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Background—Low-dose computed tomography screening can reduce lung cancer-related 

mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer 

and it often remains challenging to identify malignant nodules, particularly among indeterminate 

nodules. We aimed to develop and assess prediction models based on radiological features to 

discriminate between benign and malignant pulmonary lesions detected on a baseline screen.

Methods—Using four international lung cancer screening studies, we extracted 2,060 radiomic 

features for each of 16,797 nodules (513 malignant) among 6,865 participants. After filtering 

out low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for 

model development. We used cross-validation and grid search to assess three machine learning 

(ML) models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of 

malignancy for pulmonary nodules. We report model performance based on the area under the 

curve (AUC) and calibration metrics in the held-out test set.

Results—The LASSO model yielded the best predictive performance in cross-validation and 

was fit in the full training set based on optimized hyperparameters. Our radiomics model had 

a test-set AUC of 0.93 (95% CI: 0.90–0.96) and out-performed the established PanCan model 

(AUC=0.87, 95% CI: 0.85–0.89) for nodule assessment. Our model performed well among both 

solid (AUC=0.93, 95% CI: 0.89–0.97) and subsolid nodules (AUC=0.91, 95% CI: 0.85–0.95).

Conclusions—We developed highly-accurate machine learning models based on radiomic and 

epidemiologic features from four international lung cancer screening studies that may be suitable 

for assessing indeterminate screen-detected pulmonary nodules for risk of malignancy.

Introduction

Lung cancer is the leading cause of cancer mortality globally [1]. Only 10–20% of lung 

cancer patients live up to five years after diagnosis [2]. However, several large randomized 

screening trials have demonstrated that low-dose computed tomography (CT) screening 

can significantly reduce lung cancer mortality through early detection [3–6]. The National 

Lung Screening Trial (NLST) observed a 20% reduction in lung cancer-related mortality 

following CT screening [4], while the Dutch-Belgian trial (NELSON) observed a reduction 

in mortality of 24% in men and 33% in women [3].

Despite the promise of screening, the clinical management of screen-detected pulmonary 

nodules and the false-positive rate are important determinants for screening program 

efficacy. Across several studies, the average nodule detection rate was 20%, meanwhile, 

more than 90% of screen-detected nodules were benign [7]. Inaccurate assessment of 

indeterminate nodules may lead to unnecessary diagnostic workup, including: additional 

imaging studies (which confer higher radiation exposure); invasive procedures such as 

bronchoscopy, CT biopsy, or surgery; and may lead to overdiagnosis of indolent cancers 

[7]. Unnecessary follow-up carries significant healthcare costs, utilizes critical hospital and 

human resources, may lead to adverse events and complications, including premature death, 

and can cause anxiety and decreased quality of life for the screened participant.

Several guidelines have been developed to help inform screen-detected lung nodule 

management, however, there remains significant heterogeneity in these recommendations 

[8–22]. To address these issues, probability models have been developed to help 
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identify high-risk lesions and guide clinical decision-making [23–25]. These models have 

traditionally been based on patient characteristics (e.g., age, smoking history, etc.) and 

clinically-collected nodule morphology and textural features (e.g., size, attenuation, etc.). 

These features characterize important aspects of the nodule and are routinely collected as 

part of the clinical management of pulmonary findings.

Nodule probability models based on routinely-collected patient and nodule information have 

shown good performance, however, there is growing interest in leveraging medical images 

directly to perform automated quantitative image analysis, enabling the quantification 

of hundreds or thousands of radiomic features that may capture important information 

otherwise imperceptible to the human eye. Radiomic features quantify aspects of the 3-

dimensional (3D) morphology and grayscale distribution for a region-of-interest [26]. It is 

expected that radiomic features, in combination with patient-level information, will be able 

to accurately discriminate between benign and malignant pulmonary nodules beyond what 

has been achieved with traditional clinical features. However, it is currently unknown which 

features will be most important and whether they will generalize well to other screening 

cohorts. In addition, the use of deep learning for nodule malignancy assessment is growing 

in popularity and several studies have been developed models for this purpose [27,28]. 

However, the black-box nature of deep learning models often lack full transparency with 

open-source code, and high levels of model parameterization continue to hamper clinical 

implementation. Models based on extracted features have shown comparable performance 

while offering improved model interpretability and greater relative ease-of-implementation.

