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Abstract

Aims: Although the orally available brain-penetrant copper compound CuATSM has

demonstrated promising effects in SOD1-linked mouse models, the impact of CuATSM

on disease pathology in patients with amyotrophic lateral sclerosis (ALS) remains

unknown.

Methods: The present study set out to address this deficit by performing the first pilot

comparative analysis of ALS pathology in patients that had been administered CuATSM

and riluzole [N = 6 cases composed of ALS-TDP (n = 5) and ALS-SOD1 (n = 1)] versus

riluzole only [N = 6 cases composed of ALS-TDP (n = 4) and ALS-SOD1 (n = 2)].

Results: Our results revealed no significant difference in neuron density or TDP-43 bur-

den in the motor cortex and spinal cord of patients that had received CuATSM compared

with patients that had not. In patients that had received CuATSM, p62-immunoreactive

astrocytes were observed in the motor cortex and reduced Iba1 density was found in

the spinal cord. However, no significant difference in measures of astrocytic activity and

SOD1 immunoreactivity was found with CuATSM treatment.

Discussion: These findings, in this first postmortem investigation of patients with ALS in

CuATSM trials, demonstrate that in contrast to that seen in preclinical models of disease,

CuATSM does not significantly alleviate neuronal pathology or astrogliosis in patients

with ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a universally fatal and rapidly

progressive motor neurodegenerative disease [1, 2]. In rodent models

of SOD1-ALS, the orally available and brain-penetrant copper com-

pound CuATSM has been found to mitigate symptoms of motor neu-

ron decline and extend survival without adverse effects [3–8].

However, SOD1-ALS accounts for only �2% of all patients with ALS

[9, 10], and the translational relevance of CuATSM in treating the

�90% of patients with sporadic disease is less clear. Importantly,

whether CuATSM alleviates neuronal pathology in patients with spo-

radic ALS is not known. The present study set out to address this

question in patients that had been administered CuATSM. Given that

all patients were also prescribed the glutamatergic modulator riluzole,

which is the only approved ALS therapy currently available in

Australia, patients with only riluzole treatment were also included in

this analysis.

MATERIALS AND METHODS

Case selection

Human brain tissue was obtained from the New South Wales Brain

Bank, which holds a neuropathologic series collected with informed

consent through regional brain donor programs. All cases with patho-

logical confirmation of clinical ALS that had been administered

CuATSM (NCT04082832) were selected for this study (n = 6)

(Table 1). Given that these patients had also been administered rilu-

zole [11], an age-matched ALS cohort that had been on a similar daily

dosage of riluzole was selected (n = 6). All cases had previously been

staged for topographical progression of TDP-43 [12, 13] and assessed

for genetic mutations in the C9ORF72, TARDBP and SOD1 genes. A

SOD1 mutation was identified in three cases (p.I114T in CuATSM-

riluzole, p.I114T and p.V149G in riluzole [14]). No other mutations

were found. There was no family history of disease in any of the cases

without a genetic mutation. This research project was approved by

the Human Research Ethics Committees of the Universities of Sydney

and New South Wales and complies with the statement on human

experimentation issued by the National Health and Medical Research

Council of Australia.

T AB L E 1 Demographic, genetic and drug dosage details in patients.

Case Group

Age at
death
(y)

DD
(y) Sex

Postmortem
delay (h)

SOD1
mutation

CuATSM
Treatment
duration (day)

CuATSM
taken to
death

CuATSM
cumulative dose
(mg)

