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Abstract

Biomolecular electrostatics has been a subject of computational investigations based on 

3D structures. This situation is changing because emerging experimental tools allow us to 

quantitatively investigate biomolecular electrostatics without any use of structure information. 

Now, electrostatic potentials around biomolecules can directly be measured for many residues 

simultaneously by nuclear magnetic resonance (NMR) spectroscopy. This NMR method can be 

used to study electrostatic aspects of various processes, including macromolecular association 

and liquid-liquid phase separation. Applications to structurally flexible biomolecules such as 

intrinsically disordered proteins are particularly useful. The new tools also facilitate examination 

of theoretical models and methods for biomolecular electrostatics.

Introduction

In life, complex networks of molecular interactions involve electrostatic forces that influence 

structure and function of biological macromolecules. Electrostatic interactions are crucial 

for many biomolecular processes such as protein-nucleic acid binding, enzymatic catalysis, 

and liquid-liquid phase separation [1-6]. Accurate electrostatic information is also key to 

success in protein engineering [7] and drug design [8]. Thus, electrostatics is important for 

our fundamental understanding of biomolecular functions as well as for biotechnological 

development.

Computation of electrostatic potentials in solution from 3D structures using the Poisson-

Boltzmann equation solver programs (e.g., APBS [9] and DelPhi [10]) is common in 

structural biology. However, their validity range should be examined more extensively 

because the computational method is approximate and uses empirical parameters. Structure-

based assessment of electrostatics may also be challenging for structurally flexible 

biomolecules such as intrinsically disordered proteins (IDPs) and single-stranded RNA.

Recently, it has become possible to directly measure local electrostatic potentials for 

individual residues of biomolecules by nuclear magnetic resonance (NMR) spectroscopy 
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[11] (Figure 1A). Since this method provides effective near-surface electrostatic potentials 

(ϕENS), we referred to it as the ϕENS method. This NMR method can be used to examine 

theoretical electrostatic models, because ϕENS potentials can also be predicted from 3D 

structures [11-15]. Owing to the de novo nature requiring no structural information, 

the ϕENS method also enables electrostatic investigations of conformationally disordered 

biomolecules [15-19]. In this minireview, we introduce the principle and applications of the 

ϕENS method and compare it with other electrostatic methods.

Challenges in computational assessment of electrostatics

In the past, biomolecular electrostatics has been a subject of computational investigations. 

Quantitative assessment of biomolecular electrostatics is not as straightforward as it may 

appear. Biomolecules in solutions are surrounded by mobile ions (e.g., Na+, K+, Cl−), which 

electrostatically influence the thermodynamic and kinetic properties of macromolecules 

[20,21]. Distribution of mobile ions around charged biomolecules are nonuniform [22,23]. 

Electrostatic potentials around biomolecules depend not only on their charged moieties but 

also on the concentrations and spatial distributions of the surrounding mobile ions. Mobile 

ions also cause screening, which dampens electric fields [24].

The Poisson-Boltzmann equation-based computations take mobile ions into consideration 

and calculate electrostatic potentials. Programs such as APBS and DelPhi compute 

electrostatic potentials on grid points in a sufficiently large 3D space containing a 

biomolecular structure [9,10] (see Figure 1B for example). The computation utilizes a 

continuum dielectric approximation and requires a point charge for each atom of the 

biomolecule. Typically, the charge of each atom in titratable groups is calculated from 

a specified pH and a pKa predicted from the structure. However, even advanced pKa 

prediction methods give root mean square errors as large as 0.8 [25,26], which may cause 

considerable errors in electric charges. Structural flexibility of biomolecules adds another 

layer of complexity in assessment of electrostatics [27].

Experimental measurement of near-surface electrostatic potentials

The ϕENS method allows us to directly measure local electrostatic potentials for many 

residues of biomolecule (Figure 1C). This NMR method provides the effective near-surface 

electrostatic potentials (ϕENS) that represent average electrostatics in exterior space near the 

molecular surface close to the observed 1H nuclei. The ϕENS method is useful to validate 

theoretical electrostatic models [11-14] and to investigate electrostatic impacts of inter- and 

intra-molecular interactions [11,15-17]. Table I summarizes applications of the ϕENS methods 

for biophysical research.