The goal of the current study was to perform quantitative image analysis and evaluate 

the predictive performance of high-dimensional radiomic features for pulmonary nodule 

malignancy assessment, and to develop and validate models using data from several large 

independent international lung cancer screening studies.

Methods

Lung Cancer Screening Studies

As part of the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) 

program, we used data collected by four independent lung cancer screening studies for 

this analysis: 1. National Lung Screening Trial (NLST), 2. PanCanadian Early Detection 

of Lung Cancer (PanCan) Study, 3. International Early Lung Cancer Action Program 

(IELCAP-Toronto), and 4. Pittsburgh Lung Screening Study (PLuSS). Details of each study 

have been described previously [4,5,29–32]. We provide brief descriptions of each study in 

the following sections. Details about the study protocol used by each study are included in 

the Supplemental Materials.

National Lung Screening Trial (NLST)

NLST was a large randomized multi-center lung cancer screening study comparing low-dose 

helical CT to standard chest radiography (CXR) for screening adult heavy smokers [4,5]. 

Eligible participants were age 55 to 74 years, with 30 or more pack-years history of 

smoking, and former smokers quitting no more than 15 years prior. NLST enrolled 53,456 
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participants across 33 centers in the United States in 2002. We only used image data from 

the CT screening arm in the current study. Any non-calcified nodules (NCN) with a diameter 

of 4mm or greater was considered a positive screen-detected finding.

Pan-Canadian Early Detection of Lung Cancer Study (PanCan)

PanCan was a multi-center, single-arm prospective lung cancer screening study that included 

2,537 participants [29]. Participants were recruited from eight sites across Canada. Eligible 

participants included those 50 to 75 years of age, without a self-reported history of lung 

cancer, current or former smokers, an estimated 6-year risk of lung cancer of at least 2% 

based on an earlier edition of the PLCOm2012 model [33], and an ECOG performance 

status of 0 or 1. Screening was performed with multi-detector row CT scanners. Each 

scan was reviewed by a trained radiologist and up to 10 lung nodules were identified and 

recorded.

International Early Lung Cancer Action Program (IELCAP-Toronto)

IELCAP was an international single-arm multi-centre study evaluating low-dose CT for lung 

cancer screening of high-risk individuals [30,31]. A common study protocol was adopted 

for screening regimen, however, each site was able to make decisions regarding enrollment 

criteria. The Toronto location (hereafter referred to as IELCAP-Toronto), was based out 

of Princess Margaret Cancer Centre and began in 2003. IELCAP-Toronto enrolled 4,782 

adults age 50 or older who were ever-smokers with more than 10 pack-years history of 

smoking. Participants were screened with milt-detector-row CT scanners. Positive findings 

were considered as any NCN found on a baseline scan.

Pittsburgh Lung Screening Study (PLuSS)

PLuSS was a lung cancer screening study that recruited 3,642 eligible participants between 

January 2002 and April 2005 [32]. Eligible participants included those age 50 to 79 years, 

with no personal history of lung cancer, no concurrent participation in other lung screening 

studies, no chest CT within the preceding year, current or former smoker with 0.5 pack-years 

history of smoking for at least 25 years, no smoking cessation within 10 years of enrollment, 

and body weight less than 400 pounds. Participants underwent low-dose chest CT and any 

NCN was considered a positive finding.

Pulmonary Nodule Segmentation

We performed supervised, semi-automated segmentation of screen-detected pulmonary 

nodules using the open-source 3D Slicer software [34] and the Chest Imaging Platform 

extension [35,36]. Our radiologist (HAS) located and reviewed each pulmonary lesion. 

Upon locating the lesion, the radiologist placed a seed-point at the approximate centroid of 

the lesion; semi-automated segmentation was performed based on the single seed-point, and 

manual touch-ups were performed at the discretion of the radiologist to fix over- or under-

segmentation. All nodules were reviewed using standard lung windows. Segmentations for 

PanCan were performed by the PanCan investigators using an automated segmentation 

algorithm based on a commercial software and images and masks were provided without 

further processing, except those relevant to the feature extraction, detailed in the following 
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section. We also collected detailed nodule information, including: lung and lobe location, 

suspicion of nodule malignancy, a nodule-specific LungRADS score (based on LungRADS 

1.1 [8]), and ratings for semantic nodule features including margin, sphericity, subtlety, 

spiculation, solidity, calcification, structure, and lobulation. Details on the ratings systems 

for semantic nodule features are described in Supplemental Table 1.