Cause
of
death

1 CuATSM + Ril <35 5 M <30 Yes 180 Yes 21,888 ALS

2 CuATSM + Ril <60 4 M <35 No 150 Yes 18,612 ALS

3 CuATSM + Ril <60 2 M ≤5 No 390 Yes 28,080 ALS

4 CuATSM + Ril <60 2 M <40 No 210 Yes 21,258 ALS

5 CuATSM + Ril <55 4 M ≤60 No 270 Yes 27,252 RF

6 CuATSM + Ril <70 3 M ≤65 No 180 Yes 12,960 ALS

7 Ril <55 2 F <25 Yes 0 N/A 0 ALS

8 Ril <40 5 F <60 Yes 0 N/A 0 RF

9 Ril <55 7 M <75 No 0 N/A 0 ALS

10 Ril <50 5 M ≤15 No 0 N/A 0 RF

11 Ril <50 1 M ≤5 No 0 N/A 0 ALS

12 Ril <60 1 M ≤60 No 0 N/A 0 ALS

Abbreviations: Ril, Riluzole; DD, disease duration; ALS, amyotrophic lateral sclerosis; RF, respiratory failure; M, male; F, female; Y, years; H, hours; mg,

milligram; NA, not applicable.

Key points

• We perform the first postmortem investigation into

patients that had been on the CuATSM trial during life.

• No significant difference in neuron density, TDP burden

or measures of astrocytic activity was found in patients

that had received CuATSM compared with patients that

had not.

• These findings demonstrate that in contrast to that seen

in preclinical models of disease, CuATSM does not signifi-

cantly alleviate neuronal pathology or astrogliosis in

patients with ALS.
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Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue blocks from the motor

cortex and spinal cord were sectioned at 10 μm and immunostained

with antibodies against phospho-TDP-43 (S409/410) (Cosmo Bio Co,

TIP-PTD-M01, 1:80,000), p62 (BD Biosciences, 610833, mouse,

1:250), GFAP (Agilent, Z033401-2, rabbit, 1:500), Iba1 (Abcam,

ab5076, goat, 1:500) and SOD1 (Merck, 574597, sheep, 1:200) and

counterstained with 0.5% cresyl violet as previously described [15].

Immunofluorescence staining was carried out on 10-μm-thick sec-

tions. Following microwave antigen retrieval (0.01 M citrate buffer,

pH 6.0), formaldehyde quenching was carried out using 0.1% sodium

borohydride, followed by protein blocking. The sections were then

incubated with a primary antibody cocktail consisting of p62

(BD Biosciences, 610833, mouse, 1:250), GFAP (Agilent, Z033401-2,

rabbit, 1:500) and SOD1 (Merck, 574597, sheep, 1:200) antibodies at

4�C overnight. The sections were then visualised with Alexa Fluor

568 donkey anti-mouse (Thermo Fisher, A10037) and Alexa Fluor

647 donkey anti-rabbit (Thermo Fisher A-31573), followed by further

blocking with rabbit serum and visualised with AlexaFluor 488 rabbit

anti-sheep (Abcam, 150181). Subsequently, autofluorescence was

quenched by Sudan black, and sections were counterstained

with DAPI.

Quantitation of pathologies

Sections were quantified as previously described [15]. In the motor

cortex, 2� 500-μm-wide strips through the entire cortical thickness

from the pial surface to white matter were sampled in each cortical

section, and neurons with and without pTDP-43 and p62 inclusions

were counted at 200� magnification using a 10 � 10 eyepiece grati-

cule (500 μm � 500 μm) with standard inclusion (lower and left) and

exclusion (upper and right) borders in contiguous, non-overlapping

fields. In the spinal cord, both anterior horns were identified, and neu-

rons with and without pTDP-43 and p62 inclusions were also counted

at 200� magnification using the same 10 � 10 eyepiece graticule.

The density of neurons within each region of interest was calculated

for each case, and the proportion with pTDP-43 or p62 inclusions was

expressed as a percentage of these. The density of Iba1-positive

microglia was also quantified in this same manner. The areal fraction

occupied by GFAP immunopositive astroglia in each region of interest

was assessed using a point-counting method on 200� magnification

as previously described [16]. Given that a proportion of astrocytes

had obvious p62 immunoreactivity (described in the results), the areal

fraction occupied by p62 in each region of interest was also assessed.

