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Abstract

Binge-eating disorder (BED) is the most common eating disorder, yet its genetic architecture 

remains largely unknown. Studying BED is challenging because it is often comorbid with obesity, 

a common and highly polygenic trait, and it is underdiagnosed in biobank datasets. To address this 

limitation, we apply a supervised machine learning approach (leveraging 822 cases) to estimate 

the probability of each individual having BED based on electronic medical records from the 

Million Veteran Program. We perform a genome-wide association study on individuals of African 

(n = 77,574) and European (n = 285,138) ancestry while controlling for body mass index to 

identify three independent loci near the HFE, MCHR2 and LRP11 genes and suggest APOE as 

a risk gene for BED. We identify shared heritability between BED and several neuropsychiatric 

traits, and implicate iron metabolism in the pathophysiology of BED. Overall, our findings provide 

insights into the genetics underlying BED and suggest directions for future translational research.

Introduction

BED is a common, heritable (41–57%) psychiatric disorder1,2 with lifetime prevalence 

estimated between 0.9 and 3%3,4. BED was a provisional diagnosis until the publication 

of the DSM 5 in 2014 when sufficient evidence was available to conclude that BED 

can be reliably discriminated from other eating disorders5, including anorexia nervosa or 

bulimia nervosa. Because BED was only recently added to the most widely used diagnostic 

classification systems, a sufficiently powered case-control cohort has not yet been recruited6 

and few subjects can be identified with traditional approaches to electronic medical record 

(EMR)-driven genetic studies in existing genotyped cohorts. Thus, identification of genetic 

risk variants for BED has lagged behind similar efforts for other neuropsychiatric disorders. 

As a result, our understanding of the biological processes underlying the pathophysiology 

of BED is limited and the development of genetically based, targeted treatments for BED 

remains out of reach.

BED is epidemiologically associated with obesity, metabolic dysfunction, multiple 

psychiatric disorders and low overall well-being4,7. In studies where both cases and controls 

are categorized as overweight or obese, heritability of BED is higher than when BMI is 

not considered1,2,8. BED patients have a higher genetic liability for obesity when compared 

to healthy controls and those with other eating disorders9. While research distinguishing 

BED from obesity is limited, individuals with BED consistently consume more calories 

in laboratory meals than obese individuals without BED and demonstrate higher levels 

of psychiatric comorbidity, eating disorder psychopathology, distress and quality of life 

impairment5,10,11. Frequent binge eating is associated with poor metabolic outcomes after 

adjusting for body mass index (BMI)12,13 and those with BED are resistant to sustained 

weight-loss after interventions with known efficacy4,14. Successful treatment of BED does 
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not necessarily result in metabolic improvement or significant weight change14,15 and 

approximately one third of individuals with current or recent BED do not have obesity3. 

Overall, BED is a serious disorder with psychiatric and metabolic components that is 

epidemiologically distinct from obesity1–5, 8–15.

Towards elucidating the genetic architecture of BED, we leveraged the Million Veteran 

Program (MVP)16 to develop and validate a supervised machine-learning algorithm based 

on clinically diagnosed BED cases to estimate each individual’s likelihood of having 

BED. By performing a bi-ancestral genome-wide association study (GWAS), we identified 

three genetic loci that are significantly associated with BED independent of BMI and we 

implicated a fourth gene through MAGMA gene analysis17. We validated our approach by 

performing polygenic risk score (PRS) association analysis in three independent cohorts: 

the Adolescent Brain and Cognitive Development Study (ABCD)18, the Philadelphia 

Neurodevelopmental Cohort (PNC)19 and the UK Biobank (UKBB)20. By performing 

genetic correlation analysis, we found that BED has considerable genetic overlap with 

several other neuropsychiatric phenotypes, including depression, bipolar disorder and 

attention-deficit/hyperactivity disorder. Finally, using gene-based and partitioned heritability 

analyses, we implicate iron metabolism in the pathophysiology of BED.

Results

Computational phenotyping approach

There are significant challenges in identifying individuals with BED using EMR: BED 

was not fully recognized by the American Psychiatric Association until 201421, BED 

remains underdiagnosed22,23 and the International Classification of Diseases, Ninth 

Revision, Clinical Modification (ICD-9-CM) does not have a BED-specific diagnostic code. 

Consequently, in large, longstanding EMRs such as the Veterans Health Administration’s 

MVP where diagnoses were coded in ICD-9-CM until 2015, most individuals with BED are 

likely either undiagnosed or diagnosed using codes corresponding to other or unspecified 

eating disorders (ambiguous codes). Using single ICD codes, we investigated the prevalence 

of eating disorder diagnoses (n = 4,266) within the MVP and found that BED (n = 851) 

was underrepresented relative to bulimia nervosa (n = 876) even though BED has a higher 

prevalence22 (Supplementary Table 1). After excluding those who had not been genotyped, 

there were less than 500 individuals with BED for any given genetic ancestry.

To identify individuals in the MVP with a high likelihood of having BED and allow for the 

performance of a well-powered GWAS, we developed a machine learning approach reliant 

upon individuals clinically diagnosed with BED. We first constructed a list of subjects 

reliably diagnosed with BED (n = 822) and a list of controls who had no eating disorder 

diagnoses (n = 766,705; Supplementary Table 2, Methods). To calculate a BED-score for 

each subject in the MVP, we built a LASSO logistic regression model across our BED plus 

controls cohort (n = 767,527; Supplementary Fig. 1). Our hypothesis-free model generated 

multiple predictors of BED (Top predictors: Fig. 1a, full list: Supplementary Table 3), many 

of which have known associations with BED (Supplementary Note). To reverse validate 

that our BED scores specifically predict BED rather than the other traits upon which they 

were built, we tested the association between BED score and a set of 1,752 phecodes plus 
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the ICD-10 code for BED in a hold-out group comprising 10% of the cohort and found 

that BED scores predicted BED better than other disorders (Top codes: Fig. 1b, full list: 

Supplementary Table 4, Methods). The top 3 non-BED phecodes were related to BMI.

We then assessed the predictive performance of our model against the hold-out group: the 

F1 score was 21% (Fig. 1c), the sensitivity-specificity area under the curve was 97.1% 

(Supplementary Fig. 2), and, while our prevalence of identified BED cases was only 0.1%, 

the average positive predictive value was 11.0% (Fig. 1c). Furthermore, when we assessed 

model performance on a test set that aligned more closely with real-world prevalence, 

the F1 score increased to 54% and the average positive predictive value increased to 

50.5% (Supplementary Fig. 3). Assessment of model performance should be interpreted 

in the context of the probable presence of undiagnosed individuals. Thus, we leveraged the 

extensive information within the MVP EMR to classify undiagnosed but highly probable 

cases of BED from a smaller cohort of individuals with clinician-diagnosed BED using 

a hypothesis-free supervised model that relied on many factors previously associated with 

BED.

