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Identifying functional biomarkers related to treatment success can aid in expediting therapy 

optimization, as well as contribute to a better understanding of the neural mechanisms of 

the treatment-resistant depression (TRD) and subcallosal cingulate deep brain stimulation (SCC-

DBS).

Magnetoencephalography data were obtained from 16 individuals with SCC-DBS for TRD and 

25 healthy subjects. The first objective of the study was to identify region-specific oscillatory 

modulations that both (i) discriminate individuals with TRD (with SCC-DBS OFF) from healthy 

controls, and (ii) discriminate TRD treatment responders from non-responders (with SCC-DBS 

ON). The second objective of this work was to further explore the effects of stimulation intensity 

and frequency on oscillatory activity in the identified brain regions of interest.

Oscillatory power analyses led to the identification of brain regions that differentiated responders 

from non-responders based on modulations of increased alpha (8–12 Hz) and decreased gamma 

(32–116 Hz) power within nodes of the default mode, central executive, and somatomotor 

networks, Broca’s area, and lingual gyrus. Within these nodes, it was also found that low 

stimulation frequency had stronger effects on oscillatory modulation than increased stimulation 

intensity.

The identified functional network biomarkers implicate modulation of TRD-related activity 

in brain regions involved in emotional control/processing, motor control, and the interaction 

between speech, vision, and memory, which have all been implicated in depression. These 

electrophysiological biomarkers have the potential to be used as functional proXies for therapy 

optimization. Additional stimulation parameter analyses revealed that oscillatory modulations can 

be strengthened by increasing stimulation intensity or reducing frequency, which may represent 

potential avenues of direction in non-responders.
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1. Introduction

Clinical depression (major depressive disorder) affects a large portion of the global adult 

population annually [1], and up to one third of affected individuals are treatment-resistant 

[2]. Treatment-resistant depression (TRD) can be characterized by the insufficient response 

to conventional treatments, which typically entails the combination of antidepressant 

medication, psychotherapy, and electroconvulsive therapy [3]. As such, TRD represents 

a major social and economic burden worldwide (with affected individuals experiencing 

social and occupational dysfunction, and poor physical health, causing increased healthcare 

utilization), prompting research in the development of novel therapies for TRD.

Neuromodulation modalities, such as repetitive transcranial magnetic stimulation (rTMS), 

transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), are being 

researched as potential treatments for TRD. Of these interventions, DBS for TRD enables 

the direct stimulation of subcortical regions that cannot be targeted by non-invasive methods 
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and has the additional advantage that it may provide sustained therapeutic effects without 

the requirement of frequent clinical visits for therapy administration. DBS appears safe for 

TRD when targeting the subcallosal cingulate (SCC), medial forebrain bundle, or ventral 

capsule/striatum areas. However, data on the long-term efficacy of the treatment are highly 

variable. After two or more years of stimulation, the treatment response varied widely with 

striatal/capsular area DBS and with SCC-DBS [4–7].

While DBS efficacy can be quickly evaluated in people with Parkinson’s disease or essential 

tremor due to the near instantaneous relief of motor symptoms [8], this does not apply 

to psychiatric disorders such as TRD. In this population, clinical evaluations are typically 

performed retrospectively using clinical assessment batteries which average mood over 

the course of weeks or months; hence the evaluation of multiple DBS configurations, 

the stimulation titration process, extends over months or years [9]. In addition to the 

immense time requirement, this process can also be subject to a high degree of external 

confounding influences (i.e., job loss, stress, etc.). Two contributors critically affecting 

outcome following the surgical implantation of the DBS leads are contact selection and 

stimulation programming. Given the high cost (in both patient well-being and healthcare 

resources) of qualitatively assessing the efficacy of a single stimulation configuration 

(contact selection and stimulation programming), appropriate early indicators of treatment 

success are strongly warranted by patients and healthcare professionals.

The first objective of this work was to use magnetoencephalography (MEG) to identify 

electrophysiological characteristics supportive in DBS lead placement confirmation and 

DBS contact selection, as MEG allows for high spatial resolution sampling of the underlying 

activity [10]. Therefore, we sought to identify functional biomarkers that could differentiate 

treatment responders from non-responders. As individually optimized settings are not yet 

established in new patients, this discriminative response profile would have to be inducible 

through generic, uniform stimulation parameters.