The proportion of glial cells with p62 or pTDP-43 was graded on a

four-point scale: 0 = no detectable pathology across the entire

section; 1 = mild (some pathology observed in most fields of view at

100� magnification); 2 = moderate; 3 = severe as previously

described [17]. Consistent with a recent report [18], diffuse

SOD1 immunoreactivity was observed in all ALS cases, and the

intensity of these was graded in neurons and glia on a four-point

severity scale of 0–3. Quantitation was performed by two raters blind

to case details and treatment group with an inter- and intra-rater

variance of <5%.

Statistics

Statistical analysis was performed using SPSS (Version 25) with a p-

value of <0.05 taken as significant. Demographic differences among

groups were determined using one-way ANOVA for age and postmor-

tem delay, and c2-test for gender and presence of SOD1 mutation.

Group differences were assessed using multivariate analysis. Correla-

tion analyses were performed with Spearman rank correlation ana-

lyses. Consistent with previous reports, SOD1 cases did not

demonstrate pTDP-43 immunoreactivity [19] and, as such, were

excluded from analyses of pTDP-43.

RESULTS

P62-positive inclusions were seen in all cases, whereas pathological

pTDP-43 aggregates were only observed in ALS cases without a

SOD1 mutation. No pathological brain changes to suggest prolonged

hypoxia were observed in the present series. Co-existing neurodegen-

erative pathologies were absent.

Group demographics and daily drug dosage

There were no significant differences in age at death between

groups [(mean ± SD) of 55 ± 10 years in the CuATSM group;

50 ± 6 years in the non-CuATSM group; p = 0.5] or disease duration

[(mean ± SD) of 3 ± 1 years in the CuATSM group; 3 ± 3 years in the

non-CuATSM group; p = 1.0]. No significant difference in postmor-

tem delay [(mean ± SD) of 38 ± 23 h in the CuATSM group;

38 ± 28 h in the non-CuATSM group; p = 0.9], sex (100% male in

the CuATSM group; 67% in the non-CuATSM group; p = 0.5) or the

presence of SOD1 mutations (17% in the CuATSM group; 33% in

the non-CuATSM group; p = 0.5) was identified between groups

(p > 0.05). All patients in the CuATSM group had received a daily

oral dosage of 72 mg. No significant difference in the mean daily

riluzole intake was present between groups [(mean ± SD) of

133 ± 52 mg in the CuATSM group; 100 ± 0 mg in the non-CuATSM

group; p > 0.1].

p62-positive astrocytes in the CuATSM treatment
group

p62-immunoreactive astrocytes (Figure 1A) were observed in the

motor cortex of all ALS cases that had received CuATSM but not in

ALS cases that had not (Figure 1D). These astrocytes had typical

astrocyte morphology (Figure 1B) and were not immunoreactive for
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TDP-43 (Figure 1C). Immunofluorescent triple labelling for p62, GFAP

and SOD1 (Figure 1G–K) confirmed these to be p62-positive

astrocytes.

Group differences

No significant difference in neuron density was found in the motor

cortex [(mean ± SD) of 24.8 ± 5.4 in the CuATSM group; 24.5 ± 4.0

in the non-CuATSM group; p > 0.8] or spinal cord [(mean ± SD) of

3.0 ± 1.1 in CuATSM group; 3.4 ± 1.9 in the non-CuATSM group;

p > 0.7]. No significant difference in pathological pTDP-43 burden

was observed with CuATSM treatment in either the motor cortex

or spinal cord of sporadic cases (Table 2). ALS-TDP stage was also

not significantly different in sporadic cases between treatment

groups [(mean ± SD) of 1.2 ± 0.4 in the CuATSM group; 1.7 ± 1.0 in

the non-CuATSM group; p > 0.2]. No significant difference in p62

and GFAP burden was found in the CuATSM and non-CuATSM

treatment groups (Table 1). Consistent with a recent report [18], dif-

fuse SOD1 immunoreactivity was identified in all ALS cases irre-

spective of SOD1 mutation and was similar between cases with

compared to without CuATSM treatment. No significant difference

in GFAP was observed between treatment groups. However, a sig-

nificantly lower density of Iba1-positive microglia was found in the

spinal cord of ALS cases that had received CuATSM (p = 0.01)

(Table 1). No significant difference in Iba1 density was found in the

motor cortex.

