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Abstract

Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance
imaging-based studies have helped advance our understanding of its effects on brain network
activity. We review how predictive modeling, using measures of functional connectivity and
symptoms, has helped reveal key insights into this condition. We discuss how different prediction
frameworks can further our understanding of the brain-based features that underlie complex
autism symptomatology and consider how predictive models may be used in clinical settings.
Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases,
that require consideration within the context of this condition. We close by suggesting exciting
future directions for predictive modeling in autism.

Autism spectrum disorder (hereafter, autism) is a neurodevelopmental condition
characterized by difficulties with social communication and interaction as well as restricted
and repetitive behaviors (1) and atypical responses to sensory information. There are limited
empirically validated treatments for autistic features, especially with respect to medical
interventions. Methods that improve our understanding of the brain-based characteristics
underlying this condition could ultimately guide clinical research and practice by identifying
targets for individualized interventions.

Functional magnetic resonance imaging (FMRI) connectivity analyses (2) have yielded
tools that localize brain circuits supporting specific behaviors. These approaches can be
used to infer brain-behavior relationships at the individual level that are validated through
predictive models. Prediction-based approaches offer a statistically rigorous framework
(by using separate data for model training and testing) to study individual differences
(3-5), particularly in neurodevelopmental conditions (6). Here, we assert that models have
two broad areas of utility in autism: 1) to deepen our understanding of how functional
connections coalesce to give rise to the complex autism symptomatology (hereafter,
biological insight) and 2) to potentially assist in diagnosis, prognostication, intervention
planning, and monitoring of intervention response (hereafter, clinical utility) (7) (Figure
1A).
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With these two areas in mind, we review the autism predictive modeling literature, focusing
on studies using MRI functional connectivity data. Consistent with the lifelong nature of
autism, we consider studies across a wide range of participant ages (6 months to 65 years).
After detailing autism-specific study design considerations, we discuss three predictive
modeling frameworks: case-control classification, dimensional prediction, and subtyping
applications (Figure 1B). In each section, we emphasize brain-based insights and identify
areas in which we expect predictive models to yield clinical utility. Because brain-based
insights underlie clinically useful models (and vice versa), we weave their discussion
together throughout the text to stress their interdependence. The goal of this review is to
highlight key papers of interest and discuss conceptual considerations that can make autism
predictive models more useful (8). Our goal is not to perform an exhaustive, systematic
review of machine learning approaches/algorithms in autism prediction studies; the reader is
referred to (9-11) for comprehensive reviews summarizing recent progress.

AUTISM-SPECIFIC CONSIDERATIONS FOR PREDICTIVE MODELING

Predictive Models Offer Biological Insight and Potential Clinical Utility

For the purposes of this review, predictive modeling encompasses approaches using statistics
to relate MRI functional connectivity measures to phenotypic measures (diagnostic status/
symptoms) (4) (see the Supplement for background about predictive modeling/machine
learning). These methods separate a dataset into training and testing samples, then apply
cross-validation or use external data to test the model. Here, we place emphasis on the
functional features (connections and networks) selected through predictive modeling and
the potential biological insights/clinical relevance they offer. For example, consider a model
implicating connections in frontoparietal areas as important for social attention. Such a
model yields biological insight into a complex phenotype by localizing circuits. The model
may show clinical utility in the future by predicting which individuals are most likely to
respond to behavioral interventions.

Balancing Large Sample Sizes, Concerns About Data Decay, and Site Effects

Predictive modeling studies in participants with autism (12) and neurotypical participants
(13) have demonstrated that large samples are needed to obtain reproducible results. In the
autism field, using large datasets generally means using data from the Autism Brain Imaging
Data Exchange (ABIDE) (14,15) and/or the European Autism Interventions Multicenter
Study for Developing New Medications (EU-AIMS) (16). A concern with these samples

is data decay (17) and is related to sensitivity and specificity (concepts of relevance for
case-control classification studies; sensitivity is an algorithm’s ability to correctly classify
individuals with autism who actually have the condition; specificity is an algorithm’s ability
to correctly classify neurotypical individuals who do not have the condition). Data decay
means that over time, the capacity of a sample to reveal new, statistically significant
relationships (such as sensitivity/specificity) decreases as the number of statistical tests
performed in the sample increases (17). Concerns about data decay are not unique to

autism research; a similar issue has been noted for those using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (18).
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In addition, ABIDE and EU-AIMS comprise data from multiple sites. Care must be taken to
ensure that site effects are not confounding results (4); ComBat is one method investigators
have used to minimize site effects (19,20). To help further mitigate concerns about data
decay and site effects, other samples could be used to further validate predictive models
(21), as has been done with other phenotypes (22). Using multiple datasets to ensure

that results hold across samples is one way to increase generalizability of results (23).