Radiomics Feature Extraction

We performed radiomic feature extraction for baseline screen-detected pulmonary nodules 

using PyRadiomics (version 3.0.1) [26]. Due to heterogeneity in image acquisition 

settings between and within screening studies, all images and masks were resampled and 

interpolated to have unit (1mm3) voxel spacing (i.e., isotropy). We used a linear interpolator 

for images and nearest-neighbours interpolator for masks (to preserve labels). Grayscale 

intensities were discretized into bins using a bin width of 25 for histogram-based features. 

Voxel intensities were right-shifted by 1000 units prior to feature extraction to avoid 

negative values during feature computations.

Feature classes and the number of features per class were: (1) first-order statistics [18 

features], (2) shape-based [14 features], (3) gray level coocurrence matrix [24 features], 

(4) gray level run length matrix [16 features], (5) gray level size zone matrix [16 

features], (6) neighbouring gray tone difference matrix [5 features], and (7) gray level 

dependence matrix [14 features]. The list of radiomic features for each class are provided in 

Supplemental Table 2. We extracted shape and intensity-based features using the original 

image. We also extracted intensity-based features from images after applying several 

transformations, including: wavelet, Laplacian of Gaussian (LoG), Square, SquareRoot, 

Logarithm, Exponential, Gradient, and LocalBinaryPattern3D. In total, we extracted 2,060 

radiomic features per nodule.

Statistical Analysis

Epidemiologic covariates and outcomes—Epidemiologic data were harmonized 

across the four screening studies to establish a common set of patient-level covariates. After 

harmonization, age, sex, family history of lung cancer among a first-degree relative, history 

of COPD or emphysema, smoking status, smoking duration, smoking intensity, years since 

quitting, and body mass index were included. We combined epidemiologic and radiomic 

features from the four screening studies to form our candidate predictor set. Missing data 

were generally minimal in the harmonized epidemiologic data and patients were excluded 

if missing data were present (Supplemental Figure 1). Nodule-level malignancy status was 

the outcome of interest, with no minimum time-to-diagnosis. Nodule malignancy status was 

available for PanCan and IELCAP-Toronto, and for NLST and PLuSS it was determined 

from patient-level diagnoses and based on radiologist assessment of individual nodules. 

More details are provided in the Supplemental Methods.

Model Development—We used subject-level random sampling to split the data into 

training (80%) and testing (20%) sets, ensuring all nodules for a specific participant were in 

the same split. The training set was further split into five folds using subject-level random 

sampling to perform cross-validation (CV). We had 2,060 radiomic features to assess for 
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their ability to classify benign and malignant pulmonary nodules. Many radiomic features 

have correspondences to established clinically-collected (i.e., semantic) nodules features, 

however, many features have an unknown predictive value. We performed an initial set of 

filtering steps to remove zero variance (n=78), low quality (n=11), and weakly predictive 

(FDR-adjusted P-value > 0.05 in univariate models, n=248), and highly-redundant features 

(pairwise correlation > 0.9, n=1,081), described in detail in the Supplemental Methods.

Using the 9 epidemiologic covariates and 647 radiomic features retained after filtering, we 

performed cross-validation to identify the top-performing ML model. All predictors were 

normalized prior to model fitting. We assessed the following ML models: penalized logistic 

regression (LASSO), Random Forest (RF), and Gradient Boosted Trees (XGBoost). We 

first performed grid-search over a set of hyperparameters chosen using a Latin hypercube 

space-filling design [37]. We then performed random grid search over a finer set of 

hyperparameters for the top-performing model. The optimal hyperparameter(s) were then fit 

to the full training set and model performance was evaluated in the hold-out test set (referred 

to as the INTEGRAL-Radiomics model). A schematic of the analytic approach used in this 

study is presented in Figure 1. All statistical analysis was performed using Python 3.7.10 

and R 4.0.5 [38,39].

Model Performance—We evaluated model performance in two complementary ways: (1) 

area under the receiver operating characteristic curve (AUC) to assess a model’s ability to 

assign higher risks to malignant lesions than to benign lesions (i.e., discrimination), and 

(2) compare model-estimated risks to observed risks (i.e., calibration). For calibration, we 

compared predicted and observed risks within bins of predicted risks, and also assessed 

the ratio of expected to observed number of cancers and the difference between expected 

and observed number of cancers. We report the AUC and calibration metrics with percentile-

based bootstrap confidence intervals. We compared our model performance with the 

established PanCan nodule malignancy model, previously reported in [40]. In brief, the 

PanCan model is a logistic regression model consisting of demographics, medical history, 

and nodule characteristics (Supplemental Methods).