The second objective of this work was to gain a better mechanistic understanding of 

the impacts of stimulation intensity and frequency on the modulation of cortical network 

activity. Hence, we investigated the contrast of high versus low stimulation intensity 

(constraining frequency) and high versus low frequency (constraining intensity). In clinical 

settings, stimulation intensity is often titrated in accordance with side effect profiles 

[11]; however, investigations of frequency-dependence are of particular interest as many 

new experimental DBS indications default to the use of 130 Hz stimulation due to its 

success in movement disorders, rather than a comprehensive understanding of the functional 

implications.

2. Material and methods

2.1. Participants

People with TRD who had previously been implanted with bilateral SCC-DBS electrodes 

(n 16; Fig. 1A) were included in this study (details about surgical procedures are provided 

within the Supplementary Materials). Age- and sex-matched healthy controls (HC; n 25) 

without major neurological or psychiatric diseases were also recruited. All subjects provided 
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written informed consent. The study was approved by the University Health Network 

Research Ethics Board (Toronto, Canada) and was conducted in accordance with the 

Declaration of Helsinki. For people with TRD, disease severity was measured preoperatively 

and 12 months postoperatively by a psychiatrist (P.G.) using the 17-item Hamilton 

Depression Rating Scale (HAM-D17; Table 1). Seven patients were considered treatment 

responders (HAM-D17 change ≥50 %), and eight were considered non-responders. Clinical 

outcomes of patients 3, 6, 9, and 14 were reported in previous studies [12,13]. The patient’s 

clinical details and therapeutic DBS settings are listed in Table 1. Additional clinical history 

data is available in Supplementary Table 1.

2.2. MEG recordings

The first objective of this study was to identify a network response profile that could 

differentiate responders from non-responders. MEG data (Elekta Neuromag TRIUX™, 

Helsinki, Finland; 306 channels each sampled at 1000 Hz; exemplary MEG signal, power 

spectrum, and spectrogram available as Supplementary Fig. 1) were acquired from HCs and 

people with TRD during DBS OFF and DBS ON (3 min per condition). MEG data were 

acquired in supine-positioned, eyes-closed, resting-state for patient comfort and data quality 

(i.e. reduced eye movements and blinking artifacts). In trials with DBS, stimulation was 

applied bilaterally at 130 Hz, 1.5 mA, 90 μs pulse width, bipolar 1–2+. Instead of using 

variable/patient-specific DBS parameters (see Table 1 for clinical DBS parameters), we used 

a unified DBS parameter set across all patients to establish a standardized approach for 

deriving a functional network response profile that may be predictive of therapeutic success 

in prospective contexts (i.e., when optimized clinical parameters are otherwise unknown in 

the early stages of therapy initiation).

The second objective of this study was to investigate how changes to stimulation settings 

may impact cortical network activity. To do this, three intensity/frequency combinations of 

stimulation were applied unilaterally in the left hemisphere: 1.5 mA & 130 Hz (baseline 

condition); 3.0 mA & 130 Hz (to study the effect of stimulation intensity); and 1.5 mA & 20 

Hz (to study the effect of stimulation frequency).

For analyses, after digitally removing ambient artifacts (tSSS; Elekta Neuromag MaxFilter 

software version 2.2.12, Elekta, Helsinki, Finland; 10s windows; subspace correlation limit 

of 0.980), line noise (60 Hz; and its harmonics) and high-frequency components (>120 Hz), 

data were downsampled to 240 Hz. MEG data were then transformed from sensor to source 

space (depth bias correction via dSPM; for more details, see Supplementary Materials), 

transformed into fs-average space, and clustered within anatomical boundaries defined in the 

Desikan-Killiany atlas (Supplementary Fig. 2) [14]. Subsequently, DBS artifacts (and their 

harmonics) were notch filtered. Using representative sub-bands, cluster-wise spectral power 

was calculated via Welch’s method for delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 

(12–32 Hz), gamma (32–116 Hz), and broadband (2–116 Hz) frequencies. Power within a 

given sub-band was normalized with respect to broadband (2–116 Hz) power to produce 

relative power values. Additional methodological details regarding source reconstruction and 

data processing are available in Supplementary Materials.
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2.3. Statistics

Effects were quantified using linear miXed models (Python-FiNNPy [15]/R-lme4 [16]). 

