; Vansteelandt et al., 2011). Previous research has shown that the power of 2SLS conveyed by 
conventional F-statistic values is low (Keane & Neal, 2023; Y. Lee et al., 2020). In this future work, we will therefore consider 
the implications of sample size and instrument strength for the power of LIV analyses and confidence interval coverage. Future 
work will also formally assess whether imbalances in treatment assignment rates are detrimental to consistency and power 
of LIV inferences. This is an important concern for applied work using EHRs. For instance, the observed difference in the 
prevalence of ES and NES in ESORT (90/10 in the cohort with appendicitis) could reduce the power of the analysis (Walker 
et al., 2017). Finally, the current implementation of LIV requires a continuous IV which may not be available in some settings, 
and remains unknown the extent to which the method may produce biased or inefficient estimates if the underlying assumptions 
with respect to the treatment assignment or outcome models are violated. Further research can build on the simulation study 
described to assess these potentially important issues for practice.
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