Paramagnetic relaxation enhancement (PRE) arising from two analogous paramagnetic 

cosolutes with different charges are used to determine ϕENS potentials. PRE arising from 

paramagnetic cosolutes has been referred to as solvent PRE [28,29]. Solvent PRE rates 

(Γ2) for 1H transverse magnetizations can readily be measured with various methods using 

paramagnetic and corresponding non-paramagnetic samples [18,29]. The ϕENS potential is 

defined as [11]:
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ϕENS = kBT
(zb − za)e ln( Γ2, a

Γ2, b
),

[1]

where Γ2, a and Γ2, b are the solvent PRE rates for the two paramagnetic cosolutes a and b at 

an identical concentration; za and zb are their charge valence; e is the elementary charge; kB

is the Boltzmann constant; and T  is temperature. The spatial distributions of the charged 

cosolutes around a biomolecule are related to local electrostatic potentials. This allows 

one to obtain electrostatic information. The PRE rates are governed by the paramagnetic 

cosolutes within a zone proximal to the observed 1H nucleus, which we refer to as the 

effective near-surface (ENS) zone. The ϕENS potential represents an average electrostatic 

potential within the ENS zone [11] (Figure 1D).

PROXYL or TEMPO derivatives have been used in the ϕENS methods [11-19]. For example, 

aminomethyl-PROXYL, carboxy-PROXYL, and carbamoyl-PROXYL (z = + 1, −1, and 0, 

respectively, at neutral pH) were used (Figure 2). Combination of positively and negatively 

charged paramagnetic probes is ideal for accurate ϕENS measurements [19]. For strongly 

charged systems (e.g., nucleic acids), PRE arising from one of the charged probes may be 

too small for ϕENS determination. In such a case, a pair of analogous neutral and charged 

probes can be used [14,15,18]. Tetramethyl nitroxide is known to interact with hydrophobic 

surfaces of proteins [30-32]. If the hydrophobic or other non-electrostatic interactions 

are the same for the two analogous cosolutes, the contributions of such interactions are 

canceled in the ratio Γ2a ∕ Γ2b [11,13]. Consequently, Γ2a ∕ Γ2b in Eq. 1 illuminates electrostatic 

components.

Prediction of ϕENS potentials from 3D structure

A convenient feature of ϕENS potential data is that they can be predicted from 3D structures. 

Owing to this feature, ϕENS data are useful for evaluation of theoretical models and 

methods (see Figure 1C for example). A simple way to predict ϕENS potential is to use the 

following equation together with electrostatic potentials ϕi at individual grid points around 

the molecule [11,12]:

ϕENS
PB = − kBT

2e ln ∑i ρiri
−6 exp[ − eϕi

kBT ] ∕ ∑i ρiri
−6 exp[ eϕi

kBT ] ,

[2]

in which ri is the distance from the 1H nucleus to the grid point i; and ρi is a factor that 

represents the accessibility of the grid point i and is either 1 (accessible) or 0 (inaccessible). 

Predictions with Eq. 2 typically yield the root mean squared difference of ~5 mV compared 

with the experimental ϕENS potentials [11,12,14].

Eq. 2 assumes the same spatial distribution for the charge and the unpaired electron. This 

assumption may be simplistic because the charged moiety and the unpaired electron of the 
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PROXYL derivatives are on the opposite sides of the molecules. Angular correlations for the 

paramagnetic probes with respective to the biomolecule are not taken into account in Eq. 

2 either. Chen et al. demonstrated that ϕENS potentials can be predicted more accurately by 

using atomistic models of the paramagnetic cosolutes along with appropriate treatment of 

the angular correlations [13], which is computationally more expensive.

