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Abstract

Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting 

adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome 

in ~50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, 

and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) 

type, and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear 

INI1 expression, most often following homozygous deletion of its encoding gene SMARCB1 
– a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor 

tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast 

majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent 

therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, 

novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational 

research on EpS and eventually boost the discovery and development of new diagnostic tools 

and therapeutic options, a vibrant translational research community has formed in past years and 

held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our 

current understanding of EpS from the translational research perspective and points to innovative 

research directions to address the most pressing questions in the field, as defined by expert 

consensus and patient advocacy groups.
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INTRODUCTION

Epithelioid sarcoma (EpS) was first described by Franz Enzinger in 1970 as a sarcoma 

simulating a granuloma or a carcinoma(1) (Fig. 1). Its characteristic nodular appearance, 

epithelioid morphology with frequent necrosis, and involvement of fascial and tendon 

structures were the leading causes for misdiagnosis(2). These initial reports mostly referred 

to distal anatomic sites, representing the classic variant of EpS. Furthermore, due to 

frequent challenges in diagnosis, patients may experience long delays of up to 36 months 

until effective treatments can be administered, thus further lowering eventual treatment 

success(3,4). Almost three decades later (1997), Guillou et al. described a ‘proximal’ type 

clinical variant of EpS, with an even more aggressive course and worse prognosis than 

the distal type, which correlated in most but not all cases with a distinct morphology 

composed of large epithelioid cytology, marked atypia with frequent rhabdoid features and 

mostly lacking granuloma-like pattern(5). Modena et al. was the first group (2005) to define 

the EpS pathogenesis by identifying SMARCB1/INI1 inactivation in a cohort of proximal 

but not distal (classic-type) EpS cases using fluorescence-in-situ-hybridization (FISH) 

and array-based comparative genomic hybridization (CGH) methodology(6). Subsequent 

molecular and genomic studies have shown that biallelic inactivation of the SMARCB1 gene 

(SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily 

b, member 1, aka BAF47, INI1, or SNF5) resulting in SMARCB1/INI1 deficiency drives 

the pathogenesis of 95% EpS, regardless of their clinical presentation and histotype(7,8). 

Moreover, extended chromosome 22q copy number loss in genes flanking the SMARCB1 
locus (22q11.23) occurred in one-third of EpS, however, recurrent co-occurring genetic 

events were rare in EpS(8). The first targeted therapy for EpS, tazemetostat, an EZH2 

inhibitor was FDA-approved in 2020(9). Nevertheless, tazemetostat is insufficient to fully 

cure patients and curative therapy, other than surgery and sometimes radiation therapy, 

remain elusive.

1. Epidemiology and demographics

EpS is an ultra-rare soft tissue sarcoma (prevalence of <2 per 100,000), with a crude 

incidence rate (IR) ranging from 0.03/100,000 to 0.05/100,000. According to the SEER 

database of almost 1,000 cases, EpS mostly affects the adult population, with a peak in 

the fifth decade of life (mean age at diagnosis: 46 years)(10). The IR increases with age 

(higher in patients over 35 years), while is very low (0.01) in the childhood population. 

Patients were predominantly white (80%), male (55%), and fell within the three middle 

age categories (cumulatively 83%). In this dataset, younger age (pediatric group) was 

significantly associated with better outcomes by univariate analysis. Moreover, when only 

including EpS defined by loss of SMARCB1 expression, there was no significant age 

difference between the two clinical subsets, with a mean age at diagnosis being 35-years old 

for both distal-type and proximal-type groups (range: 14–71 years) (7). No relevant gender 
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predominance has been observed (M:F ratio: 1.6), nor a significant impact on survival was 

found for gender and race. (10,11). Overall, the prognosis of patients with EpS is poor, with 

a 5-year relative survival of 50% (5,8,12).

2. Pathology and molecular pathology

Pathology:

EpS represents a SMARCB1/INI1-deficient mesenchymal neoplasm exhibiting a 

predominant epithelioid cytomorphology and epithelial immunophenotype(11). As stated 

above, the two clinical types show distinct histology in most cases, with the distal-

type having a pseudo-granulomatous growth, with a mixture of relatively bland spindle 

and epithelioid cells, while the proximal-type is composed of solid sheets or nests of 

large epithelioid cells with densely eosinophilic cytoplasm and rhabdoid phenotype(11). 

Occasional cases composed of predominantly large cells are seen in distal locations. 

Immunophenotypically, both types show expression of epithelial membrane antigen (EMA), 

low- and high- molecular weight cytokeratins, and consistent loss of SMARCB1 (INI1) 

nuclear expression (Fig. 2). Unlike most carcinomas, EpS show positivity for CD34 in >50% 

of cases. Depending on the clone applied, ERG staining can be seen in half of the cases, but 

mostly in the distal type, which can cause confusion with vascular lesions(13).