Genetic architecture of BED independent of BMI

A strong genetic correlation has been reported between a BED-inclusive phenotype 

and BMI9. Therefore, we sought to examine the genetic underpinnings of BED while 

controlling for BMI by leveraging our inverse-rank normal transformed model-derived 

(MD) BED scores to perform ancestry-specific GWAS on the African ancestry (AFR; 

n = 77,574; Fig. 2a) and European ancestry (EUR; n = 285,138; Fig. 2a) populations 

within the MVP: AFR-MD-BED*BMI and EUR-MD-BED*BMI, respectively (Table 1, 

Supplementary Fig.4, Supplementary Table 5). From our EUR-MD-BED*BMI GWAS, we 

discovered two genome-wide significant loci, one within an exon of HFE (p = 1.88×10−9) 

and one near MCHR2 (p = 5.57×10−10; Fig. 2b, Table 1). For the SNP near MCHR2, 

since no other nearby SNPs were identified as suggested hits (p < 10−5), we performed 

regional analysis with the TOPMED24 imputation panel and uncovered additional SNPs 

in linkage disequilibrium (LD) below the suggestive p < 10−5 threshold (Supplementary 

Fig. 5, Methods). One of the genome-wide significant SNPs at the HFE locus, rs1800562, 

corresponds to the C282Y missense mutation with pathogenicity for hemochromatosis. 

Next, we utilized MAGMA17 to aggregate variants corresponding to protein coding 

genes and found an association with the EUR-MD-BED*BMI phenotype and APOE 
(p = 7.03×10−7). We calculated heritability using LD Score regression for the EUR-MD-

BED*BMI GWAS to assess the amount of variation explained by an additive SNP model 

and attained an h2 of 2.14% (s.e. = 0.23%, p = 6.74×10−21). For the AFR-MD-BED*BMI 

GWAS, we achieved a h2 of 1.65% (s.e. = 0.72%, p = 1.10×10−2). However, limitations 

for estimating heritability for AFR ancestry are well-documented and the AFR heritability 

results should be interpreted cautiously25,26. No loci achieved genome-wide significance in 

the smaller AFR-MD-BED*BMI GWAS (Fig. 2a, Table 1).

We then attempted cross-ancestral replication of our genome-wide significant SNPs from 

the EUR-MD-BED*BMI GWAS, noting that this replication had limited power (Table 1, 

Supplementary Table 6, Methods). We did not replicate rs17789218 or rs79220007 in the 
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AFR cohort (Table 1). Looking beyond the genome-wide significant loci, we performed the 

sign test for clumped SNPs between the EUR and AFR GWAS across the whole genome 

(Methods). We plotted the percentage of SNPs that share the same sign between the EUR 

and the AFR cohorts’ for lead SNPs using a series of P value thresholds as computed from 

our EUR-MD-BED*BMI GWAS (Fig. 2c). By limiting our analysis to SNPs with negative 

log10 P values below 5, we obtained 70% sign matched effects between the AFR- and 

EUR-MD-BED*BMI GWAS. When we further restricted our selection of SNPs to those 

with lower P values, we found progressively increasing percentages of matched signs up to 

100% while selecting more restrictive values for the negative log10 P value threshold. As 

we progressively restricted our analysis to those SNPs with the strongest association to BED 

in the EUR-MD-BED*BMI GWAS, the increased percentage of sign-matched SNPs from 

the AFR- and the EUR- MD-BED*BMI GWAS suggest a common genomic signal for BED 

shared by the EUR and AFR ancestries.

To investigate further the cross-ancestral genetics of BED, we conducted fixed-effects 

meta-analysis27 from the summary statistics of the two ancestry-specific GWAS (FEMA-

MD-BED*BMI; Fig. 2b, Table 1). In the FEMA-MD-BED*BMI, both of our lead SNPs 

from the genome-wide significant loci identified in the EUR-MD-BED*BMI GWAS and 

one additional locus located within an intron of LRP11, achieved genome-wide significance 

(Table 1). We also performed a Multi-Ancestry Meta-Analysis28 and found similar results 

(MAMA-MD-BED*BMI; Supplementary Fig. 6).

After completing our initial analysis, we obtained an additional release of genetic data from 

the MVP and replicated rs79220007 (β = 0.009, s.e. = 0.004, p = 1.6×10−2), rs17789218 

(β = 0.01, s.e. = 0.002, p = 1.9×10−8) and rs7412 (β = 0.01, s.e. = 0.004, p = 1.3×10−3) 

but not rs2275046 (β = 0.001, s.e. = 0.002, p = 0.32; Supplementary Note). We further 

validated our EUR-MD-BED*BMI by using the sign test for clumped SNPs on this cohort 

(Supplementary Fig. 7).

We attempted fine-mapping29 to better identify causal/effect variants; however, our findings 

were limited by the extended LD blocks within which the index SNPs for the LRP11 and 

HFE loci reside, the latter falling within the major histocompatibility complex (MHC) locus. 

Fine-mapping of the locus near MCHR2 was constrained by the limited coverage quality of 

this region by the MVP genotyping arrays (Supplementary Table 7).

GWAS validation

To further validate our results between the EUR and the AFR cohorts, we performed 

additional internal and external validations using only the EUR ancestry cohort due 

to inadequate numbers of AFR ancestry subjects in the validation cohorts. As internal 

validation, we tested the relationship between our primary GWAS methodology (MD-BED), 

BMI and an alternative ICD-based BED phenotype (ICD-BED) comprised of individuals 

reliably diagnosed with BED and/or diagnosed with an ambiguous eating disorder and with 

a high probability of having BED based on a second machine learning algorithm designed to 

discriminate BED from other eating disorders (Methods).
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We computed the genetic correlation across five BED-related GWAS on EUR individuals 

in the MVP (Supplementary Table 5): Model-Derived BED (EUR-MD-BED; n = 285,138), 

Model-Derived BED adjusted for BMI (EUR-MD-BED*BMI; n = 285,138), ICD-based 

BED (EUR-ICD-BED; n = 549 cases, n = 284,648 controls; Supplementary Fig. 8a), ICD-

based BED adjusted for BMI (EUR-ICD-BED*BMI; n = 549 cases, n = 284,648 controls; 

Supplementary Fig. 8b) and BMI (EUR-BMI; n = 291,593). We observed reasonably 

high correlations between the EUR-ICD-BED GWAS and the other GWAS, with genetic 

correlation rg ranging from 0.48 to 0.86 (Fig. 3a). We note that the EUR-MD-BED*BMI 

GWAS achieved high genetic correlation (rg = 0.85, s.e. = 0.36) with the EUR-ICD-

BED*BMI GWAS. In contrast, when we did not adjust our MD-BED phenotype for BMI, 

we observed that EUR-MD-BED GWAS achieved greater genetic correlation with BMI (rg 

= 0.93, s.e. = 0.01) than it did with any of the BED GWAS (rg = 0.71, s.e. = 0.22 with 

EUR-ICD-BED). These results confirm that the two approaches to classification of BED 

identify common genetic factors, but suggest that without adjustment, our machine learning 

approach may be inflated by the influence of BMI-associated genetic determinants.