We describe these issues to increase awareness; we strongly advocate for openly sharing
datasets.

Confounds, Tolerability of the Scanning Environment, and Consequences for Predictive

Modeling

Confounds, or variables that relate to both the independent and dependent variables in a
model, can drive spurious statistical relationships and lead to false conclusions. In-scanner
head motion is a notorious confound in measures of functional connectivity (24) and is

a concern in the autism field (25). Performing global signal regression decreases motion
artifact (26) and strengthens brain-behavior relationships in those with autism (27) and

in neurotypical individuals (28). Implementing global signal regression is not without
controversy (29); see (30) for a full discussion, including how global signal regression can
alter functional correlation structure and affect between-group comparisons.

Barring a consensus approach to remove the effects of head motion, individuals with high-
motion data are often excluded in model building (27,31). This practice influences the
participants included in predictive modeling studies. Relatedly, individuals with autism who
tolerate fMRI scans and produce low-motion data tend to have fewer language/cognitive
difficulties and higher 1Qs. These facts must be kept in mind when considering the
feasibility of using predictive modeling in clinical settings. To diversify individuals with
autism that meet data quality criteria, the length of the imaging protocol is often minimized
by shortening functional scans (<5 minutes) and eliminating task scans. The trade-off is the
limited scope of the data obtained. Fewer, shorter scans result in less reliable functional
connectomes (32), and resting-state data tends to generate poorer prediction performance (in
neurotypical individuals) (31). Exact solutions to confounds depend on analysis goals, but
we point the reader to (33) for an examination of confounds in the UK Biobank (and ways to
address them). To increase reliability of functional connectomes, we recommend collecting
more scanning data (both task and rest data) and/or using methods to increase the quality of
scanning data [Framewise Integrated Real-time MRI Monitoring (34), mock scan protocols
(35), Inscapes (36)].

Comorbidities and Phenotypic Overlap

Individuals with autism have high rates of co-occurring conditions, including attention-
deficit/hyperactivity disorder (ADHD) (37), anxiety disorders (38), and intellectual
disabilities (39). Comorbidities can pose challenges for researchers, including how to
covary for different diagnoses. Linking analytic approaches (i.e., dimensional and subtyping
approaches) is one solution. For example, individuals with and without anxiety symptoms
could be grouped into a priori subtypes [as in (40)], and separate dimensional models could
be generated to predict autism symptoms in each group. Approaches allowing participants
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to express subtype characteristics to varying degrees (multidimensional subtyping) (41) have
also shown success in parsing heterogeneity.

Sex Imbalance in Autism and Sex-Specific Effects in Predictive Modeling

Sex effects play a role in predictive modeling in autism. There is an estimated 3:1
male:female imbalance in diagnoses (42), and there are sex differences in the neurobiology
of autism (43). Females and males tend to exhibit different symptoms, often leading

to missed diagnoses in females (44). Further, models predicting fluid intelligence in
neurotypical individuals show higher accuracies when generated separately for each sex,

and the functional features underlying the models are sex specific (31). Sex specificity aligns
with the high degree of accuracy with which sex can be predicted using connectivity data

in neurotypical individuals (45). Therefore, investigators should include equal numbers of
males and females in analyses (when feasible) and/or build sex-specific models.

We next highlight how all of these factors can impact the biological and clinical utility
of predictive modeling in autism as we review three different approaches: case-control
classification, dimensional phenotype prediction, and subtype-specific prediction.

CASE-CONTROL CLASSIFICATION: THE CASE FOR FOCUSING ON
DIAGNOSIS

Case-control classification studies (12,46-68) constitute most of the prediction literature
in autism (Table 1). A strength of these studies is their unambiguous nature: participants
are either correctly classified or not. Another strength is the large number compared with
dimensional and subtyping prediction studies, allowing for broad trends to be observed.
Below, we highlight the biological and clinical utility of a few of these studies through a
developmental lens (69), spanning infancy into older adulthood (65+ years).