For the first objective of this work (identifying network-level functional biomarkers of 

treatment response) a cortical region was considered to be a region of interest (ROI) if both 

of the following statistical criteria were satisfied: (1) a statistically significant oscillatory 

difference was identified in people with TRD (responders and non-responders with SCC-

DBS OFF) compared to HC, which was (2) counteracted by SCC-DBS in responders 

only (“compensation” to a level no longer statistically significantly different from HC, 

or “overcompensated” such that the effect was statistically significant but in the opposite 

direction to the TRD-related effect). For each ROI, correlations were also performed 

between relative changes in spectral power and clinical benefit; however, no regions found 

to exhibit a significant correlation (Supplementary Figs. 3 and 4). For the second objective 

of this work (investigating the effects of changing stimulation settings), we applied the same 

statistical criteria at regions of interest identified as in the first part of the analysis.

The validity and reliability of all observations were confirmed using both 15-s and 30-s 

windows for data epoching. Since the multi-layered statistical approach necessitates a 

feature to be significant across three different hypotheses times two epoch window sizes, 

a high threshold for statistical significance was enforced, and no further correction methods 

were employed. Statistical significance was set at p < 0.05. Detailed statistical values are 

available in Supplementary Table 2.

2.4. Data availability

The study data may be shared upon reasonable request to the corresponding author.

3. Results

Resting-state magnetoencephalography (MEG) recordings were acquired from people with 

TRD (n 16) during SCC-DBS OFF and ON and from HCs (n 25). The characteristics of the 

TRD study participants are presented in Table 1. HCs comprised 12 males and 13 females, 

with an average age of 38.1 ± 3.9 years. There were no significant differences between HC 

and TRD group means for age (p = 0.179, t [38] = −1.37) or sex (p = 0.462, χ2 [2,40] = 

0.54).

Spatially, all identified ROIs were located within the left hemisphere, except for the 

right paracentral lobule; spectrally, the identified effects were limited to compensation of 

increased alpha band (8–12 Hz) power as well as compensation and overcompensation of 

decreased gamma (32–116 Hz) power (summarized in Fig. 1B).

3.1. Responder-specific compensation of increased alpha band power

In several cortical regions, we identified responder-specific compensation of TRD-related 

increased alpha band (8–12 Hz) power (Fig. 2). Compared to HCs, TRD patients with 

SCC-DBS OFF had increased alpha activity, which was reduced to levels comparable to 

HCs in responders only when SCC-DBS was turned ON. This alpha compensation occurred 
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in the left retrosplenial cortex, inferior frontal cortex pars triangularis, postcentral gyrus, 

precentral gyrus, supramarginal gyrus, and the right paracentral lobule.

3.2. Responder-specific compensation of decreased gamma band power

We also identified responder-specific compensation of TRD-related decreased gamma band 

(32–116 Hz) power (Fig. 3). Compared to HCs, TRD patients with SCC-DBS OFF 

had decreased gamma activity, which was increased to levels comparable to HCs in 

responders only when SCC-DBS was turned ON. This gamma compensation occurred in 

the left posterior cingulate, paracentral lobule, rostral middle frontal cortex (containing 

the dorsolateral prefrontal cortex; Fig. 3C), lingual gyrus, inferior frontal cortex pars 

opercularis, and the inferior frontal cortex pars triangularis.

3.3. Responder-specific overcompensation of decreased gamma band power

Lastly, we identified responder-specific overcompensation of TRD-related decreased gamma 

band (32–116 Hz) power (Fig. 4). Compared to HCs, TRD patients with SCC-DBS OFF 

had decreased gamma activity, which was increased beyond levels observed in HCs in 

responders only when SCC-DBS was turned ON. This gamma overcompensation occurred 

in the left retrosplenial cortex, precentral gyrus, supramarginal gyrus, postcentral gyrus, 

caudal middle frontal gyrus, and the banks of the superior temporal sulcus.