While the genetic correlations between the EUR-MD-BED*BMI GWAS and the two 

ICD-BED GWAS were high, the ICD-based approach identified different genome-wide 

significant loci (Supplementary Table 8, Supplementary Note). However, heritability of 

the EUR-ICD-BED GWAS was only nominally significant (h2 = 22.3%–29.5%, p = 0.05) 

and heritability of the EUR-ICD-BED*BMI GWAS was not statistically significant (h2 = 

16.9%–22.4%, p = 0.11).

We also validated our EUR-MD-BED*BMI approach using three external cohorts with 

BED-inclusive phenotypes by leveraging our GWAS summary statistics to compute PRS 

(see Supplementary Table 9 and Supplementary Note for phenotype definitions and cohort 

details). Our EUR-MD-BED*BMI PRS significantly predicted BED in the UKBB (p = 

0.03; Fig. 3b) and in the PNC (p = 0.02; Fig. 3b), but did not reach significance in the 

ABCD cohort (p = 0.13, Fig. 3b). However, the effect sizes were similar in all validation 

sets (log odds ratios: 0.09–0.12) and the inverse-variance weighted meta-analysis across the 

UKBB, ABCD and PNC was robust (p = 1.39×10−3; Fig. 3b). The EUR-ICD-BED*BMI 

PRS failed to validate in any of the individual cohorts or through meta-analysis (Fig. 3b) in 

the setting of its small sample size. We then validated rs17789218, located near MCHR2, 

using an inverse-variance weighted meta-analysis of the case-control, BMI-adjusted GWAS 

from ABCD, PNC and UKBB after adjusting for cross-study heterogeneity30 and applying 

a power weighted P value approach to computing the false discovery rate31 (FDR; 

ABCD-PNC-UKBB-BED*BMI; q < 0.05; Supplementary Tables 10–12, Methods, see 

Supplementary Note for discussion of power to replicate other alleles in these cohorts).

Shared genetic architecture between BED and other traits

To investigate the genetic overlap between our model-derived BED scores and other 

traits, we computed the genetic correlation between the EUR-MD-BED*BMI GWAS and 

a curated set of 44 psychiatric disorders, behavioral phenotypes and health-related traits 

and contrasted it with the results of our EUR-BMI (Fig. 4; Supplementary Fig. 9). We 

found significant positive genetic correlations between EUR-MD-BED*BMI and lobar 
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intracerebral hemorrhage (rg = 0.56, p = 2.02×10−6), depression (rg = 0.52, p = 2.46×10−45), 

cannabis use (rg = 0.44, p = 9.11×10−9), bipolar disorder (rg = 0.42, p = 7.63×10−21), 

neuroticism (rg = 0.38, p = 5.43×10−10), attention-deficit/hyperactivity disorder, (rg = 0.34, 

p = 1.26×10−7), externalizing32,33 (rg = 0.32, p = 9.40×10−12), schizophrenia (rg = 0.24, p = 

2.94×10−9) and anorexia nervosa (rg = 0.21, p = 4.00×10−4), as well as a cross-psychiatric 

disorder GWAS (rg = 0.44, p = 1.58×10−11). The strength of the genetic correlation between 

these traits was greater with the EUR-MD-BED*BMI GWAS than with the EUR-BMI 

GWAS (Supplementary Fig. 9). We found significant negative genetic correlations between 

EUR-MD-BED*BMI and educational attainment (rg = −0.11, p = 0.001), intelligence 

quotient (rg = −0.12, p = 0.02), cognitive performance (rg = −0.13, p = 8.00×10−4) and 

subjective well-being (rg = −0.21, p = 0.006). We computed the genetic correlation between 

our EUR-MD-BED*BMI GWAS and 1,427 traits from the IEU Open GWAS project34 

that met our quality control standards (Supplementary Table 13; Methods), and broadly 

confirmed the genetic association between BED and depression and neuroticism. Among 

other traits, we also found an association with risk taking (rg = 0.30, p = 1.92×10−11) and 

lifetime smoking (rg = 0.19, p = 1.05×10−5). To validate the negative genetic association 

between BED and cognitive functioning, we assessed the relationship between our EUR-

MD-BED*BMI PRS and neurocognitive measures obtained in the UKBB35 and found 

strong negative associations across nearly all domains tested (Supplementary Fig. 10).

Pathways and cell types

We used FUMA, excluding the MHC to ensure that results were not driven by the high 

LD structure and gene density in this region, to identify enrichment in the overlap of gene 

sets from our EUR-MD-BED*BMI and a large GWAS database (Supplementary Fig. 11). 

Apart from enrichment for neuropsychiatric, obesity-related, autoimmune and cancer traits, 

we found enrichment for gene sets involved in heme metabolism and biosynthesis, and 

uric acid metabolism. Phenome-wide association studies (PheWAS) of the lead SNPs from 

the FEMA-MD-BED*BMI GWAS were also consistent with iron dysregulation through 

associations with disorders of iron metabolism and iron deficiency anemia (Supplementary 

Fig. 12).

To elucidate the role of iron and heme metabolism in BED, we assessed the relationship 

between the PRS from our EUR-MD-BED*BMI and EUR-BMI GWAS with both an 

iron deficiency and an iron overload phenotype derived from the UKBB (Fig. 5a). BED 

was very strongly positively correlated with iron overload (β = 0.66, p = 1.62×10−60) 

and negatively correlated with iron deficiency (β = −0.03, p = 0.01). Differently, BMI 

was positively correlated with iron deficiency (β = 0.05, p = 1.03×10−7) and was not 

significantly correlated with iron overload (β = −0.01, p = 0.73). We then found a 

positive correlation between BED scores and iron deficiency in the MVP EMR data 

(β = 0.27, p = 4.03×10−71) that persisted after adjustment for BMI (β = 0.32, s.e. = 

0.02), in contrast to the negative correlation between the EUR-MD-BED*BMI PRS and 

iron deficiency in the UKBB, suggesting that the predictors for our BED scores are not 

driving the negative relationship between iron deficiency and the EUR-MD-BED*BMI 

PRS. To test for a putative causal relationship between BED scores and iron overload we 

performed Generalized Summary-data-based Mendelian Randomisation (GSMR)36, where 
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we leveraged summary statistics from our EUR-MD-BED*BMI and a transferrin saturation 

GWAS37 based on an independent cohort comprising subjects from deCODE genetics 

and the INTERVAL study (Fig. 5b). Using GSMR, we confirmed a statistically robust 

relationship (β = 0.02, p = 5.45×10−6) that persisted after outlier removal (Supplementary 

Fig. 13; Methods), further supporting that transferrin saturation, a biomarker of whole-body 

iron stores, affects BED scores. After linking BED probability scores with iron overload, 

we hypothesized that if iron/heme metabolism is critical for BED we would also see 

independent downstream enrichment of EUR-MD-BED*BMI risk variants for regions of 

the genome regulated by heme. Thus, we tested the relationship between enrichment of BED 

risk variant-homologs and heme-regulated open chromatin regions from a murine erythroid 

cell β-estradiol stimulation model38. After correcting for multiple comparisons, we found 

significant enrichment of our BED risk variant-homologues in wild-type mice exposed 

to β-estradiol, an induced high heme state (FDR adjusted p = 0.03), but not in mutants 

with reduced heme expression (Fig. 5c), suggesting enrichment of BED risk variants in 

heme-regulated open chromatin regions.