Brain-Based Features Implicated in Autism Classification Differ Across the Life Span

Autism is a lifelong condition, with symptoms changing across an individual’s lifetime (70).
The developmental changes are reflected in the neurobiological correlates differentiating
individuals with autism from neurotypical participants. For instance, using a Gaussian
kernel support vector machine and resting-state data from ABIDE, Kazeminejad and Sotero
(58) have shown that the functional features most discriminative of autism status in 5-

to 15-year-olds (connections involving the parietal and ventrolateral prefrontal cortices)
differ from those most discriminative in 15- to 30-year-olds (with more connections
involving the dorsolateral prefrontal cortex and temporal cortex). Across studies, the general
theme of developmental effects holds: the functional network organization discriminating
autism cases from neurotypical participants seems to be different at different stages of the
lifespan (58,71,72). Differences across the lifespan also hold in case-control studies using
T1-weighted structural MRI data (73) and align with the dynamic nature of brain maturation
(74,75).

From this evidence, we draw two conclusions. First, predictive models that do not generalize
across different age groups should not be viewed as model failures (4). Age-specific models
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for autism case-control classification might be necessary to maximize model utility. This
observation is in line with longitudinal work conducted in children (11-18 years old),
suggesting that functional networks change at different rates among those with autism and
those without (76). Second, given the growing evidence, we can make some overarching
observations and devise new hypotheses for testing. For instance, maturational trajectories
of cortical areas tend to follow a hierarchical sensory-association axis (74). Unimodal
sensory areas mature during childhood, and heteromodal association areas mature later in
adolescence and young adulthood. Disruptions have been observed in this hierarchy in
autism (77,78), making it intriguing to consider this axis in the context of classification.
Perhaps developmental deviations along this functional axis could be used to more
accurately delineate between individuals with and without autism? In the future, researchers
could investigate this hypothesis in large datasets while keeping in mind autism-specific
predictive modeling issues (particularly data decay; most recent case-control studies have
been conducted in ABIDE) (Table 1).

Clinical Utility: Toward Early Diagnosis

A major push of clinically relevant research is to identify individuals with autism using
objective biological markers at early stages of development (Figure 2), when support
services can be most effective (79) [see (80) for a review of imaging markers of autism

in infants]. Accurate prediction of case-control status using functional connectivity data has
been demonstrated in individuals under 5 years of age (81). In a study of even younger
ages, Emerson et al. (48) used functional connectivity data from 6-month-old infants imaged
while sleeping and showed that a support vector machine could be used to predict autism
status at 24 months of age (Figure 3A). The network models driving correct classification
were complex (Figure 3B), comprising short- and long-range connections distributed
across the brain, with many of these clustered in the parietal cortex. The neuroanatomical
complexity of successful models is a theme we will note throughout this review.

Evidence that autism diagnoses can be predicted at young ages is promising and sets the
stage for imaging even earlier in life. Findings from genetic studies suggest that changes in
transcriptional pathways specific to autism may be evident during gestation (82). Given the
advent of fetal imaging (83), future predictive models may be generated to gauge autism
likelihood prenatally, thus enabling support services to be made available at birth (see the
Supplement for a discussion of the ethics of such a scenario and the ethics of predictive
modeling in general).

DIMENSIONAL PREDICTION: ACCOUNTING FOR COMPLEX
SYMPTOMATOLOGY

Symptoms in a number of psychiatric conditions (84), including autism, exist on a
continuum, and the line between what constitutes adaptive versus divergent behavior is

often unclear. From a biological perspective, dimensional approaches can be used to
characterize function in specific behavioral domains and identify underlying patterns of
brain connectivity. The implicated functional circuits can then be monitored clinically
following interventions (85). Despite the advantages, there are only a handful of dimensional
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prediction studies (27,54,78,86-89) (Table 2). Below, we highlight work of interest in two
areas: prediction of symptoms and prediction of cognitive phenotypes important for adaptive
function.

Predicting Autism Symptoms

One of the first works demonstrating dimensional symptom prediction was conducted by
Plitt et al. (87). In a sample of adolescents and young adults, the authors used resting-state
connectivity data from a priori networks (default mode [DMN], salience, and frontoparietal)
to predict (using ridge regression) changes in social behavior 3 years later. This early report
was cause for excitement, in that a prediction approach could be used to interrogate the
functional connections associated with a complex symptom.

Work since has used larger samples from ABIDE to search for brain-wide correlates of
symptoms. For example, using resting-state data and connectome-based predictive modeling,
Lake et al. (27) generated network models predictive of Social Responsiveness Scale (SRS)
scores, as well as separate models predictive of Autism Diagnostic Observation Schedule
scores (Figure 4A, B). While the two models shared some common regions (cerebellum
and subcortical areas, regions increasingly recognized as important in cognitive and social
processes) (90), they were largely distinct. The fact that different functional circuits were
detected is encouraging: despite both instruments measuring social ability, SRS and Autism
Diagnostic Observation Schedule scores are only somewhat correlated (27), arguing that
potentially subtle relationships between brain and phenotype are detectable using predictive
methods.