Molecular pathology:

SMARCB1 biallelic inactivation drives the pathogenesis of virtually all EpS. SMARCB1 
encodes a subunit of two of the three SWI/SNF chromatin-remodeling complexes (canonical 

BAF (cBAF), polybromo-associated BAF (PBAF), but not non-canonical BAF (ncBAF)), 

which regulates gene transcription through nucleosomes modifications(14). Most EpS 

harbor homozygous deletions, while in a smaller subset only heterozygous SMARCB1 
loss-of-function (LOF) alterations are detected(7,8,15,16). In the latter group, the second 

SMARCB1 alteration remains undefined, as there is limited evidence to support epigenetic 

silencing through either hypermethylation or miRNA deregulation(16–18). The types of 

LOF abnormalities are variable, with large arm-level deletions on chr22q predominating, 

and less frequent focal intragenic deletions or mutations (nonsense, frameshift)(7,8,15). 

SMARCB1 alterations are mostly somatic in EpS, with a rare case with presumed 

constitutive heterozygous alteration reported(7). By next generation sequencing (NGS), 

EpS typically display diploid profiles and do not exhibit microsatellite instability (https://

www.cbioportal.org/), but harbor a higher mutation rate compared to malignant rhabdoid 

tumors (MRT)(16), which also are defined by SMARCB1 deficiency(19). CDKN2A/B 
deletions are the only recurrent copy number alterations (CNA), apart from SMARCB1, 
reported in up to one-third of cases, but the genomic profiles include many CNA across the 

genome, mostly non-recurrent(7,8,16).

Molecular Diagnosis:

In most cases molecular testing is not required, as loss of SMARCB1 expression by 

immunohistochemistry is sufficient to support the diagnosis of EpS in the appropriate 

clinicopathologic context (anatomic location, cytokeratin positivity, epithelioid/rhabdoid 

phenotype). Although occasional studies had suggested that retained SMARCB1 expression 
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is seen in small subsets of EpS (21% of proximal and 6% of distal types)(20), most experts 

are in agreement defining SMARCB1 deficiency as an essential diagnostic criterion(11). 

Moreover, alleged alternative inactivation of other SWI/SNF subunits have been proposed in 

rare cases of EpS retaining SMARCB1 expression(20), however, no studies have confirmed 

this hypothesis(8). Molecular testing may be used in challenging differential diagnosis with 

other SMARCB1-deficient tumors, in particular with MRT of soft-tissues or the kidney or 

atypical teratoid/rhabdoid tumor (ATRT) of brain in pediatric patients, as MRT show no 

CNA nor mutations apart from the SMARCB1 locus(21). The wide spectrum of SMARCB1 
alterations impacts on the sensitivity of various methodologies applied in the molecular 

diagnosis. Thus, FISH and CGH mostly detect large deletions, while multiplex ligation-

dependent probe amplification is sensitive in detecting small exonic deletions(7,15,17). 

Other methods such as DNA-based targeted NGS and whole-exome sequencing (WES) are 

optimal for intragenic deletions or mutations(8) (Fig. 3).

3. Comparative molecular alterations with other SMARC-deficient 

neoplasms

Parallels with other SMARCB1 deficient neoplasms:

SMARCB1 deficiency is seen in a number of other soft tissue and bone tumors, 

most of which also display epithelioid or rhabdoid morphology (Table 1; Fig. 4). 

However, the incidence and type of SMARCB1 LOF alterations vary depending on 

the histotype. For instance, loss of SMARCB1/INI1 protein expression is seen in 50–

70% of epithelioid malignant peripheral nerve sheath tumors (MPNSTs)(22), 50% of 

epithelioid schwannomas(8,23), 30% of soft tissue myoepithelial tumors(8), the majority 

of poorly differentiated chordomas,(8) and almost all MRTs(21) and SMARCB1-deficient 

sinonasal carcinoma(24). Overall, similar to EpS, where SMARCB1 homozygous and 

heterozygous deletions were reported in 80–100% of cases, SMARCB1 deletions also 

predominate in poorly differentiated chordomas (75–89%)(8). In MRTs, SMARCB1 point 

mutations/intragenic deletions ranged from 55–60% in somatic cases and 71% in germline 

cases(21,25). Conversely, for epithelioid MPNSTs and epithelioid schwannomas, a slight 

majority of cases showed only monoallelic SMARCB1 point mutations/intragenic deletions 

(58% and 60% respectively).(8,26) Finally, 60% (3 of 5) soft tissue myoepithelial tumors 

lacking EWSR1 gene rearrangements showed homozygous SMARCB1 deletions.(7)

Studies on recurrent genetic alterations (other than SMARCB1) among various SMARCB1-

deficient mesenchymal tumors are largely limited to case reports or small case series(8). 

Overall, molecular alterations cooccurring with SMARCB1 appear to be rare among 

SMARCB1-deficient mesenchymal tumors(8). SMARCB1 alterations were the sole 

recurrent genomic alterations in a whole exome sequencing study of 35 MRTs.(21) An 

array-based CGH study demonstrated chr22q loss (comprising the SMARCB1 locus) in 

a case of poorly differentiated chordoma without other chromosomal gains or losses(27). 

Similar recurrent losses of chr22q or heterozygous SMARCB1 deletion were noted in 

a small series of extra-axial chordomas, while transformation to a poorly differentiated 

chordoma resulted in homozygous deletion of SMARCB1(28). A similar progression was 

reported in a single case of SMARCB1-deficient conventional chordoma which transformed 
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into a poorly differentiated chordoma with whole-genome-doubling(29). WES of a case 

of soft tissue myoepithelial tumor showed an RB1 frameshift deletion(30). Recurrent 

CDKN2A deletions were reported in 31% of epithelioid MPNSTs and 20% of epithelioid 

schwannomas in a panel-based NGS study(26).

