
INTRODUCTION

Colorectal cancer (CRC) is a significant cause of mor-
bidity and mortality in the world, ranked third most 
common cancer globally in 2012 and expected to reach 
2.2 million by 2030 [1,2]. CRC shows sex differences, at-
tributable to sexual dimorphism (biological differences 

in hormones and genes) and gender differences (non-
biological differences in societal attitudes and behav-
ior) [3]. CRC occurs more frequently in males than in 
females [4] and the incidence and mortality of CRC 
in populations over 65 years old are higher in females 
than those in males, implying that CRC is a major 
health threat among older females [5,6]. Considering 
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Colorectal cancer (CRC) is one of the most common causes of cancer morbidity in both sexes but shows sex differences. 
First, sex-specific differences in tumor recurrence and survival rates have been reported. For example, the development of 
CRC is found about 1.5 times higher and 4–8 years earlier in males compared to females, suggesting the protective role of es-
trogen in the disease. Furthermore, female patients have a higher risk of developing right-sided (proximal) colon cancer than 
male patients, which is known to have more aggressive clinical character compared to left-sided (distal) colon cancer. That 
is, left and right CRCs show differences in carcinogenic mechanism, that the chromosomal instability pathway is more com-
mon in left colon cancer while the microsatellite instability and serrated pathways are more common in right colon cancer. 
It is thought that there are sex-based differences on the background of carcinogenesis of CRC. Sex differences of CRC have 
two aspects, sexual dimorphism (biological differences in hormones and genes) and gender differences (non-biological differ-
ences in societal attitudes and behavior). Recently, sex difference of colon adenoma pathway and sexual dimorphism in the 
biology of gene and protein expression, and in endocrine cellular signaling in the CRC carcinogenesis have been accumu-
lated. In addition, behavioral patterns can lead to differences in exposure to risk factors such as drinking or smoking, diet and 
physical activity. Therefore, understanding sex/gender-related biological and sociocultural differences in CRC risk will help in 
providing strategies for screening, treatment and prevention protocols to reduce the mortality and improve the quality of life. 
In this review, sex/gender differences in colon adenoma pathway and various aspects such as clinicopathological, biological, 
molecular, and socio-cultural aspects of CRC were described.
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the longer life expectancy of females compared to that 
of males, sex/gender-targeted strategies to prevent and 
treat CRC should be properly delivered to improve the 
quality of life, especially in older females [5].

The biological aspects of these differences are ex-
plained by sex differences in sex hormones, gut micro-
biota and molecular properties [7]. For instance, CRC 
can be classified as right-sided (proximal) and left- 
(distal) colon cancer clinically, and right colon cancer 
which is known to be more aggressive compared to 
left colon cancer [5] is reported to be more prevalent 
in females than in males [8]. In carcinogenic sequence 
of CRC, The chromosomal instability (CIN) pathway 
begins with mutations in the tumor suppressor genes 
is more common mechanism in left colon cancer, while 
the microsatellite instability (MSI) pathway begins 
with initial alteration of the Wnt signaling followed 
by B-Raf proto-oncogene serine/threonine-protein ki-
nase (BRAF) mutation is more frequent in right colon 
cancer [9]. In addition to the adenoma to carcinoma se-
quence, colorectal carcinogenesis can occur via the ser-
rated pathway characterized by mutations in RAS and 
RAF, which is also more common in right colon cancer 
[10]. This difference between sexes in carcinogenesis 
may be one explanation for the relationship between 
sex and tumor location.

In term of gender, the diet, smoking, alcohol, and 
physical activities affect the development of CRC. In 
this review, sex and gender differences of CRC have 
been briefly reviewed to provide holistic approach for 
the sex/gender-targeted CRC screening, treatment, and 

prevention.

SEX DIFFERENCES IN CLINICAL 
CHARACTERISTICS

The Global Cancer Observatory 2019 shows that the 
incidence and survival patterns for CRC vary across 
the world [11], and the incidence of CRC shows sex dif-
ference that is consistently higher in males than in 
females [11]. Mortality rates from CRC also shows sex 
differences, which are higher in males compared to fe-
males consistently across different regions of the world 
[3]. This would be the result of a combination of sexual 
dimorphism and gender differences, and it is difficult 
to determine how much each factor is attributable to 
the sex/gender differences in CRC incidence and mor-
tality rates [3]. Maybe it can be different depending on 
age, race and region.