Based on our gene set enrichment findings, we also attempted to explore the relationship 

between uric acid metabolism and BED. We found genetic associations with urate and 

gout; however, in contrast to iron/heme metabolism dysregulation, observed BMI heavily 

confounded these associations (Supplementary Table 14, Supplementary Note).

Finally, to identify cell types in which the genetic drivers of BED are likely to have an 

effect, we performed partitioned heritability analysis for our EUR-MD-BED*BMI GWAS 

with two chromatin accessibility atlases39,40 and found nominal enrichment across several 

neural lineages including from limbic system neurons, inhibitory neurons, astrocytes, enteric 

neurons and enteric glia (Supplementary Fig. 14, Supplementary Note). These results point 

to a potential pleiotropic effect of the genetic drivers across neural tissues and suggest 

shared dysfunction across the central and enteric nervous systems.

Discussion

We report the first GWAS of a model-derived BED phenotype from 362,712 individuals in 

the MVP, including individuals with AFR and EUR ancestries, and the identification of three 

loci that have a genome-wide significant association with BED independent of BMI; two of 

these loci are replicated in a later tranche of EUR genotypes in MVP not included in the 

discovery GWAS. We further implicate APOE in BED through MAGMA and subsequent 

replication of the association for its lead SNP. To power our study, we developed a machine 

learning approach to identify the probability of individuals having BED across the MVP 

based on clinician-diagnosed cases. We leveraged the diversity of the MVP to conduct 

separate GWAS in AFR and EUR cohorts and perform both cross-cohort and meta-analytic 

validation of our results. Our machine learning approach was effective in performing a 

GWAS on a common, yet underdiagnosed disorder in a very large cohort. With the limited 

number of identified cases, our algorithm-based approach shared high genetic correlation 

with our more traditional case-control GWAS (rg = 0.85) and was well-powered for SNP 

heritability estimation (p = 6.74×10−21) and PRS validation across external cohorts (p = 
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1.39×10−3). In contrast, the case-control GWAS did not achieve significant heritability (p = 

0.11) or validate in external cohorts via PRS association (p = 0.44).

We found significant PRS association between our MD-BED phenotype built on clinically 

diagnosed veterans and gender-balanced civilian cohorts. Of these three cohorts, only the 

ABCD used DSM-based criteria for BED diagnosis; however, it contains only 94 cases as 

the cohort is substantially younger than the typical age of onset of BED18. The PNC cohort 

was also younger than the mean age of onset of BED19 and the closest available phenotype 

captured a much larger population than would be expected to have BED. Despite these 

limitations, our PRS significantly predicted BED in two of the three civilian cohorts (PNC 

and UKBB) and through meta-analysis. Consequently, we provide strong evidence for the 

external validity of our GWAS approach, even in the presence of demographic confounders.

A recent UKBB study confirmed the expected partial genetic association between BMI and 

over-eating/binge-eating in a EUR-only cohort but was not powered to detect associations 

with individual loci, was not based on diagnosed BED and did not examine the BMI-

independent genetic contributions to over-eating/binge-eating9. However, their phenotype 

was similar to the UKBB phenotype that we used as one of the validations of our approach. 

As expected, we found a high-degree of genetic correlation between BED and BMI using 

both our machine learning and ICD-based approaches.

While there is substantial epidemiological and genetic overlap between BED and obesity, 

most obese individuals do not have BED and many people with BED are not obese3. 

Therefore, we examined the genetics of BED while adjusting for BMI. When comparing 

our EUR-MD-BED*BMI PRS to a curated set of behavioral and psychiatric traits, we 

revealed genetic correlations between BED and depression, bipolar disorder and attention-

deficit/hyperactivity disorder, all common comorbidities of BED7, along with anorexia 

nervosa. We also identified a strong association with intracerebral lobar hemorrhage. 

This risk may be mediated through shared associated factors including hypertension and 

through APOE41. Using a large GWAS repository34, we confirmed the association with 

depression and neuroticism and also identified genetic correlation with traits associated 

with impulsivity. We note that some of the traits with genetic correlation to our BED 

phenotype, e.g., depression, are components of our predictor model, contributing to 

the correlation. Depression is genetically correlated with the over-eating/binge-eating 

phenotype in the UKBB which is not reliant on a predictor model including depression9. 

Together, these cross-disorder genetic commonalities provide biological validation of the 

epidemiological evidence that the BED subpopulation within obesity is a nexus for enhanced 

psychopathology.

Examining the individual genes, pathways and cell-types implicated in BED provides further 

insight into the biology underlying BED and evidence against the theory that BED is 

merely an associated feature of the co-occurrence of obesity and general psychopathology42. 

Several lines of evidence implicate dysfunctional iron metabolism, heme signaling and 

resultant iron overload as a driver of BED. We identified multiple SNPs with significant 

association to BED within the HFE gene, including rs1800562, a missense variant 

pathogenic for hemochromatosis43. We identified iron and heme-related phenotypes using 
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both FUMA and PheWAS. Our FUMA analysis identified iron dysregulation even while 

excluding the region of the MHC containing HFE. We confirmed that BED is genetically 

associated with iron overload through a PRS association study in the UKBB, transferrin 

saturation via GSMR in an independent cohort, and further implicated heme metabolism 

by demonstrating that BED risk variants are enriched for heme-induced open chromatin 

regions. Heme metabolism has been implicated in insulin resistance44 and could partially 

mediate the association between BED and metabolic dysfunction. Iron deficiency is 

implicated in pica, another eating disorder in which individuals repetitively eat non-nutritive, 

nonfood substances45. This contrasts with BED in which we implicate iron overload and 

where patients repetitively engage in consumption of highly nutritive food substances. 

Iron load may be a partial driver of consumptions on a spectrum from non-nutritive to 

binge eating through an undiscovered pathway. Iron overload has also been associated 

with cocaine use disorder46, which shares several key features with BED including loss-of-

control and impulsivity and animal models have shown an association between binge eating 

and cocaine craving47. Peripheral iron excess may lead to iron accumulation in the basal 

ganglia, causing oxidative damage and dysfunction of reward circuitry46.