Results

Basic demographics about the participants and nodules in the four lung cancer screening 

cohorts are presented in Table 1. Participants were similar in age between the cohorts. 

There were more males than females in NLST (57% vs. 43%), PanCan (53% vs. 47%), 

and PLuSS (51% vs. 49%), while IELCAP-Toronto (39% vs. 61%) had more women. The 

four cohorts had differing proportions of current and former smokers, and smoking histories 

(i.e., duration, intensity, and years since quitting) varied between studies. All four cohorts 

generally consisted of heavy current and former smokers. On average, PanCan had more 

nodules per participant, and also smaller nodules, compared to the other studies.

We excluded 1,284 nodules from our study due technical issues with feature extraction, 

2,574 nodules not first-appearing on baseline scans, and another 2,103 nodules due 

to missing patient-level data for the harmonized set of epidemiologic covariates. In 

total, we had 16,797 baseline screen-detected nodules among 6,865 participants for our 

Warkentin et al. Page 6

Thorax. Author manuscript; available in PMC 2024 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analytic sample. The median time-to-diagnosis for baseline-detected nodules was 134 days 

(IQR=59–452 days). A complete flow chart for nodule inclusion in the analytic sample is 

presented in Supplemental Figure 1. The distributions of patient-level and nodule-level traits 

in the training and testing data are shown in Supplemental Table 3 and Supplemental Table 

4, respectively. Distributional measures for the radiomic features based on the original CT 

image are presented in Supplemental Table 5.

We started with 2,060 radiomics features for model development. We removed 78 features 

due to zero-variance and 11 features due to observed numerical instability (i.e., implausible 

values) for a large number of participants. Next, we fit univariate models for each feature in 

the training data, and retained features with a FDR-adjusted p-value less than 0.05 (n=248). 

Lastly, we evaluated all pairwise sets of predictors with correlation in the training set 

greater than 0.9 (in descending order) and removed the predictor with the larger p-value. 

We retained 642 radiomic features for model development. More details can be found in 

the Supplemental Materials and Supplemental Figure 2. The 642 radiomics features retained 

for model development are presented in Supplemental Table 6. We performed unsupervised 

clustering in the training data set using the 642 radiological features which revealed three 

distinct clusters of participants with similar radiomics profiles (see Supplemental Figure 3). 

We compared the three clusters based on their proportions of malignant pulmonary nodules 

and found statistically significant differences (PExact < 0.05).

We fit three different machine learning models (LASSO, XGBoost, Random Forest) using 

5-fold cross-validation based on the 642 radiomics features and 9 epidemiologic covariates. 

We first fit a coarse grid of 50 sets of hyperparameters for each ML model. The results for 

this first-pass cross-validation are presented in Table 2 and Supplemental Figure 4 and 5. 

We selected the top performing model (LASSO) based on the combination of discrimination 

(AUC) and calibration (calibration ratio) and performed a final cross-validation and grid 

search over a finer grid of hyperparameters. The optimal penalty value for the LASSO, 

based on CV, was used to fit the final model based on the full training data set, and 

predictions were made on the held-out test set to evaluate model performance.

The top ML submodels that yielded the highest cross-validated AUC were XGBoost 

(AUC=0.933, 95% CI: 0.923–0.944), LASSO (AUC=0.930, 95% CI: 0.914–0.946), and 

Random Forest (AUC=0.916, 95% CI: 0.904–0.929). However, calibration was superior for 

the LASSO model and was chosen as the top model (see Supplemental Figure 6). In total, 

142 predictors were retained in the final LASSO model with non-zero coefficients (See 

Supplemental Figure 7). We assessed the relative stability of the features across CV folds 

for those retained in the final INTEGRAL-Radiomics model (Supplemental Figure 8). In 

general, these top features were selected often and consistently in different folds of CV. 

The top ML model based on epidemiologic variables only achieved a CV-AUC of 0.778 

compared to 0.926 for radiomic features only.