Parallels with SMARCA4 neoplasms:

SMARCA4 encodes one of the ATPase subunits of the BAF chromatin-remodeling complex 

and, similar to SMARCB1, plays a tumor suppressor role, as recurrent inactivation 

mutations are increasingly detected in a variety of human neoplasia often displaying 

an undifferentiated rhabdoid phenotype(31). A rare subset of tumors that are typically 

associated with biallelic SMARCB1 inactivation have been reported to show instead 

SMARCA4 deficiency, including 2% of MRT(32) and exceptionally rare cases of EpS(20).

Among SMARCA4-deficient undifferentiated neoplasms, two groups have emerged 

based on their simple versus complex karyotypes. In the first group of genomically 

stable tumors are included ATRT and MRT, small cell carcinoma of the ovary, 

hypercalcemic type (SCCOHT)(33,34) and SMARCA4-deficient uterine sarcoma(35,36), 

while in the second group defined by a complex karyotype are mostly undifferentiated/

dedifferentiated carcinomas that have arisen from a precursor lesion with intact 

SWI/SNF function. Some examples from the latter category include dedifferentiated 

uterine endometrioid adenocarcinoma(37,38), undifferentiated/dedifferentiated urothelial 

carcinoma(39),and undifferentiated/rhabdoid carcinomas of the gastrointestinal tract(40). 

In some cases, however, the presence of a precursor lesion is not demonstrable. One 

such example are the so-called thoracic SMARCA4-deficient undifferentiated tumors, 

which have been the source of much debate as they occur in younger patients, often 

limited epithelial marker expression and lacking a precursor carcinoma component in 

most cases. These tumors show diffuse sheets of variably discohesive epithelioid to 

rhabdoid cells, with frequent reactivity to CD34, SALL4, and/or SOX2, thus overlapping 

with MRTs(41,42). Their transcriptomic/ immunohistochemical profiles are distinct from 

EpS, in that developmental genes are enriched and SMARCA2 expression is often co-

deficient(41,43,44). However, detailed genomic studies have shown significant overlap with 

lung carcinomas in most cases and thus are currently regarded by most experts as an 

undifferentiated/dedifferentiated form of lung carcinoma(41,44).

4. Translational genomics

Two independent groups representing co-authors on this review have published genomic 

landscape studies: one study using WES and deep RNA-sequencing (RNA-seq) showed 

retained dysfunctional SMARCB1 expression in 12 of 16 distal, pediatric/young adult-

associated EpS biopsies and two of two distal EpS cell lines (as well as elevated GLI3, 
FYN, and CXCL12 expression for distal EpS)(45), whereas the parallel report combining 

targeted DNA-based sequencing and FISH showed SMARCB1 genetic alterations in all 

but three distal and one proximal out of 44 EpS tumor samples, despite loss of nuclear 

SMARCB1 expression by immunohistochemistry in all cases(8). Moreover, four additional 

proximal EpS showed only heterozygous SMARCB1 alterations using these methods(8). 
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Both studies represent relatively small patient population samplings, and merit additional 

expanded studies.

RNA-sequencing (RNA-seq).

As mentioned previously(16,43), despite a rather small number of cases (n=11) relative 

to the 7000+ RNA-seq expression profiles(46), EpS formed distinct group from all other 

tumors, including MRT or other SWI/SNF-deficient tumors, in UMAP projection of 

expression profiles. In that series, EpS was split in two slightly different homogenous 

groups, which do not seem to be related to the anatomic site of the tumor nor the 

specific histology or clinical aspect, one being closer to MRTs than the other. Further 

studies are needed to investigate the significance of this transcriptional dichotomy. In 

one case authors were able to identify a gene fusion involving SMARCB1 and DNAI3, 

resulting in SMARCB1 truncation at the end of exon 3. Despite loss of SMARCB1 by 

IHC, identification by RNA-seq of SMARCB1 alterations remains challenging due to: i) 

the mRNA decay process that degrades RNA carrying a truncating mutation, and ii) the 

cells from the tumor microenvironment still express wildtype SMARCB1, thus loss of 

SMARCB1 expression (or of the other SWI/SNF genes known to be involved in EpS: 

SMARCA4, SMARCC1 or SMARCC2) is therefore barely seen. By RNA-seq, we could 

identify a SMARCB1 truncating mutation in a single case of EpS, while loss of expression 

was noted in only four cases. No mutation nor loss of expression of SMARCA4, SMARCC1 

or SMARCC2 was seen.

DNA-methylation.

Array-based DNA-methylation profiling and classification has been established as a 

powerful new diagnostic tool for brain tumors(47) and had transformative impact in 

reclassification of known brain tumor entities and led to the ongoing discovery of more and 

more distinct entities. Recently, a similar DNA-methylation based classifier was brought en 
route for sarcomas(48) and is currently being validated in several subsets of sarcomas(49–

51). A recent landmark paper demonstrated the power of multi-omics molecular profiling of 

sarcomas in adolescent and young adult patients in which 2 EpS patients were included(52). 