Conclusive identification of SNP-gene associations was limited by indeterminate fine-

mapping. A preponderance of evidence implicating iron overload in BED suggests that 

the locus associated with rs79220007 corresponds to HFE, and we were able to replicate 

this SNP in an independent MVP cohort. We implicated APOE through MAGMA and, 

while rs7412, the lead SNP located within APOE did not reach genome-wide significance 

in our primary GWAS, its replication suggests this association may persist with a larger 

sample. This association along with the observation that individuals with BED and obesity 

have an unfavorable lipid profile compared to those with obesity and not BED48, suggests 

that lipid signaling abnormalities may be associated with BED. rs17789218, also replicated 

in our MVP replication cohort, and in a meta-analysis of the UKBB, PNC and ABCD 

cohorts, is located near MCHR2. MCHR2 encodes a G protein-coupled receptor for 

melanin-concentrating hormone, a conserved cyclic peptide that plays an important role 

in energy and glucose metabolism49 and regulates impulsive eating50. We did not replicate 

rs2275046 (identified in our cross-ancestry analysis) in our EUR MVP replication cohort.

In conclusion, we report the first GWAS investigating BED; we implicate and replicate two 

loci, one additional gene and iron metabolism in the pathophysiology of BED independent 

of BMI. We demonstrate that BED is a complex, metabolic-psychiatric disorder by 

inculpating both neural tissues and peripheral metabolic pathways known to influence brain 

function. Through identification of disrupted iron metabolism, we find an actionable target 

for future translational research.

Methods

Participants

The protocol from this study was approved by the Department of Veterans Affairs (VA) 

Central Institutional Review Board. The MVP cohort has been previously described16,51,52. 

Analysis of MVP data was conducted using electronic medical data v20.1 comprising 

819,417 patients with demographic information. Of the 819,417 patients, release 3 of the 
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genomics data consists of 459,777 patients with diverse genetic ancestries. Ancestry was 

assigned using the HARE program53 with the 1000 Genomes project54 as a reference panel. 

Confirmatory analysis was performed on release 4 of the MVP (n = 135,069), the UKBB35 

(n = 386,085), ABCD18,55 (n = 4,659) and the PNC19 (n = 4,861), all previously described 

(Supplementary Table 9).

Phenotyping

We developed a series of eating disorder phenotype definitions from data available from 

the subjects’ associated EMR available through the MVP. For eating disorder prevalence 

estimates by diagnostic code within the MVP, we counted subjects that had at least 

1 instance of any individual eating disorder coded in either ICD-9-CM or ICD-10-CM 

(Supplementary Table 1).

We built our BED machine learning model (MD-BED) by leveraging available diagnostic 

codes, medication prescriptions, BMI measurements and demographic data. The set of 

reliably diagnosed BED subjects (Supplementary Table 2) comprised those with either 

two ICD-10-CM BED codes (F50.81) or a single BED code and no other specific eating 

disorder codes. The set of control subjects comprised all MVP subjects with available 

EMR data, excluding those with any specific eating disorder diagnosis code and those who 

self-reported having an eating disorder on the enrollment questionnaire (“Do you have an 

eating disorder?”).

We trained a machine learning model to calculate a BED probability score across the 

MVP utilizing the cohort of reliably diagnosed BED cases described above (n = 822). We 

first mapped ICD diagnoses to Clinical Classification Software codes and computed log 

counts for diagnoses for each subject. Next, we computed 25th, 50th and 75th percentile 

BMI measures using height and weight values from each record. We removed records with 

nonsensical height, weight and BMI values, where we required BMI to range from 9 to 

150 kg/m2, median height to range from 35 to 95 inches, and weight entries to range from 

40 to 1400 pounds. We further removed patients with less than two valid, distinct BMI 

measurements. Of the 767,527 patients that passed these filters, we constructed a 90%–10% 

split of our data to train our model. Due to the large number of medication ingredients 

(3,456) available for analysis, we used a LASSO regression model (using the cv.glmnet 

function with parameters alpha = 1, family = binomial and nfolds = 10) prior to the creation 

of the final model to reduce the number of the medication ingredients included. For this step, 

we took a random sample of 90,000 control subjects to identify the relevant medications, 

while retaining all of our cases from the training set. To compute the area deprivation index 

for patients with missing ZIP codes, we imputed the median value. Subjects without any 

prescriptions or diagnoses were filtered out. We constructed our final MD-BED model by 

incorporating log counts of medications at the ingredient level, demographic variables at 

enrollment (self-reported sex, age, race, and ethnicity, and ZIP code-associated deprivation 

index), log counts for diagnoses and BMI (as calculated above) as model predictors and 

trained it on the remaining subjects.

To develop a ranking system for variables included in our model and identify a set of 

top predictors of BED, we developed an analogous, unpenalized logistic regression model. 
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Ranking of top variables was based on P values from this analogous unpenalized logistic 

regression model, which was trained on all of the 767,527 patients, and used only the 

variables that were retained in the LASSO regression model used to calculate BED scores. 

The ranking of top variables was only performed to identify important predictors from the 

model and did not impact downstream analyses.

To test whether our BED scores predict BED better than other phenotypes, we ran an 

independent logistic regression analysis for a set of 1,752 phecodes plus the ICD-10-CM 

code for BED (1,753 phenotypes) leveraging the same test set, that was excluded when 

training our LASSO regression model to predict BED. We compared the log odds ratio of 

the BED score to each phenotype (Top phenotypes: Fig. 1b, full list: Supplementary Table 

4). Furthermore, we applied the same test to assess the relationship between BED scores and 

iron deficiency anemia within the MVP.

To construct our MD-BED*BMI model, after assessing the performance of the LASSO 

logistic regression model for various parameter choices through cross-validation, we initially 

retained both the model with the lowest binomial deviance (Min) as well as the simplest 

model that had a mean binomial deviance within one standard deviation of the best 

performing model (1SE) to avoid overfitting. We then completed GWAS (as described 

below) on both models adjusting for BMI and retained the model with mean binomial 

deviance within one standard deviation of the best performing mode (MD-BED*BMI) as it 

outperformed the model with the lowest binomial deviance (MD-Min-BED*BMI) in SNP 

heritability (2.14% (s.e. = 0.23%) compared to 1.65% (s.e. = 0.22%)) and did not differ on 

predictive performance (Supplementary Fig. 15).

For all GWAS utilizing BMI (i.e., EUR-BMI), participant BMI quartile was calculated as 

above and all participants with distinct and valid BMI measurements at the 25th and 75th 

percentile were retained.

For privacy reasons, the MVP places a restriction on case-control GWAS requiring at 

least 500 cases for the summary statistics to be shared with the scientific community for 

reproducibility, and there are less than 500 individuals of a single ancestry with both an 

ICD-10-CM BED code and available genetic information. Therefore, to identify enough 

BED-probable subjects to perform an ICD-based case-control GWAS for the EUR-ICD-

BED phenotype, we developed a second machine learning classifier to identify probable 

BED cases from within the subpopulation of all patients with eating disorder diagnoses. 