Correlations

The area fraction occupied by GFAP was positively correlated with

the proportion of pTDP-43 neurons in the motor cortex and spinal

cord (r > 0.58; p < 0.05), indicating increased reactive astrocytes with

pathological protein deposition in both regions. GFAP was also signifi-

cantly associated with p62 areal fraction and the proportion of

p62-positive neurons in the spinal cord across all cases (r > 0.8,

p ≤ 0.001) and in ALS-TDP cases only (r > 0.8, p ≤ 0.01), indicating

increased reactive astrocytes with autophagy. The proportion of

pTDP-43 neurons increased in the motor cortex was found with

increasing ALS-TDP stage (r = 0.89, p < 0.001). There was no signifi-

cant correlation between either pTDP-43 or p62 burden with age at

death or disease duration.

DISCUSSION

CuATSM has been found to meet the copper deficiencies in SOD1

rodent models, mitigating symptoms of motor neuron decline and

extending survival [3–8, 20]. Given that disrupted copper

F I GU R E 1 p62-positive astrocytes in CuATSM treatment group. p62-immunoreactive astrocytes were observed in the motor cortex of ALS-
TDP (A: Case #3) and ALS-SOD1 (B: Case #1) cases that had received CuATSM but not in ALS-TDP (C: Case #11) or ALS-SOD1 (D: Case #8)
cases that had not received CuATSM treatment. The p62-positive astrocytes were of similar appearance to GFAP-positive astrocytic morphology
(E: Case #3, F: Case #1). pTDP-positive astrocytes were not seen in ALS-TDP (G: Case #3) and ALS-SOD1 (H: Case #1) cases. Immunofluorescent
triple labelling demonstrated co-localisation of p62, GFAP and SOD1 in the p62-immunopositive astrocytes (I–M). A and C inset scale is 50 μm.
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bioavailability has also been found in patients with sporadic ALS, the

therapeutic benefits of CuATSM seen in SOD1 models have been

proposed to be translatable to patients with the sporadic disease [21].

The present study performs the first postmortem investigation into

patients that had been treated with CuATSM during life. Our results

revealed no significant difference in neuron density or TDP burden in

patients that had received CuATSM compared with patients that had

not. In contrast to that seen in preclinical models [3–6, 8, 22, 23],

SOD1 immunoreactivity and GFAP expression were similar in

CuATSM and non-CuATSM treatment groups. However, patients

treated with CuATSM demonstrated p62-immunoreactive astrocytes

in the motor cortex and reduced Iba1 density in the spinal cord.

P62 is an autophagy substrate that plays a critical role in aggre-

gate degeneration [24] and was observed here in motor cortical astro-

cytes of CuATSM-treated patients only, where it filled the astrocyte

cytoplasm in a similar way to GFAP (Figure 1). Although

p62-immunopositive astrocytes have not been described in postmor-

tem tissue of patients with ALS, elevated p62 levels have been identi-

fied in reprogrammed skin-derived astrocytes from patients with

sporadic, SOD1 and C9ORF72 ALS [23, 25]. Importantly, no relation-

ship between astroglial sequestosome activity with CuATSM

treatment was found in patient cell lines [23], suggesting that the

p62-astrocytes observed here do not reflect a therapeutic response

to CuATSM. Further to this, in contrast to the reduced astrocytic

activity seen in SOD1 rodent models [3–8], no significant change in

measures of GFAP was found with CuATSM here. Instead, lower

levels of activated microglia were observed in the spinal cord of

patients with CuATSM treatment. Interestingly, a negative correlation

between disease duration and activated microglia has been reported

in the spinal cord of ALS cases [26], but this was not observed in the

present cohort. As is the case for most quantitative pathological stud-

ies, the main methodological issue warranting consideration is the rel-

atively small sample sizes, and future replication of these results in a

larger sample is needed. Nevertheless, the assessment of tissue from

six patients that had been on the CuATSM trial is significant, and the

striking and consistent findings provide strong support to suggest our

results are representative.