Interestingly, of the two cases confirmed by centralized expert pathology review, one 

could not be assigned to DNA-methylation based classification due to ‘assay failure or 

no analysis’, while the other was assigned to the methylation class ‘unclassified’(52). 

This result is in stark contrast to the other sarcoma entities (>10) included in this study, 

highlighting the difficulties seen especially for EpS. The technical conundrum may be 

related on one hand to the relatively high stroma content and inflammatory background seen 

in most EpS compared to other sarcomas, which is likely responsible for the challenges 

faced with DNA-methylation based classification of EpS without a stringent enrichment for 

tumor-bearing tissue (unpublished observations T.G.P.G. and S.P-V.). A recent methylome 

profiling study focusing only on SMARCB1-deficient neoplasms, showed that all classic 

and most proximal EpS cases tested formed distinct clusters from MRT and ATRT(53). Only 

2 cases of proximal-type EpS clustered together with the MRT group, however, it remains 

unclear if this finding also translates into similar clinical outcomes.
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Proteomics.

Advances in proteomic technologies have translated into an in-depth characterisation 

of protein and post-translational modification levels in tumour specimens at high 

resolution(54,55). To date proteomic analyses in EpS have been undertaken in tissue samples 

using gel electrophoresis coupled to mass spectrometry and in the VA-ES-BJ cell line 

(RRID:CVCL 1785) by mass spectrometry and protein arrays. These studies have led 

to several biological findings including the demonstration that the actin depolymerization 

and capping protein CAPZB is overexpressed in EpS patient specimens(56) and that 

silencing of this protein leads to a reduction in VA-ES-BJ cell growth and migration(57). 

Furthermore, the use of antibody arrays to assess the activation status of receptor tyrosine 

kinases in VA-ES-BJ line highlighted the potential of combination therapies involving 

EGFR and c-Met inhibition(58) or mTOR and c-Met inhibition(59) to overcome EpS 

cell proliferation. These studies illustrate the power of proteomics to identify candidate 

targets for drug development. Future studies incorporating deep proteomic profiling of EpS 

patient specimens and integration with parallel genomic studies are likely to reveal new 

opportunities for prognostication and therapy selection(60).

5. Biology of the SWI/SNF complex in normal and cancer cells

SWI/SNF complexes utilize the power of adenosine triphosphate (ATP) hydrolysis to 

remodel nucleosome-DNA interactions, thereby facilitating DNA accessibility and activating 

the transcription of lineage-specific genes required for cell differentiation(61). Mammalian 

SWI/SNF (mSWI/SNF) complexes are heterogeneous, multi-subunit protein complexes that 

are composed of subunits encoded by 29 genes. Based on their characteristic subunit 

compositions, mSWI/SNF complexes exist in three distinct forms: cBAF, PBAF, and ncBAF 

(also known as GBAF, GLTSCR1/1L-containing BAF)(62,63) (Fig. 5). The specific subunits 

in each form are ARID1A/B and DPF2 (cBAF); PBRM1, ARID2, and BRD7 (PBAF); 

and GLTSCR1/GLTCR1L and BRD9 (ncBAF). ncBAF is also characterized by the absence 

of SMARCB1, SMARCE1, DPF1/2/3, and ARID1/2; ncBAF uniquely localizes to CTCF 

sites and promoters, and ncBAF exhibits distinct gene regulation compared to the other two 

forms of mSWI/SNF complexes(64). Because tumor cells depend on ncBAF for proliferative 

maintenance in cancers driven by core cBAF subunit perturbations (e.g., EpS and MRT), the 

ncBAF-specific subunits GLTSCR1/GLTCR1L and BRD9 are potential targets for synthetic 

lethality(64).

Exome sequencing studies have revealed that the genes encoding the mSWI/SNF complex 

subunits are collectively mutated in >20% of cancers(65), as well as several developmental 

disorders (Table 1). Notably, some subunits frequently undergo mutation in specific cancer 

types; the existence of these driver mutations indicates that aberrant mSWI/SNF complexes 

lacking specific subunit functions can cause oncogenic transformation in specific cellular 

lineages(65,66). SMARCB1, encoding the INI1/BAF47/hSNF(65) protein, is a core subunit 

of both the cBAF and PBAF assembly forms of mSWI/SNF complexes. The loss of 

immunohistochemically-detectable expression of SMARCB1 occurs in ~98% of soft tissue/

kidney MRT and brain ATRT cases, >90% of EpS cases, and other bone and soft tissue 

tumors with epithelioid or rhabdoid morphology(15,67–70). In the context of MRT, the loss 
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of SMARCB1 lowers the affinities of mSWI/SNF complexes for chromatin, significantly 

reducing the occupancy of aberrant mSWI/SNF complexes on enhancers and bivalent gene 

promoters; these changes lead to the repression of key genes involved in cell differentiation 

and tumor suppression(14). Although the loss of SMARCB1 is suspected to play a key 

role in EpS pathogenesis, preliminary studies suggest that SMARCB1 rescue may not 

completely inhibit progression in models using stably transfected cell lines(14). Whereas 

98% of MRT cases exhibit biallelic inactivation of SMARCB1, as well as a stable genome 

with a low mutational burden(21), genome-wide studies of EpS have revealed the loss of 

SMARCB1 protein through several alternative mechanisms involving genomic complexity 

and high mutation rates(8,16,45). These findings suggest that, in addition to the loss of 

SMARCB1, other signaling pathway mutations may contribute to EpS pathogenesis.