We compared our model with the established PanCan Model and our radiomics model 

had better discrimination (P-value=0.0002), with a test-set AUC of 0.93 (95% CI: 0.90–

0.96) compared to 0.87 (95% CI: 0.85–0.89) for the PanCan Model (see Figure 2). Our 

model performed well in both solid and subsolid (part-solid and non-solid) nodules with 
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test-set AUC of 0.93 (95% CI: 0.89–0.97) and 0.91 (95% CI: 0.85–0.95), respectively. We 

present AUC according to other key factors (nodule size, sex, age, and smoking status) 

in Supplemental Table 7. Our model demonstrated excellent calibration when comparing 

observed risks with model-predicted (i.e., expected) risks, within bins of predicted risk. Our 

model had superior calibration compared to the PanCan Model (see Figure 3). We estimated 

the observed and expected number of malignant nodules (per 1,000 nodules) for the PanCan 

model and our INTEGRAL-Radiomics model. Our model had excellent calibration ratios 

(Exp / Obs) of 1.02 (95% CI: 0.89–1.18) and calibration differences (Exp - Obs) of 0.69 

(95% CI: −4.0, 5.1), versus 1.25 (95% CI: 1.15–1.36) and 11.7 (95% CI: 7.7, 15.8) for 

the PanCan Model, respectively. We compare clinically-relevant metrics (e.g., sensitivity, 

specificity, etc.) between our model and the PanCan model in Table 3. At nearly every 

probability threshold, our model has higher sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), and accuracy, while identifying fewer lesions as 

positive (i.e., suspicious), when compared to the PanCan model.

Discussion

We developed and validated a pulmonary nodule malignancy assessment model based on 

radiomics and epidemiologic data from four large, international lung cancer screening 

cohorts using a machine learning approach. We found that the top-performing models were 

based on gradient boosted trees (XGBoost) and penalized logistic regression (LASSO), 

while the LASSO model provided the most optimal calibration. The use of quantitative 

imaging features (i.e., radiomics) showed improved performance compared to an established 

model based primarily on semantic nodule features. Radiomic features have demonstrated 

value for their ability to predict nodule malignancy risk and may improve the management 

of screen-detected pulmonary nodules by providing clinicians with supporting information 

for clinical decision-making.

Historically, the large quantity of medical images acquired during lung cancer screening 

have been under-utilized for extracting important information to inform nodule management. 

Traditionally, a modest set of semantic nodule traits are qualitatively assessed by expert 

radiologists to provide a high-level characterization of nodule morphology. High-throughput 

quantitative image analysis removes this layer of inter-reader subjectivity, while also 

collecting many more features that may further enhance our ability to characterize nodule 

morphology and intranodular textural heterogeneity [41]. Radiomic features can describe 

various aspects of the nodule morphology in ways that are imperceptible to the human 

eye (i.e., subtle intratumoral textural changes) [26]. The combination of radiomic features 

with known important patient-level features are expected to improve clinical management of 

nodules.

Previous studies demonstrated that quantitative image analysis can identify important 

prognostic signatures in head and neck cancer [41]. The feature extraction presented in 

the study by Aerts et al. [41] was formalized as a free and open-source software [26] and 

has enabled transparency and reproducibility for feature extraction, and contributed to the 

growing interest in quantitative image analysis in many areas of medical imaging, including 

lung cancer screening. To date, many of the radiomic studies for pulmonary nodule 
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assessment have been performed based on relatively small data sets and with no ground-

truth for nodule cancer status. Previous studies have shown that radiomic features may 

help identify lung cancer subtypes [42,43] and the presence of therapy-targetable somatic 

mutations (e.g., EGFR, KRAS) [44–48], though these findings require further validation 

in larger studies. The use of non-invasive image features is growing in popularity and 

will help improve lung cancer screening program efficiency. While there have been several 

studies that have used deep learning approaches for nodule malignancy risk assessment 

[49–52], including one that is commercially available for clinical use [49], our model shows 

comparable levels of performance while being simpler (i.e., fewer parameters) and with 

better interpretability.