To generate the ICD-BED score, we followed the same procedure as above with cases 

defined as all reliably diagnosed BED cases. We again built a LASSO regression model, 

this time training it on the entire cohort of reliably diagnosed BED subjects and training it 

to distinguish them from within the subpopulation of all subjects with any eating disorder 

diagnosis. Cases for the GWAS were then then defined as the set of reliably diagnosed 

subjects with BED as above plus subjects with at least one ambiguous eating disorder code 

(307.50, 307.59, F50.89, F50.9) and a within-eating disorders BED score greater than the 

25th percentile of reliably diagnosed BED cases (n = 549). Controls were defined as all 

remaining subjects excluding those with any eating disorder diagnosis code and those who 

self-reported having an eating disorder as above (n = 284,648).
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For the UKBB, inclusion and exclusion was based on the Mental Health Questionnaire 

and associated ICD-9 and ICD-10 codes. Subjects reporting a “diagnosis of psychological 

over-eating or binge-eating” were included as cases. Those with a self-reported or ICD 

coded diagnosis of anorexia nervosa or bulimia nervosa were excluded from both the case 

and control groups. All remaining subjects were retained as controls. For ABCD (data 

release 4.0), case-control definitions were based on the K-SADS. Cases were subjects who 

received a K-SADS diagnosis of BED and controls were subjects who did not receive a K-

SADS diagnosis for either BED or bulimia nervosa. A diagnosis of anorexia nervosa could 

not be made from the available data from ABCD as it could not be determined whether 

an individual met all criteria or had been formally diagnosed. For the PNC, case-control 

definitions were based on a modified version of the K-SADS (third study accession, dbGaP 

phs000607.v3.p2). Cases were those who answered yes to EAT007 (lifetime binge eating) 

and no to EAT008 (lifetime purging after a binge-eating episode). Subjects were excluded 

from the control group if they answered yes to EAT007 or EAT008 or screened positive 

for an anorexia nervosa-like phenotype (yes to EAT001, EAT002 & EAT003 AND either 1) 

male 2) no to EAT004 3) no to EAT005 or 4) yes to EAT004, EAT005 and EAT006).

In the UKBB, the gout, iron overload, and iron deficiency phenotypes were defined by 

the presence of at least one relevant phecode or self-reported diagnosis code. Hospital 

inpatient ICD-9 and ICD-10 codes were converted to phecodes using previously established 

methods56. Gout phenotype cases included individuals with phecodes 274.1 (gout) or 274.11 

(gouty arthropathy), as well as self-reported gout at the baseline assessment. Iron overload 

phenotype cases included individuals with phecodes 275.1 (disorders of iron metabolism) 

or 277.1 (disorders of porphyrin metabolism). Iron deficiency phenotype cases included 

individuals with phecodes 262 (mineral deficiency NEC) or 280.1 (iron deficiency anemias, 

unspecified or not due to blood loss), as well as self-reported iron deficiency anemia at 

baseline.

Genotyping, quality control and imputation

Genotyping, quality control and imputation in MVP is handled by a dedicated data team. 

Data from release 3 of the MVP used in this study includes genotyping data from 455,789 

individuals; DNA was extracted from whole blood (which was collected during enrollment 

to the MVP) and genotyping was performed with the MVP 1.0 Genotyping array16. 

Ancestry as determined by HARE (Harmonized Ancestry and Race/Ethnicity) analysis53. 

Prephasing was performed using EAGLE v257 and genotypes were imputed using Minimac 

v3 with the 1000 Genomes Project phase 3, version 5 reference panel58. Relatedness 

between MVP participants was inferred using kinship coefficient calculated using software 

KING59. Related individuals are removed using a kinship coefficient cut off >= 0.0884. 

Principal component analysis to generate ancestral principal components was performed 

using EIGENSOFT v.660,61. The replication MVP dataset comprises the set of 135,069 

European ancestry individuals from the 4th data release of the MVP who were not included 

in the 3rd data release. This dataset became available to us after the initial analysis was 

completed and was thus used only as a replication cohort. For the follow-up analysis with 

rs17889218, we used the TOPMED imputation to identify regional variants in LD with the 

lead SNP that passed the threshold for suggestive significance (p < 10−5).
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Genome-wide association studies

GWAS analysis was conducted employing either logistic regression for binary traits (case-

control definition of BED from the ICD model) and linear regression for continuous traits 

(BMI, MD-BED scores) using PLINK 2.0. We conducted separate analyses for AFR and 

EUR genetic ancestries and included age, sex, record density and the top 10 principal 

components to adjust for potential confounders. SNPs with minor allele frequency less 

than 0.5% or an effective minor allele count < 30 were removed from the analysis 

per MVP regulation. SNPs with a HWE P value less than 5×10−8 or an imputation 

r2 < 0.4 were removed from the analysis. To assess whether a SNP was genome-wide 

significant, we used the standard multiple-testing correction threshold, p < 5×10-8. To 

satisfy the model assumptions of performing linear regression, we applied an inverse-rank 

normal transformation of the MD-BED scores to ensure the prediction errors follow 

an approximately normal distribution for all model derived GWAS. To compute power 

adjusting for winner’s curse, we estimated adjusted effect sizes from the corrected P values 

in the discovery cohort (release 3 of the MVP) and computed power using the estimated 

standard error in the replication cohort62.

Enrichment Analyses

We utilized FUMA (v1.3.7)63 and its implementation of MAGMA (v1.0.8)17 to determine 

genes and gene sets that are linked to the MD BED phenotype. We used a Bonferroni-

corrected P value threshold of 2.684×10−6 to account for multiple testing of 18,626 protein 

coding genes using the 10k UKBB European reference panel (release 2b) to account for LD. 

In addition, we considered 54 tissue types from GTEx V8 to assess for gene enrichment 

across different tissues. We excluded genes from the extended MHC region starting at 

25.7Mb in GENE2FUNC. We also provide results with less stringent default parameters for 

excluding annotations from the MHC region, between MOG and COL11A2.

LD Score Regression, Heritability and Genetic Correlation

We estimated SNP heritability and genetic correlation using the LDSC package26,64. 

Heritability for case-control phenotypes was computed on the liability scale for a range 

of plausible population prevalences, while heritability for continuous phenotypes was 

computed on the observed scale. To compute the heritability and genetic correlation 

estimates, the 1000 Genomes Project - European Project was used to construct the reference 

panel. For genetic correlation analysis with external GWAS, we first curated a list of 

44 GWAS of interest. To supply a more comprehensive, hypothesis-free approach, we 

computed genetic correlation between EUR-MD-BED*BMI and 1,427 (of 2,150) traits from 

the IEU Open GWAS project34 after removal of 723 traits that did not have statistically 

robust estimates for heritability (Z < 2).

Meta-Analysis

We used the inverse-variance weighting method to meta-analyze both the AFR and EUR 

MD-BED*BMI GWAS and the log odds ratio for the PRS on the external cohorts (UKBB, 

ABCD and PNC). To account for the LD structure and the possibility of different effect sizes 

between different populations, we also employed Multi-ancestry Meta-analysis (MAMA)28 
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using the 1000 Genomes Project as a reference panel. For meta-analysis with MAMA, we 

filtered out SNPs with minor allele frequencies that were smaller than 1% to ensure our 

sample size from the reference panel was large enough to attain sufficiently accurate LD 

Scores. MAMA did not yield any additional hits and as such was not further discussed in the 

main paper.