6. Early clinical trials and targeted therapy

As recently reviewed elsewhere(71,72), conventional therapeutic options for patients with 

EpS provide limited benefit, with only 15–27% of overall responses in first-line therapy, and 

a median duration of response (mDOR) of 3–6 months. Although this has been improved 

by tazemetostat, an EZH2 inhibitor (EZH2i) (25% responses in first-line therapy with a 

mDOR of 9.5 months)(73), the vast majority of tumors remain resistant to this therapy, 

thereby supporting the early enrollment of patients in clinical trials that evaluate innovative 

complementary therapeutic approaches.

Immune therapies:

Although SMARCB1-deficient tumors show a low tumor mutational burden (TMB), EpS 

tend to highly express PD-L1 and have extensive cytotoxic T cell infiltration(74,75), 

which are predictive factors of response to checkpoint inhibitor therapy. In line with this 

observation, tumor responses to agents targeting the PD1/PD-L1 axis have been reported 

in several SMARCB1-deficient sarcomas, including at least 5 EpS(76), notably as part 

of early phase clinical trials (partial response on pembrolizumab(77) or in the form of 

case reports(74,78,79). Most recently, results from the AcSé Pembro trial, which evaluated 

pembrolizumab in ultra-rare sarcoma, reported one complete response and three prolonged 

stable disease, out of six EpS patients(80). Noteworthy, three (out of 12) patients with 

SMARCA4-deficient sarcomas or MRT also presented prolonged partial responses, overall 

suggesting increased sensitivity of SWI/SNF-defective sarcomas to anti-PD-1 antibodies. 

Intriguingly, despite presenting a near terminal disease and prior EZH2i treatment, a patient 

had an unexpected complete response which was prolonged over 11 months on nivolumab 

and ipilimumab therapy (81). Whether previous EZH2i exposure plays a role in this 

deserves further exploration. Several preclinical results and clinical observations suggest 

that EZH2 inhibitors have immunomodulatory properties that could synergize with immune 

checkpoint blockers targeting the PD1/PD-L1 axis (82–84). This is currently being evaluated 

in some academic clinical trials (NCT04705818, NCT05407441). Ongoing clinical trials 

that evaluate targeted therapies or immune therapies for EpS are currently summarized 

in Table 2. Further studies are required to determine the role and sequencing of targeted 

therapy (e.g. EZH2i and pazopanib).

Grunewald et al. Page 9

Clin Cancer Res. Author manuscript; available in PMC 2024 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT04705818
https://clinicaltrials.gov/ct2/show/NCT05407441


Beyond immune checkpoint inhibitors (ICI), cell therapy may also bring benefit in EpS. 

A case report showed promising outcomes in a patient with advanced EpS who received 

autologous immune enhancement therapy based on activated and expanded NK cells and 

T cells(85). Although NY-ESO-1 and MAGE-A4 antigens have been frequently detected 

in various soft-tissue sarcomas(86,87) and clinical trials with engineered T cell receptors 

(CAR-T cells) are currently underway in synovial sarcoma, CAR-T therapy has not yet been 

investigated in EpS.

Oncolytic viruses (OVs):

OVs are viruses that have been genetically engineered to selectively replicate and kill cancer 

cells(88). In addition to their capacity of directly killing the infected tumor cell, OVs have 

also the capacity to manipulate the tumor immune microenvironment and trigger, in many 

cases, a tumor specific immune response(89). In fact, within the tumor OVs exert their 

anti-tumor activity in many different ways: (1) They infect and replicate in infected cells 

triggering an immunological cell death(90), allowing also tumor antigens release in the 

microenvironment; (2). Due to their own nature and their capability to interact with many 

pathogen recognition receptors (PRRs), OVs can activate resident dendritic cells to pick 

up tumor antigens and migrate to the near lymph nodes to present these tumor-antigens 

to naïve T cells(90); (3) In the tumor microenvironment OVs create a local inflammation 

that results in enhanced T cells recruitment often converting cold tumor into hot ones, 

for this specific reason OVs have been very often associated with immune checkpoints 

inhibitors (ICIs)(91); (4) OVs can be genetically or ‘chemically’ engineered to deliver tumor 

antigens to dendritic cells (DCs) to generate a specific T cell response(92); (5) OVs can 

be genetically engineered to produce immune-active molecules such as cytokines to boost 

particular arms of the immune system(93) or to produce ICIs(94) to further boost and shape 

the anti-tumor immune response(94). Interestingly, tumor response was recently reported 

in a patient with EpS enrolled in a Phase 1 study evaluating nivolumab in combination 

with RP3, a genetically modified herpes simplex type 1 virus (HSV-1) that expresses 

exogenous genes (anti-CTLA-4 antibody, CD40 ligand and h4-1BBL), designed to directly 

destroy tumors and generate an anti-tumor immune response when injected in tumor lesions 

(NCT04735978). Although this isolated case report does not allow distinguishing whether 

the clinical benefit derives from RP3 and/or nivolumab, this suggests that OVs represent 

an interesting and innovative strategy. Further, OV can be easily decorated with tumor 

specific antigens or neo-antigens to direct and concentrate the immune response towards 

the tumor(95,96), a feature can be easily and inexpensively adapted to many tumor types 

(NCT05492682). To this end, we have adapted our antigen discovery pipeline to EpS and 

discovered few new tumor-specific antigens that can be used to decorate oncolytic viruses to 

treat EpS in the future in a tumor-specific or even personalized way.