1. Epidemiology
According to the Global Cancer Observatory, the 

age-standardized incidence rates (ASIR) per 100,000 in 
males is 45% higher (23.6 per 100,000 person-year) com-
pared to females (16.3 per 100,000 person-year) (Fig. 1) 
[11]. Also, males have a 50% higher cumulative risk (CR) 
to develop CRC than females (CR 2.75 vs. 1.83) [3]. In 
addition, cancer statistics in Korea showed that ASIR 
per 100,000 for incidence in 2017 was 30.8 per 100,000 
persons, 39.9 in males and 23.0 in females [4]. Accord-
ing to age-frames, sex disparity in younger patients is 
not clear since the incidence of CRC under 50 years old 
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Fig. 1. Age-standardized (ASR) incidence 
rates of colorectal cancer (CRC) depend-
ing on sex. The incidence rate for CRC 
vary markedly across the world. Data 
from International Agency for Research 
on Cancer (IARC) (Global Cancer Ob-
servatory. Colorectal cancer [Internet]. 
International Agency for Research on 
Cancer; c2020 [cited 2023 Mar 5]) [11]. 
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females are very low. That is, the tendency of CRC to 
occur more in males than in females becomes apparent 
from 45–50 years of age in USA, UK and China, and 
females have lower incidence rates than age-matched 
males in every age-group above 50 years old (Fig. 2) 
[12,13]. This results in 4–8 years delay in females com-
pared to males, so for example females aged 65 have 
similar CRC incidence to males aged 60 [14]. This dif-
ference in CRC incidence between sexes has been ob-
served steadily in USA [15] and Korea [16].

For the reason that sex differences are observed 
in the incidence of CRC, factors such as obesity and 
smoking have been proposed [17,18]. Population-based 
data collected in the 1970s reported that the ASIR for 
CRC were similar between sexes [19]. However, within 
the past few decades, the incidence of CRC in males 
has increased and exceeded especially not only in high 
incidence populations such as New Zealand, the USA, 
Canada, Australia, and the UK [1] but also in the low-
risk populations such as Hong Kong, Japan, and Singa-
pore [1]. The importance of the environment and life-
style has been observed in migrant studies, confirming 
that the incidence of CRC in males rises more rapidly 
than that in females when they immigrate to high in-
cidence areas from low incidence areas [19].

In addition, a protective role for estrogen in the 
prevention of CRC has been proposed. For example, 
the incidence of CRC in the postmenopausal females 
steadily increases which is very different from that of 

males [4]. This can be interpreted as sex hormones have 
a direct impact on the incidence of CRC or may be 
because hormone abundance affects the contribution 
of other established risk factors [1]. In animal studies, 
the CRC incidence was definitely higher in male mice 
than females in azoxymethane/dextran sodium sulfate 
(AOM/DSS)-induced colon cancer mouse model, and the 
treatment of 17β-estradiol (E2) during the DSS inflam-
mation period prevented the development of CRC [18]. 
In addition, endogenous and exogenous testosterone 
presented a stimulating effect on AOM/DSS-induced 
colitis and carcinogenicity [20]. Taken together, sex hor-
mones may contribute to CRC risk, to be discussed in 
detail in the following sections.

2. Prognosis
Mortality rates from CRC are higher in males com-

pared to females and this is consistently seen across 
different regions of the world [3]. According to the 
Global Cancer Observatory, the age-standardized mor-
tality rate for males is 50% higher (10.8 per 100,000 
person-year) than for females (7.2 per 100,000 person-
year) [11]. In specific, a German population-based cohort 
study including 185,967 patients showed that females 
had significantly better overall (hazard ratio [HR], 
0.853) and recurrence-free survival (HR, 0.857) than 
males [21]. Similar findings were observed in the USA 
[15] and Korea [16]. A meta-analysis from 2017 includ-
ing 37 clinical trials also showed that females had 
better overall (HR, 0.87) and cancer-specific survival 
(HR, 0.92) than males [22]. In the same way, the EU-
ROCARE-4 study that analyzed data of patients diag-
nosed between 1995 and 1999 from 23 European coun-
tries showed females had a 2.2% advantage in 5-year 
average and region-adjusted survival for CRC [23]. 
However, the most recent EUROCARE-5 study, which 
evaluated patients diagnosed between 2000 and 2007 
from 29 European countries did not show significant 
female advantage in CRC survival [24]. In addition, a 
cross-sectional study from the UK including 164,980 
CRC patients showed no significant age-standardized 
survival benefit for females compared to males [25]. 
Generally, the benefit in CRC survival, which has been 
attributable to sexual dimorphism, has been associated 
with the premenopausal stage in females [3]. That is, 
premenopausal patients have better 5-year survival 
rates than age-matched male patients, and younger fe-
males (18–44 years) show lower mortality compared to 

Fig. 2. Incidence and mortality of colorectal cancer (CRC) by age and 
sex worldwide. Incidence rates and mortality rates of CRC increase 
with age. The rates are higher in males than in females, with the dif-
ference becoming evident after age 50 years. Rates are per 100,000 
persons per year. F: female, M: male. Data from the article of Keum 
and Giovannucci (Nat Rev Gastroenterol Hepatol 2019;16:713-32) [13] 
with original copyright holder’s permission.
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older females (over 50 years) [26,27]. In contrast, female 
CRC patients over 65 years old showed worse survival 
rates than age-matched male patients [3].