Applications to intrinsically disordered proteins

Because it does not require structural information, the ϕENS method is particularly useful 

for electrostatic investigations of IDPs. Liquid-liquid phase separation (LLPS) play various 

regulatory roles in biology [33]. Recently, Kay and coworkers applied the ϕENS method to 

map per-residue surface electrostatic potential of the CAPRIN1 protein along its trajectory 

of LLPS [16,17] (Figure 3). In the absence of ATP, where this IDP was not phase-separated, 

ϕENS potentials around the Arg-rich regions were positive. However, as ATP was added and 

the protein transitioned into phase separation, ϕENS potentials of the region decreased and 

became close to zero [16]. The decrease in ϕENS potentials reflect electrostatic interactions 

between the positively charged Arg-rich region and the negatively charged ATP molecules. 

When the ATP concentration was as high as 90 mM, the ϕENS potentials became even 

negative, leading to re-entrance into a mixed state. The studies on CAPRIN1 demonstrated 

the effectiveness of the ϕENS method for investigations of LLPS. Electrostatics are crucial 

for LLPS of some proteins. For example, co-partitioning of transcription regulators through 

LLPS is governed by patterned charge blocks in IDRs [34]. We anticipate that the ϕENS

method will reveal more about the electrostatic aspects of LLPS.

Clore and coworkers applied the ϕENS method to both the folded and unfolded states of 

the drkN SH3 domain [15]. The variation of ϕENS potentials among different residues was 

smaller in the unfolded state, presumably due to averaging of various structures. Using 

snapshots of a replica-exchange molecular dynamics (MD) trajectory on the unfolded 

state of this protein [35], ϕENS potentials were predicted and found to agree well with 

experimental ϕENS potentials. This seems to support the validity of the MD ensemble for 

the unfolded state. In conjunction with other experimental data (e.g., NMR chemical shifts, 

residual dipolar couplings), ϕENS potential data may facilitate experimental assessment of 

structural ensembles of IDPs/IDRs.

Advantages over other methods for electrostatic potentials

Electron-electron double resonance (ELDOR) can also provide near-surface electrostatic 

potentials using an extrinsic probe attached to a biomolecule in the presence of charged or 

neutral paramagnetic cosolutes [36]. Cysteine modification kinetics or diffusion-enhanced 

fluorescence energy transfer data have also been used to estimate electrostatic potentials 

[37,38]. However, these methods provide only one electrostatic potential for each 

sample, requiring preparation of multiple samples to measure electrostatic potentials at 

multiple sites. In contrast, the ϕENS method provides electrostatic potentials at many sites 

simultaneously. For example, ϕENS potentials were measured for > 150 different sites for 
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ubiquitin, a 76-residue protein [11,12]. Furthermore, the ϕENS method does not require any 

chemical modification of biomolecules.

In principle, cryogenic electron microscopy (cryo-EM) can directly provide electrostatic 

potential relevant to atomic scattering factor [39,40]. However, cryo-EM electrostatic 

potential maps do not provide quantitative information of electrostatic potentials in the 

exterior space around the biomolecules. Radiation damage also makes it practically difficult 

to quantitatively analyze cryo-EM electrostatic potential maps [39]. In contrast, the ϕENS

method provides quantitative information of electrostatic potentials in exterior space around 

the biomolecules in solutions under physiological conditions. Thus, the ϕENS method 

is currently the most powerful experimental method for quantitative investigations of 

electrostatic potentials.

Comparison with vibrational spectroscopy methods for electric fields

Vibrational Stark effect (VSE) spectroscopy has been used to investigate external electric 

fields that perturb the energies for vibrational transitions of covalent bonds [41]. Since 

covalent bonds that exhibit unique infrared (IR) signals are desirable for VSE spectroscopy, 

nitrile C≡N or aldehyde/ketone C=O bonds, which are absent in natural proteins, are 

often introduced through chemical modifications, amber suppression, or ligand binding. 