3.4. Investigation of the effects of stimulation intensity and frequency

To determine the modulatory effects of stimulation amplitude and frequency on cortical 

activity, we compared different DBS settings on oscillatory activity in the previously 

identified ROIs. Firstly, unilateral stimulation had weaker modulatory effects than bilateral 

stimulation in the alpha and gamma frequency bands. Bilateral stimulation at 130 Hz 

and 1.5 mA was associated with undercompensated activity (i.e., DBS-related changes to 

TRD-related activity in the direction of compensation; but activity levels remain statistically 

significantly different from HCs) in non-responders and compensated or overcompensated 

activity in responders (Fig. 5A; summary of results presented in Figs. 2–4). In contrast, 

unilateral stimulation was associated with undercompensated activity in non-responders and 

responders (Fig. 5B).

Cortical modulatory effects were more substantial when DBS intensity was increased. 

When unilateral stimulation at 130 Hz was increased from 1.5 to 3.0 mA, modulatory 

effects were strengthened overall (i.e., less undercompensated nodes; Fig. 5C). In the alpha 

band, activity within all nodes became compensated in responders, while effects remained 

generally undercompensated in non-responders. In the gamma band, while activity within 

more nodes became compensated overall, this response was generally more often observed 

in non-responders. Statistical details for the cortical response to changes in stimulation 

amplitude are available in Supplementary Figs. 5 and 6.

Cortical modulatory effects were also more substantial when DBS frequency was decreased. 

When unilateral stimulation at 1.5 mA was decreased from 130 to 20 Hz, modulatory effects 

were strengthened overall (i.e., less undercompensated nodes and more overcompensated 

nodes; Fig. 5D). In the alpha and gamma bands, activity with nodes became compensated 
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or overcompensated in responders, whereas activity became compensated or remained 

undercompensated in non-responders. The strengthening of modulatory effects was greater 

with titrating stimulation frequency than amplitude. Statistical details for the cortical 

response to changes in stimulation frequency are available in Supplementary Figs. 5 and 

6.

4. Discussion

Currently, deep brain stimulation (DBS) parameter optimization in people with treatment-

resistant depression (TRD) is solely informed through subjective assessment tools (such 

as self-reports and clinician observations) and requires months of adjustment in order to 

determine optimal settings. Consequently, this strongly limits the number of DBS parameter 

combinations being trialed for TRD due to limited time and resources.

In this study, we lay the groundwork for this process to be augmented by the use of 

an objective measure, namely individualized electrophysiological feedback, to expedite 

the process. We identified electrophysiological profiles related to effective treatment 

responses, which may be used to aid in DBS lead placement/contact selection. The use of 

electrophysiological feedback to determine electrode placement has long been considered 

a gold-standard for DBS in for movement disorders [17], and more recently, specific 

electrophysiological profiles (e.g. beta frequency peaks) have been shown to align with 

the clinically most effective contacts [18], suggesting that electrophysiological information 

can be used to guide stimulation programming [19,20]. The electrophysiological profiles 

identified herein may be employed for such purposes, but in the context of TRD, to verify 

DBS lead placement and contact selection.

Various EEG-based biomarkers have previously been suggested to be indicative of response 

status in DBS for TRD. Some examples include increases in frontal theta cordance [21], 

decreases in frontal alpha and beta power [22], and right frontal theta and left parietal alpha 

power hemispheric asymmetries [23]. One potentially unique element of our methodological 

approach compared to previous studies was that ROI identification was based on DBS 

modulatory effects that were counter-directional to TRD-specific effects, thus identifying 

brain areas in which DBS shifted the electrophysiological profile of people with TRD 

towards one more reflective of healthy controls.