To our knowledge, our radiomics study is the largest study to date to systematically 

investigate the importance of radiomics for pulmonary nodule assessment. We performed 

supervised, semi-automated segmentation of pulmonary nodules for three lung cancer 

screening studies using an open-source tool that is available for anyone to use. Our 

study was based on 16,797 nodules among 6,865 participants from four lung cancer 

screening cohorts. We used a systematic approach to develop a machine learning prediction 

model using radiomics features that were consistently predictive across each of these four 

independent screening cohorts. With increasing usage of computer-aided diagnostic (CAD) 

software, the segmentation process can be fully automated. The model presented here can 

be easily implemented without additional processing need for a large-amount of images with 

the added advantage of minimum inter-reader variability.

Our study has several limitations worth highlighting. First, ground-truth nodule-level 

malignancy status was unavailable for two of the screening studies (NLST, PLuSS). As 

such, we used a set of rules to assign nodule-level malignancy status for participants with 

a lung cancer diagnosis. Imperfect assignment will lead to missclassification errors that can 

bias the results of our study. However, we used a relatively conservative approach based on 

suspicion of malignancy determined by expert review of nodules by a radiologist who has 

extensive experience in lung CT assessment. For this reason, we believe the potential for 

missclassification bias is limited. There were feature extraction issues that excluded 5.7% 

of the candidate nodules. Nearly 80% of these issues were due to very small nodules with 

segmentation masks containing only a single voxel or were 1-dimensional after resampling 

and interpolation. These micronodules have a very low prior probability of being malignant 

and their exclusion are unlikely to bias our results. The training and testing data for this 

study were based on the random split of a combined data from four lung cancer screening 

studies. While these four studies are geographically distinct and represent different patient 

populations, our model may perform differently in patient populations not represented by 

these data and needs to be further validated on independent external data. Lastly, there was 

numerical instability for a small set of radiomic features when computing on derived images 

(i.e., after transformations). We minimized potential bias from these unstable features by 

excluding them for the filters where identifiable problems arose. All radiomic features 

appeared stable based on the original image.

In summary, developed a nodule assessment model based on quantitative imaging and 

patient-level features collected from four international lung cancer screening cohorts. We 
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believe this study contributes important insights into the role that high-dimensional radiomic 

features can play in accurately assessing nodule malignancy risk and that these features 

generalize well to geo-temporally distinct screening cohorts. At present, there is emerging 

interest in analyzing medical images using deep learning computer vision approaches, 

although limited transparency in model development and lack of model interpretability can 

pose challenges for clinical implementation and widespread adoption [53,54]. In the future, 

our model may help to improve nodule malignancy assessment and provide supplemental 

information that can help guide decision-making for screen-detected nodule management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Messages

What is already known on this topic:

Indeterminate screen-detected pulmonary nodules are a challenge for lung cancer 

screening programs.

What this study adds:

In this study, we use data from four international lung cancer screening studies to develop 

machine learning models based on radiomic and epidemiologic features that accurately 

classify malignant nodules.

How this study might affect research, practice or policy:

Our radiomic model may be suitable to help assess screen-detected pulmonary nodules.
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Figure 1. 
Schematic for the analytic framework used in this study. Data were partitioned into training/

validation and testing splits using group-based random sampling to ensure all nodules for 

a participant were in a single set to avoid data leakage. Radiomic features were extracted 

and subject to filtering to exclude low-quality and highly-redundant features. K-fold cross-

validation was performed to identify the optimal machine learning (ML) model and the 

optimal set of hyperparameters. The final ML model was fitted to the entire training data 

set and tested for out-of-sample performance in the hold-out test data; discrimination and 

calibration performance metrics are reported.

Warkentin et al. Page 15

Thorax. Author manuscript; available in PMC 2024 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Receiver operating characteristic (ROC) curves for our INTEGRAL-Radiomics models and 

the established PanCan Model. Area under the curve (AUC) and 95% confidence intervals 

are reported.

Warkentin et al. Page 16

Thorax. Author manuscript; available in PMC 2024 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Calibration of our INTEGRAL-Radiomics model and the PanCan model (McWilliams et 
al., 2013) in hold-out test-data. (A) Model-predicted risks versus observed risks across 

quintiles of model-predicted risks. The diagonal dashed line indicates perfect calibration. 

(B) Observed and expected (model-predicted) number of malignant pulmonary nodules 

(per 1,000 nodules) including the calibration ratio (Exp / Obs) and difference (Exp - Obs). 

Calibration ratios less than 1 (or differences less than 0) indicate underestimation of risk and 

ratios greater than 1 (or differences greater than 0) indicate overestimation of risk.
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Table 1.