This could be because that female patients over 65 
years old tend to be diagnosed in a more advanced 
stage and have a more aggressive cancer type than 
male patients [5,28-31]. Right-sided (proximal) tumors 
occur predominantly in females and older patients [5], 
associated with vague symptoms and is less differenti-
ated compared to left-sided colon cancers (Fig. 3) [13,22]. 
In a Japanese study analyzed 62,350 colon cancer pa-
tients, five-year net survivals for subjects with left- and 
right-sided colon cancer were 74.0% (95% confidence 
interval [CI], 73.4–74.7) and 70.4% (95% CI, 69.7–71.0), 
respectively [32]. Compared to left-sided colon cancers, 
the excess hazard ratio (EHR) for right-sided colon can-
cers was 1.20 (95% CI, 1.16–1.25) after adjustment for 
age, sex, and stage [32]. Furthermore, a meta-analysis 
reported that patients with right colon cancers had an 
18% increase in mortality risk, independent of stage 
[33]. Metastatic CRC patients with right-sided tumors 
also had worse survival rates compared to left-sided 
tumors [34]. It’s probably due to that right-sided tumors 
are more difficult to be diagnosed by colonoscopy due 
to their flat shape compared to left-sided tumors in the 
form of polyp (Fig. 4) [5,35]. That is, the lack of gender-
specific screening tools could be an explanation for 
higher mortality and shorter 5-year survival rate of 
females around the world. Besides, right- and left-sided 
colon cancers show different molecular features such 
as immune infiltration, differentiation or MSI. For ex-
ample, high-MSI tumors, comprising close to 15% of all 
CRC cases, are known to locate predominantly in the 
right-sided colon [5,36], to be discussed separately.

In overall, females have a lower risk to develop 
CRC and generally show better prognosis than male 

patients. However, right-sided colon cancers are more 
common in females that tend to be diagnosed in ad-
vanced stage and have worse prognosis than males, 
especially in older females. That is, the prognosis of 
CRC according to sex appears to be affected by a com-
bination of multiple factors and is difficult to interpret. 
There are several explanations for this paradox, in-
cluding the protective effect of female hormone estro-
gen including hormone replacement treatment [21] that 
female sex hormones might exert a protective immu-
nologic effect on the inflammatory response [37], and 
heterogenous nature of right-sided tumors to have not 
only aggressive feature but also MSI, which is known 
to be associated with improved outcomes [37]. However, 
the results are not consistent across studies and the ex-
act mechanism still remains unclear and needs further 
investigation on the survival advantage in feamels and 
role of sex hormone in CRC.

SEX DIFFERENCES IN 
PATHOGENESIS

As mentioned above, CRC seems to develop by the 
combined effect of sexual dimorphism and gender dif-
ferences [3]. In biological aspects, 17β-E2 plays a key 
role in the prevention of CRC in females, while social 
and behavioral factors such as diet is very important 
in the increase of CRC in males. The amount each fac-
tor contributes still has not fully discovered yet.

1. Lifestyles and risk factors
Diet, exercise and other lifestyle factors have been 

associated with CRC risk [38]. A recent study observed 
that lifestyle factors such as diet and smoking are 
linked with specific molecular CRC subtypes [39]. In 
addition, the impact of lifestyle factors on CRC risk 
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seems to have sex difference, that a high inflammatory 
profile was related to higher risk for CRC in males, 
while not in females [40].

1) Diet
Females have generally healthier dietary habits than 

males, with higher fiber and lower meat consumption, 
and less alcohol intake [3]. Interestingly, a number of 
studies have reported that dietary factors are associat-
ed differently with CRC depending on sex [40] and the 
location of tumors [5]. The European prospective inves-
tigation into cancer and nutrition study has reported 
that a high inflammatory profile (proinflammatory 
diet+sedentarism+obesity) showed a strong association 
with higher risk for CRC in males (HR, 2.11; 95% CI, 
1.50–2.97) while not in females [40]. Interestingly, high 
carbohydrate intake increased right-sided colon cancer 
in females, but increased rectal cancer in males [41], 
while high fat and protein intakes increased risks of 
right- and left-sided colon cancers, respectively [42,43]. 
Recent evidence from a large Canadian population-
based case-control study suggested that high intake of 
polyunsaturated fat, trans-fat, cholesterol, sucrose, and 
lactose was associated with the increased risk of right-

sided colon cancer [44]. Meat consumption increased the 
risk of left-sided colon cancer [45-47], whereas total iron 
and iron from supplements [47], high calcium intake 
[48-50] and higher serum/plasma 25-hydroxyvitamin 
D level [51] were inversely associated with distal colon 
cancer. Consumption of soy products containing phy-
toestrogens also has been reported to be inversely asso-
ciated with the risk of CRC [52-55], that a recent meta-
analysis found that soy consumption was associated 
with an approximately 21% reduction in CRC risk in 
females. This is presumably due to the structural and 
metabolic similarities of soy isoflavones to estrogen [52], 
supported by the evidence found in an experimental 
study that higher intake of phytoestrogens increases 
estrogen receptor α (ERα) expression, decreases apopto-
sis, and induces inflammation markers in colonic mu-
cosa of female mice [56]. Additional large population-
based studies would be needed for estimating the 
sex-specific dietary risk and providing guidelines for 
cancer-preventive diet.