Targeted therapies:

The registration of tazemetostat in January 2020 has been a breakthrough in the 

treatment of EpS, but primary and acquired resistance still represent a major challenge. 

Activity was originally observed in the dose-escalation Phase 1 trial, where 5/13 patients 

with SMARCB1-negative tumors showed clinical benefit (stable disease or response), 

including two patients with EpS whose disease stabilized on treatment for more than 20 
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months(97). This prompted the design of a Phase 2 trial, which confirmed the activity 

of tazemetostat in EpS, with a 15% overall response rate (9/62 patients)(73). Importantly, 

responses were more frequent in first-line patients (25% ORR), and were durable (median 

duration of 9.5 months). As with any targeted therapy, patients eventually relapsed and 

acquired resistance to EZH2i which represents a major challenge. Several mechanisms 

of rezistance to EZH2i have recently been described, including the non-catalytic activity 

of EZH2(98), the induction of autophagy (99), the loss of NSD1-dependent H3K36me2, 

which is required to activate SWI/SNF target genes(100), and more recently mutations 

from the RB1/E2F axis that uncouple EZH2-dependent differentiation and cell cycle 

control (bioRxiv.2023.02.06.527192). Importantly, the former mechanism was recently 

described in patients, with a primary resistance sample harbored CDKN2A/2B inactivating 

mutations, and two acquired resistance samples showed a missense mutation of EZH2Y666N, 

and a bi-allellic loss of function mutation in RB1, respectively. Similarly, primary or 

acquired resistance tumors showed increased gene expression of S/G2/M-phase associated 

Gene Ontology pathways, suggesting the decoupling of proliferation and PRC2-regulated 

differentiation. Some of these resistance mechanisms may be addressed by inhibiting EED, 

the scaffold subunit of the polycomb repressive complex 2 (PRC2): the EED inhibitor 

MEK683 recently showed a 15% overall response rate (ORR) in a series of 14 EpS patients 

(of whom 80% received at least one prior therapy), with 35% of patients being treated 

for > 1 year(101). Further, small molecules that inhibit both EZH1 and EZH2, such as 

valemetostat, CPI-1205, or HH2853, may also be additional benefit. At ASCO 2023, a very 

promising response rate of 28% (10/32 patients, including one complete response lasting 

more than 270 days), was reported in the phase 1 trial evaluating HH2853 in pre-treated EpS 

patients (NCT04390737). Disease control rate was 78%. Although this EZH1/2 inhibitor 

displayed a higher rate of gastro-intestinal and hematological toxicities than tazemetostat, 

this supports that dual EZH1/2 inhibitors may be more potent than first-generation EZH2 

inhibitors. Beyond targeting PRC2, other therapies that exploit intra-complex synthetic 

lethality, such BRD9 degradation (NCT05355753, NCT04965753), may also bring benefit in 

EpS(64).

7. Translational research and disease models

In EpS, most of the existing models represent the proximal type, reflecting its biological 

aggressiveness compared to the distal type, with inherent challenges in generalizing these 

findings to all EpS. However, the characteristics of the original tumors remain unknown 

in some models. An extensive number of EpS cell lines (2D or 3D) has been established 

through years and recently characterized(102,103) highlighting the differences between ES 

subtypes as well as age of patients(45) of which most were summarized in a prior review in 

2015(104).

Since then, several new cell lines, PDX, organoid derived models (PDO: patient derived 

organoids; ODX: organoid derived xenografts) have been published that have already proven 

invaluable to perform functional experiments within conditions closer to the physiological 

tumor environment, summarized in Table 3. However, relatively few pediatric cell lines 

or xenograft models exist for investigation. One proximal-type PDX model (ES-1) with a 

corresponding 2D cell line was recently characterized and confirmed to fully recapitulate 
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the clinical tumor of origin and was exploited to comparatively assess the effectiveness 

of the EZH2 inhibitor EPZ-011989, doxorubicin-ifosfamide combination and gemcitabine, 

showing similar anti-cancer activity of these agents(99). Yet, immune-competent models are 

still lacking which hampers the generation and testing of new hypotheses on the immune 

infiltrates in EpS and the effect of different approaches, such as chemotherapeutics, targeted 

therapies and immune therapy, to boost an immune response.