In addition to exploring biomarkers indicative of treatment response type, we also identified 

the electrophysiological responses associated with changes in SCC-DBS amplitude (1.5 

mA vs. 3 mA) and frequency (20 Hz vs. 130 Hz). While low-frequency subthalamic 

stimulation (<50 Hz) is ineffective/disadvantageous in movement disorders [24], this may 

not necessarily extend to psychiatric disorders such as TRD. Given that low-frequency 

stimulation produced stronger network modulations herein, low-frequency stimulation may 

be a viable alternative in TRD, especially for those that do not benefit from high-frequency 

stimulation. The vastness of the potential search space for optimized settings for TRD 

further emphasizes the need of a timely way to assess a given DBS program’s potential 

efficacy, which may be provided via rapidly assessable electrophysiological biomarkers.
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In the context of this study, it was found that modulation of TRD-related activity in the 

default mode network (DMN), central executive network (CEN), and somatomotor network, 

as well as Broca’s area, lingual gyrus, and temporal areas, could differentiate responders 

from non-responders. These regions are involved in emotional control and processing, 

motor control, and the interaction between speech, vision, and memory, which have all 

been implicated in depression [25–29]. The spectral characteristics of these observations, 

namely amplified low-frequency and decreased high-frequency (gamma) oscillations, mirror 

previous reports on TRD-specific changes [30]. As such, the following sections put our 

findings related to the neuromodulatory network effects of DBS in TRD into context with 

respect to well-established functional brain networks.

4.1. Modulated nodes in the default mode network

The DMN is, among other functions, involved in emotional processing [31] and has been 

implicated in depression, specifically TRD [32]. Several cortical regions that are part of 

the DMN network were identified in our study as nodes of interest, including the posterior 

cingulate cortex (PCC), retrosplenial cortex (RSC) [33], and supramarginal gyrus (SG) 

[34]. Triggered by emotionally linked cues, interactions between structures within the DMN 

have been observed during the processing of emotional experiences [35] and contextual 

learning in rodents [36]. In addition, the DMN plays a crucial role in memory formation and 

emotion-memory linkage. During resting periods, the network processes memory-related 

information in self-referential tasks such as introspection, worry, rumination [37], and 

other memory-related tasks (spatial and episodic) [38,39]. The RSC, in particular, is a 

node in the DMN that is anatomically well-situated to fuse emotions and memory [40] 

and has been implicated in fear conditioning [41] and contextual learning [36] in rodents. 

Furthermore, increased RSC low-frequency (4–12 Hz) and gamma activities have been 

associated with mnemonic functions [41]. Complementary evidence from human studies 

suggests RSC blood flow [42] and BOLD activity increase during emotional processing 

[43]. Increased RSC BOLD activity has also been linked to modulations in RSC alpha power 

[44]. Generally, RSC and PCC are commonly activated in emotion processing [40], as is the 

SG. The SG has also been shown to be activated in tasks related to emotion identification 

[45].

Furthermore, TRD-specific changes within the DMN have been linked to several 

psychiatric/neurological disorders such as Alzheimer’s disease [46], major depression [28], 

obsessive-compulsive disorder [47], social phobia [48], and schizophrenia [49]. While 

metabolic activity in the RSC/PCC is decreased in Alzheimer’s disease [46], it is increased 

in people with depression [50]. Additionally, increased depressive symptom severity has 

been associated with increased left RSC/PCC volume [51]. Similarly, cortical thickening 

has been observed in the SG of people with major depressive disorder [29]. Overall, the 

aforementioned studies support the potential importance of modulating certain TRD-relevant 

nodes of the DMN uncovered by this work, namely, responder-specific compensation of 

TRD-related increased alpha power (RSC and SG) and decreased gamma power (PCC).
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4.2. Modulated nodes in the central executive network

The CEN is involved in attention control, working memory, and decision-making [52]. 

It primarily consists of the dorsolateral prefrontal cortex (dlPFC) and posterior parietal 

cortex (PPC) [53]. Although activity in the CEN is closely connected to the DMN, the 

two networks display anticorrelated behavior [54]. Gamma band activity in the CEN, 

particularly the dlPFC, has been connected with working memory performance [55]. 