Fine-mapping

For each of our loci, where we have a genome-wide significant hit and the minor allele 

frequency is sufficiently large (> 1%), we performed fine-mapping to identify candidate 

causal variants using SUSIE with the UKBB as a reference panel. We ran SUSIE29,65 both 

including and excluding outlying SNPs flagged by the algorithm, where we specified the 

upper bound for the number of causal variants to be 5 and the window to span 1 megabase 

pairs.

Phenome-Wide Association Studies

PheWAS were conducted leveraging EUR subjects in the MVP (n = 296,407). We then 

filtered imputed genotypes by minor allele frequency (> 0.01), variant level missingness 

(< 0.02) and imputation r2 (> 0.9). Phenotypes were derived by aggregating ICD Codes in 

the EMR data using the categorizations provided in the Phecode Map v1.266; phenotypes 

with less than 500 cases were removed from the analysis. We then performed a logistic 

regression, adjusted for sex, age and top 10 ancestry principal components, to assess the 

presence of an association between the flagged SNP and the phenotype. We assessed 

significance using a Bonferroni corrected two-sided P value at the 0.05 level.

Polygenic Risk Scores and Validation

The Polygenic Risk Score-Continuous Shrinkage (PRS-CS)67 method was used to compute 

PRS for the external cohorts from the GWAS summary statistics derived from the MVP 

cohort. For further details for PRS validation and quality control processes for the ABCD, 

PNC, and UKBB cohorts, we refer the reader to the Supplementary Note.

Concordance of EUR and AFR GWAS hits

To assess the similarity between the AFR- and EUR- MD-BED*BMI GWAS, we clumped 

lead SNPs in Plink68 using the European 1000 Genomes reference panel. In particular, 

we required that all SNPs in the same clump must have an r2 of at least 0.2 with the 

lead SNP and be at most 250 kbp away from the lead SNP. We then computed the 

Spearman correlation between the linear regression coefficients for the respective GWAS 

using different P value filters, (e.g., p < 10−4) as described in the main text.

MVP-Derived GWAS SNP Replication in Additional Cohorts

To estimate the appropriate adjusted effect size for computing power, as cross-study 

heterogeneity (e.g., phenotypic misclassification, comparing a GWAS from a continuous 

phenotype (MD-BED*BMI GWAS) to a binary phenotype (ABCD-PNC-UKBB-BED*BMI 

GWAS)) can result in diminished effect sizes for all SNPs in the GWAS, we leveraged 

the PheMED tool30. Our uncorrected effect sizes came from the replication cohort of the 
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MD-BED*BMI GWAS from the MVP. Since we had heterogeneous power for detecting true 

effects across different tests of the genome-wide significant SNPs from the MD-BED*BMI 

GWAS, we leveraged a weighted P value approach to compute the FDR, where we more 

heavily weight tests based on their power31. For further details about SNP replication on the 

ABCD, PNC and UKBB cohorts for the model derived and ICD GWAS, we refer the reader 

to the Supplementary Note.

Generalised Summary-data-based Mendelian Randomisation

We leveraged the GCTA software tool69 to perform GSMR using the European participants 

from the 1000 Genomes Project as a reference panel with the default parameters. Since 

GSMR requires at least 10 genome wide significant loci, we could only conduct forward 

GSMR to assess if a given phenotype (transferrin saturation, baseline urate levels) influences 

our model derived BED phenotype, and not backward GSMR as our MD-BED GWAS lacks 

the requisite number of genome-wide significant loci. We used available summary statistics 

for the transferrin saturation37 and urate level70 phenotypes. As part of GSMR, pleiotropic 

SNPs were filtered out using the HEIDI-outlier method (with the default threshold of 

p = 0.01 for the primary analysis and p = 0.05 for secondary analysis presented in 

Supplementary Fig. 13) before assessing the correlation of lead SNPs from the summary 

statistics for transferrin saturation phenotype with the model derived BED phenotype.

Partitioned Heritability

We examined an overlap of common genetic variants of BED and open chromatin from (i) 

wild-type and heme-deficient mutant murine erythroid cells treated with β-estradiol and/or 

5-aminolevulinic acid hydrochloride (5-ALA)38, (ii) a sciATAC-seq3 study of human fetal 

cell types, (iii) a scATAC-seq study across six human adult brain regions40 using an LD 

Score partitioned heritability approach71. We used LD Scores with a baseline model of 

general genomic annotation (such as conserved regions and coding regions) that corrects 

for the general genetic context of tested sets of open chromatin regions. All regions of 

open chromatin were extended by 500 base pairs in either direction. The broad MHC-region 

(chr6:25–35MB) was excluded due to its extensive and complex LD structure, but otherwise 

default parameters were used for the algorithm. In the case of mouse cell lines, we merged 

all peaks of open chromatin for all replicates belonging to the same type of experiment 

(i.e., untreated / β-estradiol treated wild-type, untreated / β-estradiol mutant and untreated / 

β-estradiol treated double mutant) and converted mice genome coordinates of resulting 

peak sets to human genome coordinates using liftOver (https://genome.ucsc.edu/cgi-bin/

hgLiftOver).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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regions from a murine erythroid cell beta-estradiol stimulation model (GEO GSE114996), 
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development/)
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Fig. 1: Machine learning model to predict BED within the MVP
a, Top 10 predictors from the machine learning LASSO logistic regression model for 

predicting BED (y axis). To rank the predictors, uncorrected P values with a Wald Z-Test 

were computed from an analogous unpenalized logistic regression model. The strength of 

the statistical association (from the LASSO regression) is represented on the x axis as 

beta and in the size and color of the data points, corresponding to the negative log10 of 

uncorrected two-sided P value (−log10p). The dashed gray line is at 0 on the x axis. P 
values smaller than 10−50 are capped at that value. b, The ten phenotypes with the strongest 

association with our model-derived BED scores from an independent logistic regression on 

a hold-out set are shown on the y axis. The strength of the association is shown on the x 
axis as mean log odds ratio with the two-sided 95% confidence interval. The strength of the 

statistical association (comparing the prediction of BED vs. each phecode) is represented by 

the color of the data points, corresponding to the negative log10 of the uncorrected two-sided 

P value (−log10p) generated from a one-sided difference of means Z-test. As we tested 

whether the log odds ratio for BED is higher than the log odds ratio for the other phenotype, 

no test was performed on BED and it is colored gray. The dashed gray line is at 0 on the x 
axis. c, Precision recall (PR) curve (thick black line) for predicting BED in a stratified test 

set containing 10% of the data. The x axis shows the recall rate and the y axis shows the 

precision. Positive predictive value (PPV) is 0.11 with a phenotype prevalence of 0.001. F1 

score is 21%. The dashed gray line represents chance performance.
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Fig. 2: Bi-ancestral GWAS of BED
a-b, Miami plot for the AFR-MD-BED*BM (top) and EUR-MD-BED*BMI (bottom) 