In summary, this first postmortem analysis of patients treated

with CuATSM demonstrates p62-immunoreactive astrocytes in the

motor cortex and lower Iba1-positive microglia in the spinal cord.

Importantly, however, no significant difference in neuronal density

and the pathological burden was found with CuATSM treatment,

T AB L E 2 Mean (±SD) neuronal and glia pathology in patients treated with CuATSM and riluzole or riluzole only.

ALS-TDP SOD1-ALS

CuATSM + Riluzole Riluzole P value CuATSM + Riluzole Riluzole P value

Motor cortex

Neuron density 25.8 ± 5.7 26.6 ± 2.8 0.8 21.0 ± 0.0 20.2 ± 0.4 N/P

% TDP neurons 0.9 ± 1.5 5.1 ± 4.7 0.1 0.0 ± 0.0 0.0 ± 0.0 N/P

% p62 neurons 2.7 ± 1.4 4.5 ± 4.2 0.5 6.3 ± 0.0 0.7 ± 1.0 N/P

SOD1 neuron burden 2.5 ± 0.4 2.3 ± 0.9 0.6 1.5 ± 0.0 3.0 ± 0.0 N/P

TDP glial burden 1.8 ± 1.2 2.1 ± 1.4 0.7 0.0 ± 0.0 0.0 ± 0.0 N/P

p62 glial burden 2.3 ± 0.9 2.3 ± 0.9 0.9 3.0 ± 0.0 0.5 ± 0.7 N/P

p62 areal fraction 1.0 ± 0.6 0.6 ± 0.5 0.5 0.7 ± 0.0 0.1 ± 0.1 N/P

SOD1 glia burden 2.9 ± 0.3 2.6 ± 0.5 0.4 3.0 ± 0.0 3.0 ± 0.0 N/P

GFAP areal fraction 4.9 ± 1.0 4.4 ± 1.9 0.8 4.9 ± 0.0 3.2 ± 0.3 N/P

Iba1 density 19.0 ± 9.4 17.3 ± 5.3 0.8 24 ± 0.0 14 ± 0.6 N/P

Spinal cord

Neuron density 3.3 ± 1.0 4.0 ± 2.6 0.6 N/A 3.5 ± 0.7 N/P

% TDP neurons 3.1 ± 6.3 20.0 ± 24.5 0.2 N/A 0.0 ± 0.0 N/P

% p62 neurons 8.1 ± 9.9 29.9 ± 34.8 0.3 N/A 26.2 ± 19.4 N/P

SOD1 neuron burden 2.3 ± 0.9 1.7 ± 0.5 0.3 N/A 1.5 ± 0.0 N/P

TDP glial burden 1.5 ± 1.3 1.3 ± 0.5 0.7 N/A 0.0 ± 0.0 N/P

p62 glial burden 1.5 ± 1.0 1.5 ± 1.0 1.0 N/A 2.0 ± 1.4 N/P

p62 areal fraction 0.4 ± 0.3 0.2 ± 0.2 0.5 N/A 0.4 ± 0.3 N/P

SOD1 glia burden 2.8 ± 0.5 2.4 ± 0.9 0.5 N/A 1.8 ± 1.0 N/P

GFAP areal fraction 2.5 ± 2.5 3.1 ± 2.6 0.8 N/A 4.3 ± 1.1 N/P

Iba1 density 13.3 ± 8.7 36.5 ± 14.5 0.03* N/A 31.5 ± 10.6 N/P

Note: N/A: Tissue from the spinal cord was not available for 1 CuATSM-riluzole case; N/P: Not performed.

*p < 0.05.
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indicating no significant pathological benefit associated with this drug

in this cohort. Future studies will be needed to determine whether

specific subsets of patients may benefit from this drug.
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