2)  Physical activity levels, obesity, metabolic 
syndrome

A number of prospective and retrospective studies 

A B

C D

Fig. 4. Morphological differences be-
tween right-sided tumors (A, B) and left-
sided tumors (C, D). Right-sided tumors 
are flat-shaped compared to polypoid 
left-sided tumors, therefore difficult to 
be detected early.
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support an inverse association between physical activ-
ity and risk of colon, but not rectal cancer, in spite of 
the wide variation in physical assessment methodology 
among studies [57]. In a prospective study of nurses, 
females who were in the upper quintile of activity 
showed almost half the risk of developing colon cancer 
compared to non-active females (relative risk [RR], 0.54; 
95% CI, 0.33–0.90) [58]. Similar finding was observed in 
the Health Professionals Follow-up Study, a large pro-
spective study in males [59]. Several biological mecha-
nisms have been proposed for this inverse association 
between physical activity and colon cancer. First, a 
potential mechanism acting through prostaglandin E2 
(PGE2) synthesis was suggested, that high physical 
activity seemed to have an inverse correlation with 
PGE2 concentration in the rectal mucosa [60]. Second, 
hyperinsulinemia related to physical inactivity, high 
body mass, and central deposition of adipose tissue may 
also be an important mechanism of CRC occurrence [57]. 
That is, association between CRC and diabetes mellitus 
[61] and insulin [62] had been found in recent studies, 
and insulin is known to be a mitogen for normal and 
neoplastic colonic epithelial cells [59]. Estrogen might 
play a role in the metabolic CRC development process, 
that hyperinsulinemia was associated with CRC pro-
gression only in postmenopausal females in previous 
study [63]. In addition, there was a report that the as-
sociation between body mass index (BMI) and colon 
cancer in females was found in only premenopausal 
females but not in postmenopausal females [64]. This 
would be because that higher BMI and lower physi-
cal activity levels have been positively associated with 
higher levels of circulating estrogens in postmeno-
pausal females [65], since adipose tissue is an important 
source of estrogens. To sum up, the effect of obesity on 
colorectal neoplasia in premenopausal females acts via 
the insulin/insulin growth factor pathway, while the 
opposite effect of insulin and estrogen in obesity offset 
in postmenopausal females [57].

Meanwhile, sex difference is observed in terms of the 
risk of obesity and metabolic syndrome (MetS) on the 
incidence of CRC. In a follow-up study of 408,931 Ko-
rean adults, being underweight (<18.5 kg/m2) reduced 
the risk for CRC among females (adjusted HR, 0.646; 
95% CI, 0.484–0.863) whereas higher BMI significantly 
increased the risk in males and in the elderly [66]. In 
addition, obesity (≥25 kg/m2), diabetes mellitus, and 
hypertension were identified as risk factors for CRC in 

males but not in females [66]. MetS and its components 
has been thought to be involved in the development of 
CRC, but the effect seemed to be different depending 
on gender and location of CRC. In a study analyzed the 
data of 22,809,722 Korean individuals who underwent 
regular health check-ups between 2009 and 2012, the 
HR for CRC development in patients with MetS was 
1.22 (95% CI, 1.20–1.24) and this association was more 
prominent in males than in females (HR, 1.41; 95% CI, 
1.37–1.44 vs. HR, 1.23; 95% CI, 1.20–1.27, p for interaction 
<0.001) [67]. Additionally, left-sided colon cancers were 
more associated with MetS among males compared to 
females (HR, 1.70; 95% CI, 1.61–1.80 vs. HR, 1.43; 95% CI, 
1.33–1.54) while right colon cancers showed a stronger 
association with MetS among females than males (HR, 
1.63; 95% CI, 1.49–1.78 vs. HR, 1.34; 95% CI, 1.24–1.44) (all 
p for interaction <0.001, respectively) [67].

3) Alcohol
Alcohol consumption is one of the most important 

known risk factors for cancers in human [68], and 
there are clear evidences that alcohol consumption 
increases cancer risks in many organs including colon 
and rectum [69]. Ethanol itself can cause local irritation 
of the upper gastrointestinal (GI) tract [70] and could 
stimulate carcinogenesis by inhibiting DNA methyla-
tion [71], and furthermore acetaldehyde, a metabolic 
product of ethanol, is classified as a human carcinogen 
by the IARC [72]. For instance, the risk of CRC by al-
cohol was 1.42 times higher in a Japanese cohort study 
[73], and light drinking (less than 10 g per day) as well 
as moderate to heavy alcohol consumption signifi-
cantly increased the risks of the CRC (HR, 1.12; 95% CI, 
1.11–1.14) compared to non-drinkers after adjusting for 
age, sex, smoking, exercise, income, BMI, and diabetes 
in a population-based prospective cohort of 23,323,730 
adults who had undergone a biennial health check-ups 
between the years 2009 and 2012 in Korea [71].