Patient-level and nodule-level descriptive statistics for each of the four screening cohorts included in this 

study. Means and standard deviations are reported for numeric variables and counts and proportions are 

reported for categorical variables.

Total Participants (N = 6,865)

IELCAP-Toronto
(n = 502)

NLST
(n = 3,743)

PanCan
(n = 1,785)

PLuSS
(n = 835)

No. lung cancers (%) 12 (2.4%) 336 (9.0%) 40 (2.2%) 51 (6.1%)

Age (years) 62.8 [7.5] 62.4 [5.3] 63.2 [6.0] 60.5 [7.0]

Sex

 Male 194 (38.6%) 2,149 (57.4%) 953 (53.4%) 426 (51.0%)

 Female 308 (61.4%) 1,594 (42.6%) 832 (46.6%) 309 (49.0%)

Body mass index (kg/m2) 26.4 [4.4] 27.5 [4.9] 26.6 [4.5] 28.1 [5.3]

Family history of lung cancer

 No 388 (77.3%) 2,894 (77.3%) 1,288 (72.2%) 190 (82.6%)

 Yes 114 (22.7%) 849 (22.7%) 497 (27.8%) 145 (17.4%)

History of COPD or Emphysema

 No 430 (85.7%) 3,232 (86.3%) 1,496 (83.8%) 740 (88.6%)

 Yes 72 (14.3%) 511 (13.7%) 289 (16.2%) 95(11.4%)

Smoking status

 Current 66 (13.1%) 1,845 (49.3%) 1,133 (63.5%) 580 (69.5%)

 Former 436 (86.9%) 1,898 (50.7%) 652 (36.5%) 255 (30.5%)

Years smoked 30.6 [10.7] 40.9 [7.5] 42.6 [8.8] 40.9 [7.9]

Cigarettes per day 21.3 [9.9] 28.4 [11.4] 24.7 [10.5] 25.9 [9.8]

Years since cessation 14.5 [10.6] 19.9 [20.3] 2.6 [5.7] 2.0 [3.5]

Total Nodules (N = 16,797)

IELCAP-Toronto
(n = 1,062)

NLST
(n = 6,108)

PanCan
(n = 8,422)

PLuSS
(n = 1,205)

Nodules per participant 3.2 [2.0] 2.4 [1.7] 8.0 [5.2] 2.0 [1.4]

Nodule solidity

 Solid 783 (74%) 4,585 (79%) 6,015 (80%) 1,042 (86%)

 Subsolid 277 (26%) 1,199 (21%) 1,503 (20%) 163 (14%)

Major axis length (mm) 9.1 [5.2] 11.0 [8.7] 5.5 [4.5] 12.5 [8.0]

Least axis length (mm) 5.2 [2.7] 5.8 [3.8] 2.6 [2.4] 6.6 [3.9]

Mesh Volume (mm3) 446.5 [2,172.8] 872.1 [5,202.0] 168.4 [1,914.6] 1,171.8 [6,489.3]

Sphericity 0.76 [0.08] 0.73 [0.10] 0.79 [0.08] 0.72 [0.09]

Abbreviations: COPD, chronic obstructive pulmonary disease; IELCAP, International Early Lung Cancer Action Plan; mm, millimeter; NLST, 
National Lung Screening Trial; No., number; PanCan, PanCanadian Early Detection of Lung Cancer Study; PLuSS, Pittsburgh Lung Screening 
Study.
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Table 2.

Area under the receiver operating characteristic curve (AUC) based on the K-fold cross-validation of three 

different machine learning classification models for nodule malignancy prediction based on epidemiologic and 

radiomic features. We present the cross-validated AUC and confidence intervals.

ML Model Optimal hyperparameters CV-AUC (95% CI)

XGBoost Num. of trees = 149
Tree depth = 11

Minimum node size = 15
Num. of predictors = 452
Learning rate = 0.0673
Loss reduction = 4.315

0.933 (0.923-0.944)

LASSO 1 Penalty = 0.00044 0.930 (0.914-0.946)

Random Forest Num. of trees = 147
Num. of predictors = 53
Minimum node size = 26

0.916 (0.904-0.929)

Abbreviations: AUC, area under the curve; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; ML, machine learning; 
Num, number; XGBoost, eXtreme Gradient Boosting.

1
The penalty parameter for the LASSO model was a L1 (i.e., LASSO) penalty.
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