8. Current state-of-the-art for translational research on EpS including the 

tumor microenvironment and extracellular vesicles

The tumor microenvironment (TME), which includes immune cells, stromal cells, 

vasculature, and extracellular matrix (ECM), plays a diverse and complex role in tumor 

progression(105). Until recently the characterization of the immune microenvironment of 

EpS has been limited to case reports. Kodet et al. identified lymphocyte clusters (CD20+) 

and macrophages (CD68+) in a portion of pediatric EpS samples(106). Gong et al. showed 

the presence of tumor infiltrating lymphocytes (CD3+/CD4+/CD8+) and macrophages 

(CD68+/CD163+) in an adult patient who responded to camrelizumab(78). A recent genomic 

study performed on a large cohort of SMARCB1-deficient neoplasms (18 EpS, 40 MRT, 

49 ATRT) focused on immune cell deconvolution from RNA sequencing datasets(53). 

Their results showed a predominance of M2 macrophages and CD8+ lymphocytes in the 

TME of these tumors, further supporting EpS being an immunogenic neoplasm that may 

benefit from inmmune checkpoint inhibitors. With increasing evidence that the immune 

composition is associated with treatment response and patient outcomes in other sarcoma 

subtypes, studying the immune activity in EpS may have implications for clinical decision-

making(107). The ECM remain largely unstudied in EpS(108), however Rasmussen et 

al. identified gene modules associated with ECM and cell adhesion to be differentially 

expressed between proximal and distal EpS at the transcriptomic level(45). More recently, 

extracellular vesicles have been shown to mediate interactions between tumor cells and 

TME, promoting tumor-specific processes(109). Using an EpS cell line model, Aoki and 

colleagues found that sarcoma cells promote invasion and metastasis by releasing CD147 

as microvesicles, which stimulates the production of matrix metalloproteinases (MMPs) 

by fibroblasts in the TME(110). However, the full diagnostic and prognostic potential of 

extracellular vesicles in EpS is yet to be explored.

9. Translational research on EpS – patients’ perspective

From the perspective of patient organizations, there are three main areas for action.

Research priorities:

Defining and better understanding the biology of EpS in terms of the two types distal 

versus proximal, or other molecular classification, is needed. New research and treatment 

approaches also must be explored, most notably immunotherapies such as ICI and oncolytic 

viruses, precision oncology, and nano-based therapies. In addition to these approaches, the 

role of the cell-of-origin, microbiome and the tumor microenvironment needs to be explored. 
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Finally, developing biomarkers that would allow early detection of primary tumors or 

metastasis, as well as understanding mechanisms of EpS tumor cell spreading are required.

Research organization:

From a patient’s perspective, international cooperation between researchers and clinicians 

is key to success. It is of outmost importance to establish a centralized biobank making 

tissue samples physically and digitally available to the translational research community as 

a basis for development of new cell lines, mouse models, and organoids. The connection 

will be strengthened through translational and interdisciplinary expert meetings. Another 

opportunity for intensified collaboration is the use of existing international research/clinical 

platforms.

Contribution of patient organizations:

Patient organizations provide the link between the stakeholders: researchers, clinicians, and 

patients. They provide awareness and education about the disease and ensure that it is 

detected in time and that delayed or incorrect diagnoses are avoided. They are committed to 

ensure that patients receive the best possible treatment and assist researchers in collecting 

biospecimens. Providing a specialized website with information about the disease for 

patients, physicians, and researchers is a central component of their work.

10. Open questions and future directions for translational research on 

EpS

Opportunities for expanded biological and drug development studies in EpS very much 

depend upon patient-clinician-research laboratory collaborations to build a single-site or 

federated tumor bank for expanded genomic landscape and proteomic studies, as well as cell 

line and patient-derived xenograft model development. For the latter, distal and/or pediatric 

models are especially few and critical for new development. Although tazemetostat has 

shown efficacy in EpS, its exact mechanism of action in patients is still only partially 

understood. In order to move forward, we collectively think that elucidating resistance 

mechanisms using sequential patient biopsies, studying cross-resistance mechanisms with 

next-generation EZH1/2 inhibitors, as well as deciphering potential immunomodulatory 

effects of EZH2i in patients, will be crucial in designing future rationale combinatorial 

approaches, notably with immune therapies, to hopefully eventually cure patients. Once the 

latter are understood, other drugs might one day be combined for synergy, tumor regression, 

and eventually potential cures for patients’ benefit.
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Fig. 1 |. 
Timeline of EpS indicating major events/discoveries
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Fig. 2 |. 
Prototypical pathologic, immunohistochemical and molecular features. A–D: classic/distal-

type. E–G: proximal-type. H: FISH analysis showing SMARCB1 (red probe) homozygous 

deletion using EWSR1 as the reference 22q12 control probe (green).
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Fig. 3 |. 
SMARCB1 genetic alteration types and molecular detection methods
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Fig. 4 |. 
Scheme of SWI/SNF complexes
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Fig. 5 |. 
Comparative histologic appearance of EpS and related neoplasms. A–C: Epithelioid 

MPNST. D-F: Epithelioid schwannoma. G–I: Soft tissue myoepithelial tumor. J–L: Poorly 

differentiated chordoma. M–N: MRT.
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Table 1 |

List of SWI/SNF complex members and known alterations in cancer

Subunit mBAF subgroup Representative cancer types
with SWI/SNF subunit alteration References

Gene Protein cBAF PBAF ncBAF

Core module

SMARCB1 BAF47 ○ ○
Malignant rhabdoid tumor
Epithelioid sarcoma
Schwannomatosis

(7,15,19,111–
113)