Sociological and cultural aspects of alcohol drinking 
vary, and the toxic threshold of ethanol may differ by 
individual and by sex [71]. It might be related to the 
variant allele of ALDH2, which breaks down acetal-
dehyde to acetate in the metabolism of alcohol, that 
genetic variation is much higher in Asians (28%–45%) 
than in other ethnic groups [74]. Interestingly, the 
increase in CRC risk with the amount of alcohol con-
sumption was not significant in females in previous 
study [71], similar with previous community-based 
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study observed 6,291 residents (aged 55 and older) of 
Ganghwa-do for 20.8 years from 1985 to 2005 in Korea, 
which reported the risk of CRC as 1.87 times higher in 
heavy drinkers than in non-drinkers [75]. In this study, 
the mortality associated with soju (Korean traditional 
alcohol with higher amount of ethanol) was signifi-
cantly higher than that associated with makgeolli (Ko-
rean traditional alcohol with lower amount of ethanol) 
in males, but this difference was not significant in 
females [75]. This could be due to the amount of con-
sumption was larger and the duration of consumption 
was longer in males than in females.

4) Smoking
A higher risk of adenomatous polyps has been con-

sistently observed among smokers with RRs ranging 
from 1.4 to 3.6 [57,76] and an induction period of 30–40 
years between smoking and risk of CRC has been pro-
posed based on results from two large cohort studies 
[77,78]. Most of studies have reported positive associa-
tions between cigarette smoking and CRC, and overall 
evidence supports the hypothesis that tobacco smoke is 
an initiator of colorectal carcinogenesis [57]. There are 
several studies did not support an association though 
[79-82], mainly conducted in Sweden, suggestive of the 
influence of other factors such as heredity [79,81,82]. In 
the latest and largest published study to date, based 
on data from the Cancer Prevention Study II, 312,332 
males and 469,019 females were followed prospectively 
and the RR for CRC mortality in current smokers was 
1.32 (95% CI, 1.16–1.49) for females and 1.41 (95% CI, 
1.26–1.58) for males [83,84], and increased risk was evi-
dent after 20 or more years of smoking for males and 
females combined as compared with never smokers [84]. 
A follow-up review continued to support the adverse 
effect of tobacco on risk of CRC [85]. However, there is 
no data regarding the sex/gender difference of smok-
ing effect on the CRC, so further studies are needed.

2. Sex hormones
Sex hormones derived from cholesterol and are clas-

sified into estrogens (17β-estradiol, estriol, and estrone), 
androgens (testosterone), and progestogens (progester-
one) [3]. They are produced in the testis (males) and 
ovaries (females), but also in the adipose tissue, adrenal 
glands, brain, skin, and bone [3]. Among these sex hor-
mones, the mechanisms of estrogen with its receptors 
and testosterone on the development of CRC are being 

actively discovered. Above all, adipose tissue can be an 
important source of estrogens in postmenopausal fe-
males and obese males [3], that higher BMI and lower 
physical activity levels have been positively associated 
with higher levels of circulating estrogens in post-
menopausal females and males [85,86].

1) Estrogen
In general, estrogen acts as a cancer-protective hor-

mone through its anti-inflammatory activities, but 
the roles of individual estrogen receptors are often 
controversial in carcinogenesis of CRC [87]. Estrogen 
prevents the development of  CRC via suppressing 
inflammation that provides the tumor microenviron-
ment. For example, in previous study investigated the 
effect of E2 treatment in CCD841CoN, a female human 
colonic epithelial cell line, ERα expression has no sig-
nificant change after E2 treatment but E2 treatment 
consistently increased ERβ expression [88]. In addition, 
estrogen was found to inhibit inflammation through 
down-regulation of  nuclear factor-κB (NF-κB) and 
cyclooxygenase-2 (COX-2) expression and induction of 
anti-oxidant enzymes such as heme oxygenase-1 and 
NAD(P)H-quinone oxidoreductase-1, which is down-
stream of nuclear factor erythroid 2-related factor 2 
(Nrf2) [88]. E2 was found to increase Nrf2 activity in 
breast cancer cell line [89] and colonic epithelial cells 
(CCD841CoN) [88], and Nrf2 downregulates pro-inflam-
matory signaling by suppressing NF-κB [90], regulates 
the expression of anti-oxidant enzymes [91], and acti-
vates NLRP3 inflammasome [92] that leads to immune 
modulation through caspase-1 related activities such as 
pyroptosis [93]. In another previous study in AOM/DSS-
induced colon cancer mouse model, E2 inhibited the 
initiation of CRC by regulating Nrf2-related pathways, 
and a dual role of Nrf2 in modulating inflammation 
and carcinogenesis was observed [94]. To sum up, it 
might induce pyroptosis in the DSS-induced inflam-
mation stage, but promote cancer progression once 
tumor formation is initiated via immune modulation of 
NLRP3 inflammasome-induced interleukin (IL)-1β and 
IL-18 in the tumor microenvironment [95]. E2 prevents 
carcinogenesis, whereas in the absence of E2, a cancer 
inducing microenvironment is created through NF-κB 
activation [94].