Once built, models can be applied to different datasets to test generalizability and to
determine if different populations or phenotypes share neurobiological correlates. For
example, Lake et al. (27) applied a connectome-based predictive modeling network built

to predict SRS scores in individuals with autism (generated in ABIDE) to an independent
sample of children with ADHD (ADHD-200) and found that the model predicted symptoms
of inattention (Figure 4C). This is of note because of the high co-occurrence of autism

and ADHD (91) and because of the brain regions (cerebellum, subcortical areas, and

DMN) present within the model, which have been implicated as important for mediating
aspects of internal and external attention (92). The DMN has also been found to play

a significant role in theory of mind and making social inferences, processes commonly
atypical in autism [reviewed in (93,94)]. Through a combination of two network models (89)
—one for predicting communication, the other for predicting social interaction ability—the
DMN also emerged as key for predicting social affect in autism. These results suggest that
despite the complexity of symptoms in autism, it is possible to home in on neurobiological
commonalities across studies.

Predicting Phenotypes Relevant for Adaptive Functioning

An avenue of clinical interest is generating dimensional predictive models for adaptive
functioning. To this end, Rohr et a/. (88), using resting-state data from ABIDE

and connectome-based predictive modeling, generated network models predictive of a
component of adaptive functioning—the ability to resist inappropriate behavioral impulses.
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Their behavioral inhibition model consisted of distributed, whole-brain functional features,
mostly within and between default mode, somatomotor, visual, and cerebellar areas,
consistent with other work (92). These findings point to the feasibility of identifying relevant
markers that can be tracked to measure improvement after behavioral interventions.

The notion of monitoring adaptive function in response to interventions goes hand in hand
with predicting individual outcomes in the future (6,95). The work of Plitt et a/. (87)
suggests that this is possible for individuals with autism, in that changes in overall adaptive
function could (remarkably) be predicted 3 years after imaging. Normative modeling
approaches (96) have proven useful in disentangling heterogeneity in autism brain-behavior
relationships using structural (97,98) and functional (99) MRI data; future work could apply
these models to generate longitudinal phenotypic predictions. Future studies could also take
a multidimensional approach to predict combinations of different phenotypes (86), as well as
incorporating measures of functional connectivity dynamics (100).

SUBTYPING: SIMPLIFYING COMPLEXITY BY FINDING COMMONALITIES

There has been interest in identifying autism subtypes [reviewed in (101)]. This work
aims to identify homogeneous clusters to interrogate the biological basis of each subgroup,
offering more specific information for potential interventions. The existence of distinct
clusters in autism is supported by results in multiple modalities, including structural

MRI (102,103), electroencephalography (104), eye-tracking (105,106), and symptom-level
measures (70,107).

Initial Efforts at Subtyping Connectomes

Subtyping methods based on clustering functional connectomes suggest at least two or
three autism subtypes (41,108-112) (Table 3). Consistent with the distributed brain features
identified by dimensional models, subtyping methods indicate that there is no focal brain
area differentiating subtypes; brain-based features distinguishing subgroups are complex
and spatially distributed. However, the DMN and the frontoparietal network (implicated in
dimensional models) (27,78,89) seem to be most consistently involved in discriminating
subtypes (101). To date, the majority of studies have been conducted in ABIDE and tend

to be male focused. Future work should assess the reliability/generalizability of subtypes in
different datasets, include more female participants, and use a combination of rest and task
data (31,113). While most studies have focused on identifying nonoverlapping subtypes,
sophisticated analytic approaches allowing participants to express different subtypes to
varying degrees—dimensional subtyping—are beginning to be reported (41) and are reason
for enthusiasm.

After connectome-based subtypes have been identified, they are typically validated

by determining if some other measure, usually symptom information, differs between
subgroups (114). For example, Easson et al. (109) applied A-means clustering to resting-
state functional connectivity matrices from ABIDE and observed two distinct subtypes
(Figure 5). The subtypes were composed of a mixture of individuals with autism and those
without. Both subtypes showed wide-scale differences in connectivity. The hallmark feature
of the first subtype was stronger connectivity between the DMN and cingulo-opercular,
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somatomotor, and visual networks. The second subtype exhibited stronger within-network
connectivity. Further, each subtype showed differences in brain-behavior relationships. That
is, unique connectivity signatures in each subtype differentially predicted SRS and Autism
Diagnostic Observation Schedule scores.