Likewise, decreased gamma activity in the dlPFC has also been associated with reduced 

cognitive control and blunted reward learning in people with depression [56]. Reduced 

glucose metabolic rates have also been observed in the left dlPFC of people with depression 

symptoms [25]. These studies reflect our observation of TRD-related decreased gamma 

power in the left rostral middle frontal cortex (RMFC), which contains the left dlPFC. In 

particular, we found a responder-specific compensation of TRD-related decreased gamma 

band power in the left RMFC/dlPFC region with SCC-DBS. Similar results have been 

reported when applying transcranial magnetic stimulation (TMS) to the left dlPFC [57]. As 

such, the left dlPFC is a common target for TMS in depression treatment [58], likely due 

to its role in dopamine release [59] and its connections to several cortical and subcortical 

regions implicated in depression [60].

4.3. Modulated nodes of other networks

In responders, SCC-DBS was also associated with the modulation of other brain regions and 

networks that are functionally and structurally connected to the DMN and CEN. One such 

network that was implicated in our study was the somatomotor network (pre- and postcentral 

gyri) and surrounding areas (paracentral lobule). Indeed, TRD-specific alterations have 

previously been shown throughout this network in people with depression [61], such as 

increases in white matter hyperintensities [62]. These observations have often been linked to 

psychomotor retardation [62], a common symptom of depression [63]. Our study identified 

responder-specific compensation of increased alpha power (pre- and postcentral gyri and 

paracentral lobule) and decreased gamma power (paracentral lobule). Acute modulatory 

effects in these regions are likely mediated by trans-synaptic connectivity to SCC via the 

thalamus [64, 65].

We also observed responder-specific compensation of increased alpha power (pars 

triangularis) and decreased gamma power (pars triangularis and opercularis) within the 

inferior frontal cortex. Disease-related changes in altered anatomy have been reported 

in the pars opercularis [29] and triangularis [66] (forming Broca’s area) in people with 

depression. Moreover, in people with depression, reduced oscillatory beta-band power was 

measured in the vicinity of Broca’s area, relating to the error rates in phonological tasks 

[67]. Anatomically, these nodes within Broca’s area are connected to the amygdala and are 

thought to play a role in a top-down control mechanism in worrying [68]. The amygdala, in 

turn, has reciprocal connections to the SCC, indirectly linking the nodes of Broca’s area to 

the target of SCC-DBS.

We also identified responder-specific compensation of decreased gamma power in the 

lingual gyrus. This region is thought to play an important role in TRD-specific visual 

processing in people with depression [26]. Larger gray matter volumes of the lingual gyrus 
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have been associated with better performance in neuropsychological tests [26]. Functionally, 

activations of the lingual gyrus have been connected to activations of the amygdala [69].

Lastly, we observed responder-specific overcompensation of decreased gamma power in the 

left superior temporal sulcus and left caudal middle frontal gyrus. Changes to the superior 

temporal sulcus may be associated with sleep quality in depression [70].

4.4. Clinical utility of the identified functional network activation profile

Anatomically, the SCC (DBS target) encompasses the cingulum, forceps minor, and 

uncinate fasciculus bundles [71,72]. It has bidirectional structural connectivity with other 

brain regions, such as the orbitofrontal cortex [65], enabling remote DBS effects. Hence, 

responder-specific differences in cortical electrophysiology between people with TRD and 

HCs can manifest throughout various cortical regions. Similar to previously described MRI-

based targeting strategies [72], the herein presented electrophysiological profile may be used 

as a marker for DBS lead placement and contact selection. DBS can be activated according 

to the standardized DBS parameters employed herein (1.5 V, 130 Hz), using a variety of 

contact pair combinations. The practitioner should seek to achieve the described responder-

specific network activation profile (resembling the HC profile). The use of bipolar contact 

pairs would contain the (monopolar) DBS contact to be considered for clinical application, 

reducing the number of candidates from 4 to a maximum of 2 DBS contacts. The use of a 

standardized DBS parameter set, assuming no a priori knowledge of the eventual optimal 

stimulation parameters, allows for an application in prospective contexts. If and when the 

most appropriate contacts are selected based on the network response, settings can then be 

further modified on an individual basis to optimize the therapeutic window (i.e., increasing 

stimulation amplitude to a level just below the side effect threshold). If high-frequency 

stimulation is unable to achieve the desired network response, low-frequency stimulation can 

be considered, given the ability to produce stronger modulatory effects.