In addition to protection of endogenous estrogen 
in females against the development of proximal co-
lon cancer, exogenous E2 replacement in ovariectomy 
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(OVX) female mice showed protective effects against 
AOM/DSS-induced colitis and carcinogenesis in a fe-
male AOM/DSS mouse model [96]. OVX significantly 
increased tumor number and incidence rate in only the 
proximal colon after AOM/DSS treatment and these 
increases were significantly reduced by E2 supplemen-
tation, while OVX did not affect CRC development 
in the distal colon. In this study, the increase in Nrf2 
and antioxidant enzyme gene expression by E2 supple-
mentation in the OVX_AOM/DSS group blocked the 
expression of NF-κB-regulated proinflammatory cyto-
kines (i.e., TNF-α and IL-6) and COX-2 [96].

The protective role of estrogen in the female against 
CRC has been mainly associated with expression levels 
of the ERβ in intestinal epithelial cells [97,98]. That is, 
ERβ is the prevalent estrogen receptor in normal colon 
mucosa and shows a significantly reduced expression 
in CRC [99]. ERβ showed tumor-suppressive function 
in CRC through activation of pro-apoptotic signaling, 
regulation of mismatch repair proteins, and modula-
tion of the inflammatory tumor microenvironment 
(Fig. 5) [94,97]. Thus, selective loss of ERβ within the 
large intestine promotes tumorigenesis [97,99], that 
ERβ1, ERβ2, and ERβ5 isoforms are expressed in the 
colon with variable levels along the crypt axis [100] and 
are reduced in tumor cells compared to normal colon 
[101,102]. ERβ inhibits proliferation by blocking of the 

cell cycle in G1-S phase [103], stimulating apoptosis [104] 
and induces anti-inflammatory signaling in CRC cells 
[105]. Other protective mechanisms include upregula-
tion of tight junction proteins occludin (OCLN) and the 
F11 receptor/junctional adhesion molecule-A to preserve 
homeostasis of paracellular permeability [106], that the 
mRNA expressions of tight junction proteins Zonula 
occludens-1, OCLN, and Claudin4, were decreased by 
AOM/DSS-treatment while were recovered by supple-
mentation of 17β-E2 [107]. Estrogen has been shown to 
increase ERβ levels, and this could be a mechanism by 
which estrogen confers protection against CRC [108].

In addition to the protective activity of estrogen in 
CRC via ER, the role of membrane-bound G protein 
coupled estrogen receptor (GPER) is suggested [109,110]. 
Diverse functions of GPER in the colon include the 
regulation of visceral hypersensitivity and gut motil-
ity, immune responses in inflammatory bowel diseases 
(IBD) [111,112], and the modulation of cell migration and 
proliferation in CRC cell lines [113]. GPER is known to 
stimulate gut motility [114], and a sex-dependent regu-
lation of GPER expression and signal transduction for 
mucosal inflammation has been proposed in IBD such 
as Crohn’s disease and ulcerative colitis [115] which 
can provoke CRC, especially in male. Thus, estrogen 
and GPER modulate physiological intestinal functions 
[3], and that estrogen effects in advanced CRC tumors 
may be transduced via GPER given the relative ab-
sence of expression of ERα or ERβ in CRC patients 
and cell lines studied [3]. GPER has been described as 
a tumor promoter in certain cancers such as breast 
cancer via activation of epidermal growth factor recep-
tor, STAT5 and MAPK/extracellular regulated kinase 
(ERK) pathways [116]. However, in CRC, the expression 
of GPER is reported to act variously as a tumor sup-
pressor or promoter depending on the stage of the dis-
ease and expression levels of ER and GPER [117], and 
the role of GPER in CRC looks like to be both sexually 
dimorphic and dependent on the stage of the disease [3]. 
For example, the expression of GPER was significantly 
decreased with increasing stage and lymph node me-
tastasis of CRC patients [118]. That is, as colon cancer 
progresses to advanced stage disease, GPER expression 
was found to be greatly reduced in cancerous tissue 
compared to adjacent healthy colon and low GPER ex-
pression was associated with reduced survival [119]. In 
addition, high GPER expression was associated with 
poor relapse free survival in females with stage 3/4 but 

Fig. 5. Estrogens regulate the cellular effects through their intra-
cellular receptors, estrogen receptors (ER)α and ERβ. ERβ showed 
tumor-suppressive function in colorectal cancer through activation 
of pro-apoptotic signaling, regulation of mismatch repair proteins, 
and modulation of the inflammatory tumor microenvironment. MSI: 
microsatellite instability, IL: interleukin. Adapted from the article of 
Caiazza et al (Front Oncol 2015;5:19) [97].
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not in stage 1/2 CRC while there was no correlation of 
GPER expression in males with disease of any stage [21].