SMARCC1/2 BAF155/BAF170 ○ ○ C1

SMARCE1 BAF57 ○ ○ Multiple spinal meniningioma (114,115)

SMARCD1/2 BAF60A/60B ○ ○ D1

ARID1A/B BAF250A/B ○

Ovarian clear cell carcinoma
Endometrial clear cell carcinoma
Bladder cancer
Neuroblastoma

(116–120)

ARID2 BAF200 ○ Non-small cell lung cancer
Hepatocellular carcinoma (121,122)

GLTSCR1/1L GLTSCR1/1L ○

DPF1/2/3 BAF45B/D/C ○

PHF10 BAF45A ○

BRD7 BRD7 ○

BRD9 BRD9 ○

ATPase module

SMARCA2/4 BRM/BRG1 ○ ○ ○

Small cell cancer of the ovary, 
hypercalcemic type
SMARCA4-deficient thoracic 
sarcoma

(33,34,43,123)

BCL7A/B/C BCL7A/B/C ○ ○ ○

ACTB ACTB ○ ○ ○

ACTL6A/B BAF53A/B ○ ○ ○

SS18/L1 SS18/L1 ○ ○ Synovial sarcoma (SS18-SSX 
fusion) (124)

PBRM1 BAF180 ○ Clear cell renal carcinoma, 
cholangiocarcinoma (125)
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Table 2 |

Summary of ongoing trials including EpS patients

NCT identifier Phase Treatment Study population Setting

NCT05407441 I/II Tazemetostat (EZH2i)
Nivolumab (aPD-1)
Ipilimumab (aCTLA-4)

AT/RT SMARCB1-deficient primary CNS malignant 
tumors, SMARCA4-deficient primary CNS malignant 
tumors, MRTs, rhabdoid tumor of the kidney (RTK), 
EpS, chordoma

Metastatic / 
Advanced

NCT04416568 II Nivolumab (aPD-1)
Ipilimumab (aCTLA-4)

MRT, RTK, EpS, chordoma (poorly differentiated or 
de-differentiated), AT/RT, other SMARCB1-negative 
malignant tumors (with PI approval)

Metastatic / 
Advanced

NCT04204941 III Tazemetostat (EZH2i) + 
doxorubicin vs Doxorubicin 
+ placebo

Advanced soft tissue sarcoma
Advanced EpS

Metastatic / 
Advanced

NCT05286801 II Atezolizumab (aPD-L1)
Tiragolumab (aTIGIT)

SMARCB1- or SMARCA4-deficient tumors Metastatic / 
Advanced

NCT04390737 I/II HH2853 Solid tumors and lymphoma Metastatic / 
Advanced

NCT05415098 I APG-5918 (EEDi) Nasopharyngeal Carcinoma, castration resistant prostate 
cancer, gastric cancer, ovarian clear cell carcinoma, 
mesothelioma, sarcoma, non-Hodgkin lymphoma B Cell 
Lymphoma, EpS

Metastatic / 
Advanced

NCT03069378 II Talimogene Laherparepvec 
(T-VEC)
Pembrolizumab (aPD-1)

Sarcoma, EpS, cutaneous angiosarcoma Metastatic / 
Advanced

NCT05142631 II Frucidinib (aVEGFR) desmoplastic small round cell tumor, epithelioid 
hemangioendothelioma, solitary fibroma or second-line 
and posterior line treatment of angiosarcoma.

First-line 
metastatic / 
advanced

NCT05355753 I / II CFT8634 (BRD9 degrader) SMARCB1-null tumors Metastatic / 
advanced

NCT04965753 I FHD-609 (BRD9 degrader) Synovial sarcoma, SMARCB1-null tumors Metastatic / 
advanced

NCT04705818 
(CAIRE)

II Tazemetostat (EZH2i)
Durvalumab (aPD-L1)

Pancreatic adenocarcinoma, colorectal cancer solid 
tumors with tertiary lymphoid structures, soft tissue 
sarcoma

Metastatic / 
advanced
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Table 3 |
Summary of published EpS PDX, organoids and cell lines since 2015

(for prior models before 2015 see reference(104))

PDX Cell 
line

PDO/OD
X Subtype Age Sex primary 

site Metastatic

Cell 
line/P

DX 
source

Year INI1 
status

Additional 
mutations

Investigator/
Reference

STSP1 STSP1 proximal unknown F groin yes 
(lymphatic) primary 2022 unknown NF1 Wang et al.

(126)

ES-1-PDX ES-1 distal 28 M forearm primary 2019 lost Stacchiotti et 
al.(99)

J000078604 proximal 22 F
Chest 
wall 

muscle
primary 2019 lost BCR, 

CDKN2A
Berlow et al.

(127).

unknown 2018 Lu et al.
(128)

COA-171 unknown (only meeting abstract available) 2022 Hutchins et 
al.(129)

OICI-
EPS-0530 distal 22 M Perineum no 2022 lost Wakamatsu 

et al.(130)

OICI-
EPS-0486 distal 50 M Prox 

thigh yes (s.c.) 2022 lost Wakamatsu 
et al.(130)

PDO, patient derived organoids; ODX, organoid derived xenografts; PDX, patient derived xenografts
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