GWAS (a); Manhattan plot for the FEMA-MD-BED*BMI GWAS (b). The x axis denotes 

the chromosome and position of the corresponding SNP. The strength of the SNP-phenotype 

association is on the y axis as the negative log10 of uncorrected two-sided P value (−log10p) 

generated from a two-sided T-test. The red lines represent genome-wide significance (p = 

5.0×10−8). The blue lines represent the suggestive genome-wide association threshold (p = 

1.0×10−5). Genome-wide significant hits shared by EUR and FEMA GWAS are labeled blue 

and were confirmed in the EUR replication cohort; the unique genome-wide significant hit 

in FEMA is labeled red and was not replicated in the EUR replication cohort. c, Sign test 
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between the effect sizes of AFR-MD-BED*BMI and EUR-MD-BED*BMI with progressive 

restriction of the SNP inclusion threshold. The percentage of clumped SNPs with the same 

sign is shown on the y axis. The threshold below which lead SNPs were included in the 

correlation analysis is shown on the x axis as the uncorrected two-sided P value. The size of 

the point denotes the log10 count of the included loci.
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Fig. 3: Validation of the MD-BED phenotype
a, On the left is a hierarchical clustering of five EUR BED-related phenotypes. On the right 

is a heat map of the genetic correlation matrix. The diagonal genetic correlation entries 

in gray represent a correlation of 1 between each GWAS and itself. Genetic correlation 

values for each comparison are shown on the heat map. b, PRS validation of EUR-MD-

BED*BMI and EUR-ICD-BED*BMI GWAS with UKBB (cases = 461), PNC (cases = 531), 

ABCD (cases = 94) and a meta-analysis of those cohorts. The MVP (vertical) and external 

(horizontal) cohorts are shown on the y axis. The mean log odds ratio for the PRS predictor 

is shown on the x axis. Confidence intervals are one-sided standard errors and uncorrected 

P values are generated using a one-sided Wald Z-test. *p < 0.05. **p < 0.01. P values for 

validating the MD-BED*BMI PRS are: UKBB, p = 0.03; PNC, p = 0.02; ABCD, p = 0.13; 
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Meta, p = 0.001. P values for validating the BED-ICD PRS are: UKBB, p = 0.44; PNC, p = 

0.59; ABCD, p = 0.26; Meta, p = 0.44.
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Fig. 4: Genetic correlation with other traits
Traits with significant genetic correlation to EUR-MD-BED*BMI at the FDR significant 

threshold (q < 0.05) from our curated set of GWAS are ranked by rg on the y axis. The 

strength of the averaged genetic correlation is shown on the x axis as rg with the 95% 

confidence interval for each trait shown and through the color of the error bar corresponding 

to the uncorrected P value as generated from a two-sided Z-test when performing LD Score 

regression. P values smaller than 10−10 are capped at that value.
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Fig. 5: Iron overload in BED
a, PRS associations between EUR-MD-BED*BMI and EUR-BMI GWAS and iron overload 

(n = 790 cases, n = 385,100 controls) and iron deficiency (n = 11,247 cases, n = 374,643 

controls). PRS scores and iron phenotypes are on the y axis. The coefficients, as log odds 

ratios (mean ± s.e.m.), from the logistic regression for PRS predictors are on the x axis. 

EUR-MD-BED*BMI PRS predicts iron overload (p = 1.62×10−60) and iron deficiency (p 
= 0.01). EUR-BMI PRS predicts iron deficiency (p = 1.03×10−7) but not iron overload 

(p = 0.73). *p < 0.05. ***p < 0.001. b, Scatter plot with generalized linear regression 

from GSMR between lead SNPs from the transferrin saturation GWAS from deCODE and 

INTERVAL and EUR-MD-BED*BMI. Transferrin saturation lead SNP betas are on the 

x axis. EUR-MD-BED*BMI betas are on the y axis. P values from GSMR are from a 

two-sided Z-test. c, Enrichment of BED risk variant-homologs in open chromatin regions 

(OCR) in wild type (WT) and heme-deficient mutant murine erythroid cells treated with 

β-estradiol and/or 5-aminolevulinic acid hydrochloride (5-ALA) (β-estradiol-treated WT: 

n = 1,010,459 OCR, p = 0.005; β-estradiol-treated double-mutant: n = 1,263,093 OCR, p 
= 0.07; β-estradiol/5-ALA-treated (48hr) double mutant: n = 1,229,810 OCR, p = 0.15; 

β-estradiol/5-ALA-treated (12hr) double mutant: n = 1,229,810 OCR, p = 0.20; Untreated 

WT: n = 1,488,490 OCR, p = 0.23; Untreated double mutant: n = 1,001,591 OCR, p = 

0.27). Cell lines are on the y axis. Heritability is on the x axis. Positive coefficients signify 

enriched heritability. Dot size reflects negative log10 of uncorrected P value (−log10p) from 

a two-sided LD Score regression Z-test. Error bars indicate standard errors from LD Score 

regression mean estimates. #p < 0.05 after FDR correction.
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Table 1

Loci identified in MD-BED*BMI GWAS and MAGMA

AFR-MD-BED*BMI EUR-MD-BED*BMI FEMA-
MD-
BED*BMI

EUR-MD-
BED*BMI 
Replication

SNP Chr Position Closest 
Gene

Ref. 
allele

Effect 
allele

EAF Beta 
(s.e.)

p EAF Beta 
(s.e.)

p p Beta 
(s.e.)

p 
(one-
sided)

rs79220007 6 26098474 HFE T C 0.01 0.023 
(0.017)

0.22 0.06 0.021 
(0.004)

1.9 × 
10−9

8.8 × 10−10 0.009 
(0.004)

1.6 × 
10−2

rs17789218 6 100600097 MCHR2 T C 0.05 0.007 
(0.009)

0.41 0.25 0.013 
(0.002)

5.6 × 
10−10

4.7 × 10−10 0.014 
(0.002)

1.9 × 
10−8

rs2275046 6 150157001 LRP11 A G 0.80 0.016 
(0.005)

8.3 
× 
10−4

0.36 0.009 
(0.002)

1.3 × 
10−6

1.1 × 10−8 0.001 
(0.002)

0.32

rs7412 19 45412079 APOE C T 0.11 0.008 
(0.006)

0.17 0.08 0.016 
(0.003)

4.4x 
10−7

3.7 × 10−7 0.012 
(0.004)

1.3 × 
10−3

Abbreviations: Chr: chromosome; EAF: effect allele frequency; s.e.: standard error; Ref.: reference. Uncorrected P values in the non-replication 
cohorts correspond to two-sided T-tests, whereas the uncorrected P values from the replication cohort analysis corresponds to a one-sided T-test.
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