2) Progesterone
Progesterone has also been considered as a potential 

contributor to CRC protection. Recent evidence impli-
cated that the effect of progesterone reducing CRC 
would be additive to estrogen signaling via the estro-
gen receptor ERβ [120], so the protective role of proges-
terone looks like to be specific to postmenopausal inci-
dence of CRC [121]. However, the effect of progesterone 
on the CRC is seems to be minor so far.

3) Testosterone
Androgen receptors (ARs) have been reported to be 

expressed in CRC [122]. ARs are the binding site for 
dihydrotestosterone (DHT) and there are two isoforms 
of the AR, AR-A and AR-B [123]. Both of these were 
detected in healthy colonic mucosa whereas only AR-A 
was detected in neoplastic colonic mucosa [124], that 
suggests that neoplastic colonic mucosa is characterized 
by loss of expression of the AR-B isoform [123]. Howev-
er, the role of testosterone in CRC is somewhat unclear 
so far. Firstly, there was no significant clinical correla-
tion between testosterone concentrations and outcomes 
in CRC patients [125,126]. A recent study in Japan 
including 185 CRC patients and 361 controls who were 
postmenopausal showed that higher testosterone levels 
were significantly associated with CRC risk (odds ratio 
[OR], 2.1; 95% CI, 1.11–3.99) [127]. However, some other 
studies reported that lower androgenicity in males, as 
a result of reduced AR activity by hypermethylation or 
lower circulating dehydroepiandrosterone sulfate, has 
been associated increased CRC risk [128,129]. A recent 
USA study including 732 CRC patients and 1,156 con-
trols from 4 prospective cohorts also reported that high 
testosterone levels in males were significantly associat-
ed with lower RR for CRC (highest vs. lowest quartile 
0.65) while no association in postmenopausal females 
was observed [130]. In addition, a prospective study 
analyzed 107,859 males diagnosed with prostate cancer 
from the American SEER-Medicare database showed 
that orchiectomy and long-term androgen-deprivation 
3 (more than 25 months) were significantly associated 
with higher CRC risk (HR, 1.37; 95% CI, 1.14–1.66 and 
HR, 1.31; 95% CI, 1.12–1.53; respectively) [131]. There 
may be confounding factors leading to the different 
CRC risk associations in different populations as these 

are epidemiological observational studies, so there are 
limitations to the interpretation of the results [3].

Expression of the AR has also been studied. For 
example, in a case-control study including 550 CRC 
patients and 540 controls, longer cytosine-adenine-
guanine (CAG) repeats in the AR gene that reduce the 
transcription rates, have been associated with higher 
CRC risk and lower 5-year median overall survival (HR, 
1.4; 95% CI, 1.04–1.79) in CRC patients [132]. In contrast, 
no clear association between CAG repeats in AR and 
CRC prognosis was observed in a German population-
based study of 1,798 CRC patients and 1,810 controls 
[133]. Some smaller prospective population-based stud-
ies failed to detect any association of testosterone with 
CRC risk, adding complexity [126,134]. In summary, the 
role of testosterone in CRC is not yet clear, but there 
seems to be some age-dependent differential effects of 
the hormone, tumor stage and tissue environment fac-
tors [3].

3. Molecular characteristics and immunity
CRC shows stage-independent variability in patient 

outcomes supposedly due to molecular heterogene-
ity. CIN, which is associated with 60%–70% of CRC, 
is more often observed in left-sided colon cancer, and 
defective genes include adenomatous polyposis coli 
(APC), Kirstenras, deleted in CRC, and p53 [135-137]. 
On the other hand, MSI-high, CpG island methylator 
phenotype (CIMP)-high, and BRAF mutation are often 
observed in right-sided colon cancer (Table 1) [31,136,137]. 
Hereditary non-polyposis CRC is more likely to develop 
tumors on the right side of the colon, whereas famil-
ial adenomatous polyposis is associated with left-sided 
colon cancer [138,139]. This MSI status has been shown 
to impact sensitivity to CRC treatments and prognosis 
[3]. For example, immunotherapy has been shown to 
improve prognosis, particularly of MSI-high tumor car-
rying patients, whereas anti-EGFR and 5-FU adjuvant 
therapies exert little and no benefit to high frequency 
MSI (MSI-H) tumors in contrast to microsatellite stable 
tumors [140].