Toward Subtyping of Brain-Behavior Predictive Models

The fact that the subtypes identified by Easson et a/. exhibited distinct brain-behavior
relationships hints at the possibility of subtyping brain-behavioral predictive models.
Crucially, these are subtypes based not on brain or phenotype alone, but on the relationship
between them (112), setting them apart from work assuming that a single brain-phenotype
predictive model is adequate across a sample (115). The groupings revealed by model-based
subtyping may help to uncover clusters of individuals crossing diagnostic and demographic
boundaries. In addition to data-driven approaches, hypothesis-driven model-based subtypes
might also prove useful, whether based on symptom profiles (116,117) or other variables
less expensive to measure, such as biological sex. Overall, the brain-based features derived
through model-based subtyping will help yield insight into the biological underpinnings of
autism (112,116). The phenotypic and demographic features differing across subtypes may
help triage individuals for better care management.

LIMITATIONS

Concern has been expressed about the reliability of functional connections (118). There is
work suggesting that with enough data per participant (>15 minutes/scan, allowing more
reliable estimates of connections) (32), connectomes between individuals with autism and
neurotypical individuals become quite similar (119). Most of the studies reported here
include only a 5-minute scan. More work could be conducted to determine how increasing
the amount of data affects predictive models, in terms of both accuracy and reliability (120).
Aside from reliability, the precise biological nature of a functional connection remains
elusive, a concern that must be acknowledged in predictive modeling studies.

An issue with case-control studies is the grouping of individuals into a single category.
Individuals with autism have unique symptom profiles and complex neurobiological
correlates of symptoms. Categorical diagnoses render it difficult to determine how specific
aspects of a phenotype are supported by underlying brain circuits (84). Further, predicting a
diagnosis is insufficient clinically; more individual-level information is needed to optimize
care.

Concerns have been raised about dimensional studies in psychiatry (121,122). For example,
severe communication difficulties in a person with autism might be the result of a

different neurobiological process than the process supporting communication capacities in a
neurotypical individual; it might be incorrect to assume that all individuals can be situated
on a single dimension for a given phenotype (121). Certain dimensional indices (SRS) rely
on parent/self-report measures; such measures may be weakly related to the symptom or
behavioral constructs of interest (123). It is possible that a dimensional approach cannot be
used to model all brain-phenotype relationships (124), and computational constraints might
limit the practicality of dimensional methods due to the curse of dimensionality (122).
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Subtypes in some psychiatric conditions have proved difficult to replicate across datasets
(125,126), and a recent study reported an inability to define reliable subgroups in autism
(127). It will be crucial to continue to test reproducibility and generalizability of autism
subtypes. Additionally, interpretation of subtypes may be complicated by unmeasured,
sample-dependent covariates. Collecting precise and inclusive demographic/clinical data can
be used to correct for confounds (128), although hidden confounds may persist (129).

FUTURE DIRECTIONS AND CONCLUSIONS

We have reviewed how predictive modeling frameworks can offer insight into
neurobiological correlates of autism, as well as potential clinical utility. Presently, case-
control classification studies comprise most of the literature, allowing developmental trends
to be observed. Due to the heterogeneity of individuals with autism, more dimensional and
subtyping prediction studies are needed. All three prediction frameworks can be affected by
the autism-specific modeling considerations discussed here. Classification approaches may
one day enable early diagnoses (perhaps even in utero) using objective, biological data.
Meanwhile, dimensional and subtyping studies may both deepen our understanding of the
brain-based features behind autism and discover means of improving management through
imaging-based prognostication and monitoring of intervention response.

Consistent with the complexity of autism symptoms, brain-based predictive models are
complex and reveal large-scale networks supporting specific behaviors. To aid interpretation
and translation, continuing to collect large datasets is essential (21). Ideally, the datasets
will be broad (large numbers of diverse individuals with and without autism) (71) and deep
(comprising many data modalities) (130). An example of a biological insight gained by

a broad and deep approach is determining if specific genetic signatures underlie different
connectivity phenotypes (131), and elegant work linking genes to complex brain activity
patterns to behavioral phenotypes in autism is beginning to appear (40). A deep, multimodal
focus might offer a marker common to fMRI and functional near-infrared spectroscopy
(132) or electroencephalography (133), offering complementary information that can be
used clinically (and is less expensive and better tolerated by some than fMRI).

