Skip to main content
. 2024 Mar 18;12:RP90502. doi: 10.7554/eLife.90502

Table 1. Comparison of deep learning architectures for apoptosis classification.

Comparative table reporting accuracy, F1, and AUC metrics for a CNN, 3DCNN, Conv-LSTM, and Conv-Transformer. The classification accuracy is reported for static frames or image sequences. The last column shows which cell death study employed the same baseline architecture displayed in the table.

Classifier architecture Frame accuracy Sequence accuracy F1 AUC Study
CNN 74% ± 1.3 NA 0.77 0.779 La Greca et al., 2021; Verduijn et al., 2021
3DCNN NA 91.22 % ± 0.15 0.91 0.924 -
Conv-LSTM NA 97.42% ± 0.09 0.97 0.994 Kabir et al., 2022; Mobiny et al., 2020
Conv-Transformer NA 98.27% ± 0.25 0.98 0.997 Our

CNN, convolutional neural network; NA, nonapplicable.