5. Limitations

This study applied SCC-DBS using a unified parameter set to identify functional biomarkers 

associated with treatment response in individuals with TRD. As such, patient-specific 

parameters determined clinically were not used in the study. Moreover, bipolar stimulation 

was employed to limit stimulation artifacts during MEG recordings. In addition, a unified 

stimulation amplitude was used to identify an electrophysiological profile that may be used 

to optimize treatment delivery in prospective contexts. This would otherwise not be possible 

if using heterogeneous stimulation settings. While this approach cannot be used to calibrate 

DBS amplitude per se, it provides a viable avenue for DBS lead position verification 

and contact selection. The analyses led to identifying a discriminative functional network 

profile derived from 3-min MEG recordings, which may be informative of responder status. 

However, the patient sample size was limited, and while oscillatory changes in identified 

ROIs could discriminate responders from non-responders, the degree of change in any given 

region was not found to be associated with the degree of benefit. As such, the potential 

clinical utility of the identified functional network profile would need to be established by 

obtaining MEG scans at an early stage in therapy initiation to guide DBS programming. 
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Additionally, although our results indicate that low-frequency SCC-DBS may have the 

strongest effects on TRD-related activity, clinical applicability is yet to be confirmed. 

Moreover, future mechanistic studies can consider the investigation of a greater range of 

frequencies and intensities than employed here. Furthermore, it is necessary to consider 

that TRD is a highly heterogeneous disorder with variable symptomatology and associated 

electrophysiological profiles, whereas our analysis is limited to a binary discretization 

of responder status due to the limited data in this retrospective study. Moreover, our 

interpretations of the presented findings are limited to the identified areas of interest and 

their reported relevance in TRD but do not provide an exhaustive overview of all potentially 

involved cortical regions, their functions, or TRD-specific alterations in TRD.

6. Conclusion

This study is among the first to use MEG to examine whole-brain and region-specific 

cortical responses to SCC-DBS in people with TRD. The application of SCC-DBS at 

unified parameter settings led to the identification of functional biomarkers that could 

differentiate responders from non-responders characterized by modulations of increased 

alpha and decreased gamma power in nodes of the DMN, CEN, and somatomotor network, 

as well as Broca’s area and lingual gyrus – regions that have been implicated in behavioral 

functions and impairments associated with depression. The identified responder-specific 

profile may represent a functional readout that can be used for optimizing SCC-DBS 

therapy via improved candidate selection, surgical targeting, and DBS setting selection in 

prospective contexts. Furthermore, our interrogations of stimulation settings revealed that 

increasing stimulation amplitude or reducing frequency strengthened modulatory network 

effects.
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Significance statement

Deep brain stimulation (DBS) is a highly effective treatment for movement disorders, 

but of miXed efficacy in psychiatric disorders, such as treatment-resistant depression 

(TRD). Since DBS in TRD is a newer and more experimental indication, stimulation 

programming procedures are less optimized. In DBS for TRD, stimulation optimization 

may require months of clinical observation to evaluate a particular setting configuration, 

whereas in stimulation effects in movement disorders can be observed within seconds-

minutes. As such, we sought to identify electrophysiological biomarker candidates which 

may provide an alternative, acutely assessable information source (seconds-minutes per 

evaluation) for DBS optimization in TRD.
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Fig. 1. (A) Depiction of SCC-DBS electrode positions and (B) summary of regions with 
responder-specific modulations of TRD-specific activity.
(A) DBS lead positions are shown for responder (blue) and non-responder (red) subgroups 

relative to the cingulum bundle (green). Lead localization was done using LeadDBS 

(detailed methods available within Supplementary Material). (B) A depictive summary 

of brain regions that expressed statistically significant differences in relative oscillatory 

power in people with TRD (SCC-DBS OFF) compared to HCs wherein TRD-specific 

differences were counteracted by SCC-DBS ON in responders only. Detailed statistical 
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results and depictions on a region-by-region basis are provided in the subsequent figures. 