Dense scanning approaches—imaging the same participants many times—have proven
useful in neurotypical adults (134). Combined with innovative task paradigms, such as
movie watching (135), dense scanning could provide large amounts of individual-level
data during naturalistic social settings. Such an approach could help autism researchers
better parse participant-specific trajectories (95). Ideally, dense scanning initiatives would
comprise many individuals to maximize the detection of individual differences (see the
Supplement for more about dense scanning in autism).

We do not suggest that the path forward will be easy. While expectations have been high,
fMRI has largely failed to benefit individuals with autism to date. Aside from the difficulty
in producing reliable fMRI results (136), there are numerous points at which findings can
fail to translate (137). Research and clinical priorities do not always align (138), so it will be
essential to maintain open channels between researchers, clinicians, individuals with autism,
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d their caregivers. Going forward, we envision predictive modeling approaches continuing
aid the quest to understand the complex neurobiology of autism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Predictive modeling applications in autism. (A) Prediction-based approaches can serve two
needs in autism research: they can help to disentangle the complex brain-based features
giving rise to autism symptomatology (biological insight) or be used to potentially inform
decisions related to providing care for individuals with autism (clinical utility). Because
brain-based insights and clinically useful models are interdependent, their discussion is
interwoven throughout the manuscript. (B) Three frameworks for prediction-based modeling
using functional connectivity data that we discuss in this review: case-control classification,

dimensional prediction, and subtyping. Dim., dimension.
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Figure 2.
Windows of intervention in autism. The schematic illustrates the clinical utility of correctly

identifying a hypothetical individual with autism and then acting on that information to
provide appropriate support services. The dark line indicates the individual with autism
and the impact of their symptoms (broadly conceived, on the y-axis) over time if no
support services are accessed. If autism is diagnosed early (in childhood and adolescence),
resources can be allocated to the individual and their caregivers (pink and blue dotted
lines, respectively). If correct diagnosis and interventions are delayed, resources can still
be leveraged later in life, although they might be less efficacious. The green shading
indicates the utility of correct diagnosis and allocation of resources; the darker the green
color, the more responsive individuals might be to support services. We stress that this

is a hypothetical example; symptoms might not increase from childhood to adolescence,
and individuals with late diagnoses might not necessarily have more significant symptoms
overall. Indeed, trajectories of symptoms vary across individuals and can vary at different
points in the lifespan.
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Figure 3.
Case-control prediction is possible using measures of infant brain functional connectivity.

(A) Classifying 24-month-olds using 6-month-old imaging data. Classification accuracy
was 96.6%. (B) Post hoc visualization of functional connections and their relationship to
different phenotypic scales. A red line indicates a connection that shows more negative
connectivity in the autism group, whereas a blue line indicates more positive connectivity.
ASD, autism spectrum disorder; CSBS, Communication and Symbolic Behavior Scales;
MSEL, Mullen Scales of Early Learning; RBS-R, Repetitive Behaviors Scale-Revised.
Adapted with permission from (48).
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Figure 4.

Dimensional prediction of autism symptoms. (A) Models predictive of autism symptoms
are built on training data and then validated on left-out testing data within the same

dataset. Predicted symptom scores from this process are shown on the y-axis; observed
symptom scores are shown on the x-axis. (B) Post hoc visualization of predictive functional
features (data are summarized at the node level and are shaded according to degree). (C)
Application of the predictive model derived from autism symptoms to an external dataset
to predict attention-deficit/hyperactivity disorder (ADHD) symptoms in young children.
ADOS, Autism Diagnostic Observation Schedule; BA, Brodmann area; ROI, region of
interest [as defined in (33)]; SRS, Social Responsiveness Scale. Adapted with permission
from (27).
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Subtyping connectomes in autism. (A) Easson et a/. (109) identified two subtypes. Each

is composed of individuals with and without autism. These subtypes exhibit differences

in functional connectivity patterns; an average matrix for each subtype is shown. (B) A
multivariate brain-behavior analysis (partial least squares regression) reveals that subtypes
exhibit unique brain-behavior relationships among a set of key behavioral measures in
autism. ADOS, Autism Diagnostic Observation Schedule; CN, cerebellar network; Comm.,
communication; CON, cingulo-opercular network; DMN, default mode network; FPN,
frontoparietal network; ON, occipital network; RRB, restricted repetitive behaviors; SA,
social affect; SMN, sensorimotor network; SRS, Social Responsiveness Scale. Adapted with
permission from (109).
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