Site-specific 13C-labeling and 12C ─ 13C difference spectra were also used to analyze 

the VSE for specific sites [42,43]. For aldehyde groups, electric field orientations can be 

extracted using two directional vibrational probes by exploiting the VSE of C=O and C-D 

bonds [44]. IR signal intensities of nitrile C≡N bonds were also found to be useful for 

analyzing electric fields [45]. Using VSE spectroscopy along with enzyme kinetics for 

wild-type and mutant enzymes, Boxer and coworkers demonstrated the role of electrostatics 

in enzymatic catalysis [43,46,47].

Information from VSE data differs from that from ϕENS data. VSE data provide electric 

fields at the observed bonds inside a molecule of interest, whereas ϕENS data provide average 

electrostatic potentials in a local exterior space close to the observed 1H nuclei. The electric 

field F is the gradient (∂/∂x, ∂/∂y, ∂/∂z) of the electrostatic potential ϕ multiplied by 

−1. With a charge valence z, the electric field gives the electric force zeF, whereas the 

electrostatic potential gives the electrostatic energy zeϕ. The VSE and ϕENS methods are 

complementary regarding biomolecular electrostatics.

Conclusions

Recent methodological advances have enabled direct electrostatic measurements for 

many sites on biological macromolecules through experiments. Direct measurements of 

electrostatic potentials facilitate investigations of inter- or intra-molecular electrostatic 

interactions, particularly for those involving IDPs/IDRs. Electrostatic interactions involving 

IDRs impact thermodynamic and kinetic properties of some proteins [48-52]. Direct 

measurements of electrostatics may greatly facilitate quantitative investigations of such 

electrostatic interactions. The emerging experimental tools for electrostatics can be applied 

to a wide variety of biomolecular processes such as electrostatic steering, post-translational 
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modifications, and co-partitioning in LLPS. Experimental measurements of electrostatic 

potentials also allow for examination of theoretical electrostatic methods.
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Figure 1. 
Direct measurement of electrostatic potentials by the ϕENS method. (A) Conventional (green) 

vs. new (orange) approaches to analyze electrostatic potentials around biomolecules. (B) 

Electrostatic potentials around ubiquitin and 15-bp DNA computed with the Adaptive 

Poisson-Boltzmann Solver (APBS) software. (C) ϕENS potentials measured for 1HN nuclei 

of ubiquitin. The experimental data are compared with predictions using Eq. 2. Adapted 

from Ref. [11]. (D) Physical meanings of ϕENS potentials. Each ϕENS potential represents 

an average electrostatic potential within the effective near-surface (ENS) zone (brown) for 

the observed 1H nucleus. Some examples for ubiquitin and 15-bp DNA are shown. The 

structures were drawn with ChimeraX [53]. [Double-column figure]
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Figure 2. 
Examples of paramagnetic cosolutes for the ϕENS method. It is crucial that electrostatic 

interactions between the biomolecule and the cosolutes governs differences in the spatial 

distributions of the cosolutes around the biomolecule. Hydrophobic interactions at the 

tetramethyl nitroxide moiety common to the cosolutes does not affect the ϕENS method 

[11,13]. [Single-column figure]
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Figure 3. 
Mapping of ϕENS potentials along the adenosine triphosphate (ATP)-induced phase-

separation trajectory for CAPRIN1 [16]. As ATP was added, the ϕENS potentials around 

CAPRIN1 progressively decreased. Upon phase separation, the ϕENS potentials became close 

to zero, with ~5 ATP molecules associated with each CAPRIN1 chain. Increasing the ATP 

concentration further inverted the ϕENS potentials, leading to re-entrance into a mixed phase. 

Adapted from Ref. 16. [Double-column figure]
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Table I.

Biophysical applications of the ϕENS method.

Applications References

• Examination of theoretical electrostatic models 11-15

• Electrostatic aspects of molecular binding 11, 16, 17

• Impact of salt on biomolecular electrostatics 11, 13, 17

• Role of electrostatics in LLPS 16, 17

• Electrostatics of disordered proteins 15-19

• Electrostatics of nucleic acids 14

• Structural ensemble 11,15
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