(For interpretation of the references to colour in this figure legend, the reader is referred to 

the Web version of this article.)
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Fig. 2. Responder-specific compensation of increased relative alpha power.
Relative alpha power (8–12 Hz) in the highlighted regions was increased in people with 

depression (both responders and non-responders with SCC-DBS OFF) compared to HCs, 

but compensated by SCC-DBS in responders only (i.e., statistically indistinguishable from 

HCs with SCC-DBS ON). Relative alpha power was measured as the ratio between the alpha 

(8–12 Hz) sub-band and broadband (2–116 Hz) power. Normalization Compensation of 

increased relative alpha power was observed in the left (A) retrosplenial cortex, (B) inferior 

frontal cortex, (C) postcentral gyrus, (D) precentral gyrus, (E) supramarginal gyrus, and (F) 

right paracentral lobule. The cortical surface images depict relative alpha power differences 

between implicated states. The bar graphs depict the absolute values of the relative power 

within individual states (with statistical comparisons in relation to HC). DBS OFF n = 16; 

DBS ON = 14; HC n = 25.
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Fig. 3. Responder-specific compensation of decreased gamma band relative power.
Relative gamma power (32–116 Hz) in the highlighted regions was decreased in people with 

depression (both responders and non-responders with SCC-DBS OFF) compared to HCs, 

but compensated by SCC-DBS ON in responders only (i.e., statistically indistinguishable 

from HCs with SCC-DBS ON). Relative gamma power was measured as the ratio between 

the gamma (32–116 Hz) sub-band and broadband (2–116 Hz) power. Compensation of 

decreased relative gamma power was observed in the left (A) posterior cingulate, (B) 

paracentral lobule, (C) rostral middle frontal cortex, (D) lingual gyrus, (E) inferior frontal 

cortex pars opercularis, and (F) inferior frontal cortex pars triangularis. The cortical surface 

images depict relative gamma power differences between implicated states. The bar graphs 

depict the absolute values of the relative power within individual states (with statistical 

comparisons in relation to HC). DBS OFF n = 16; DBS ON = 14; HC n = 25.
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Fig. 4. Responder-specific overcompensation of decreased relative gamma band power.
Relative gamma power (32–116 Hz) in the highlighted regions was found to be decreased in 

people with depression (both responders and non-responders with DBS OFF) compared 

to HCs, but reversed by SCC-DBS ON in responders only (i.e., hypoactivity became 

hyperactivity). Relative gamma power was measured as the ratio between a gamma (32–116 

Hz) sub-band and broadband (2–116 Hz) power. Overcompensation of decreased relative 

gamma power was observed in the left (A) retrosplenial cortex, (B) precentral gyrus, (C) 

supramarginal gyrus, (D) postcentral gyrus, (E) caudal middle frontal cortex, and (F) banks 

of the superior temporal sulcus. The cortical surface images depict relative gamma power 

differences between implicated states. The bar graphs depict the absolute values of the 

relative power within individual states (with statistical comparisons in relation to HC). DBS 

OFF n = 16; DBS ON = 14; HC n = 25.
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Fig. 5. Investigation of the effects of stimulation amplitude and frequency.
(A) Bilateral stimulation at 130 Hz/1.5 mA was associated with undercompensated activity 

in non-responders and compensated and/or overcompensated activity in responders; this 

column represents the statistical summary of Figs. 2–4 (B) Unilateral stimulation at 130 

Hz/1.5 mA was associated with generally undercompensated activity in both responders and 

non-responders in both alpha and gamma frequency bands; this condition is intended to 

serve as a new baseline to investigate the effects of stimulation amplitude and frequency. 

(C) Unilateral stimulation at 130 Hz using a higher amplitude of 3.0 mA (instead of 
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1.5 mA) led to strengthened modulatory effects (i.e., less undercompensated nodes). (D) 

Unilateral stimulation at 1.5 mA using a lower stimulation frequency of 20 Hz (instead of 

130 Hz) led to even stronger modulatory effects (i.e., less undercompensated nodes and 

more overcompensated nodes). R = responders; NR = non-responders. Detailed statistical 

depictions are available in Supplementary Figs. 5 and 6. DBS OFF n = 16; DBS ON (A) n = 

14, (B) n = 15, (C) n = 14, (D) n = 14; HC n = 25.
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