Commonly observed alterations are broadly classi-
fied into: (1) hypermutated tumors (up to 16%) of which 
three-quarters show MSI-H and one-quarter have 
somatic MMR gene and polymerase ε (POLE) muta-
tions [141], (2) non-hypermutated tumors (up to 84%) 
with multiple somatic copy number alterations and 
aneuploidy that contain activating mutations in KRAS 
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and phosphoinositide 3-kinase catalytic subunit alpha 
(PIK3CA) and loss of heterozygosity of APC and TP53 
tumor suppressor genes, and (3) CIMP (up to 20%) that 
is commonly observed in MSI-H tumors and in some 
non-hypermutated CRCs [142]. CIMP is characterized 
by a high frequency of genome-wide DNA methyla-
tion of CpG islands [143,144], promotes tumorigenesis 
by methylation-mediated transcriptional repression. 
CIMP-positive tumors are typically proximal, higher 
grade, have deficient DNA mismatch repair (dMMR) 
resulting in MSI-H [143,145,146], and known to be more 
frequent in females and older individuals [142]. CRCs 
with dMMR/MSI-H include both familial and sporadic 
types, that about two-thirds dMMR CRCs are sporadic 
[143,144] and the other third are due to germline muta-
tions in MMR genes (MLH1, MSH2, MSH6, PMS2) that 
cause Lynch syndrome, and BRAFV600E mutations are 
strongly enriched in sporadic CRCs with dMMR and 
CIMP (Fig. 6) [141,147-149].

1)  Adenoma-carcinoma sequence and serrated 
pathways

Conventional adenoma-to-carcinoma sequence is 
based on two mechanisms of tumorigenesis: CIN or 

MSI (Fig. 7) [9,13]. The CIN pathway begins with muta-
tions in the tumor suppressor gene APC and progresses 
into adenocarcinoma upon acquisition of additional 
mutations in the genes KRAS, SMAD4, and TP53, with 
dysregulation of the Wnt/β-catenin, MAPK, PI3K and 
TGF-β signaling pathways [9]. Alternatively, the MSI 
pathway begins with initial alteration of the Wnt sig-
naling followed by BRAF mutation and alterations of 
the genes TGFBR2, IGF2R, and BAX [9]. In addition 
to the adenoma to carcinoma sequence, colorectal car-
cinogenesis can occur via the serrated pathway, that 
approximately 25% of sporadic CRCs are known to 
arise via serrated precursor lesions [10]. Serrated polyps 
include hyperplastic polyps, sessile serrated lesions, and 
traditional serrated adenomas. The serrated pathway is 
characterized by mutations in RAS and RAF, disrup-
tions to the Wnt signaling pathway, and widespread 
methylation of CpG islands (Fig. 8) [10]. First, muta-
tion in a gene that regulates mitogen-activated protein 
kinase pathway (such as in KRAS or in most cases 
BRAF) occurs, and mutations in BRAF result in meth-
ylation of CpG islands, called the CIMP [144,150]. CIMP 
results in silencing of many genes, including some tu-
mor suppressor genes. Progression of serrated polyps 

Table 1. Molecular features of preneoplastic lesions and CRC by site

CIMP-high MSI-high MLH1 methylation BRAF mutation CIN

Preneoplastic lesions
    Sessile serrated adenoma (right-sided) + +/- +/- + -
    Conventional adenoma (right and left-sided) - - - - +
CRCs
    Right-sided CRC High prevalence High prevalence High prevalence High prevalence Low prevalence
    Left-sided CRC Low prevalence Low prevalence Low prevalence Low prevalence High prevalence

CRC: colorectal cancer, CIMP: CpG island methylator phenotype, MSI: microsatellite instability, CIN: chromosomal instability.
Adapted from the article of Lee et al (J Natl Compr Canc Netw 2017;15:411-9) [31] with original copyright holder’s permission.

Fig. 6. Classification and survival of 
colorectal cancer according to the profi-
ciency of DNA mismatch repair. Adapted 
from the article of Sinicrope et al (Gas-
troenterology 2015;148:88-99) [148].
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is also associated with activation of the Wnt signaling 
pathway as in the case of conventional adenomas that 
is usually an early step in carcinogenesis [10].

Proximal colon cancer is more prevalent in females 
than in males (34% vs. 25%, respectively, in the Eu-
ropean Prospective Investigation into Cancer cohort) 
[151], and the difference between sexes in the serrated 
pathway may be the underlying cause. For example, in 
recent study in Japan reported that serrated adenoma/
polyp (SSA/P) lesions were mostly located in the proxi-
mal colon, and SSA/P with dysplasia or invasive carci-
noma was more associated with female sex compared 

with SSA/P without dysplasia [152]. Furthermore, a 
recent study in Korea also exhibited the molecular dif-
ferences such as programmed cell death-ligand 1 (PD-
L1), MMR/MSI status and EGFR expression in CRC 
according to sex and tumor location that females with 
proximal CRC showed a markedly higher incidence of 
dMMR/MSI-high status, suggesting a possible underly-
ing mechanism of sex-specific colorectal carcinogenesis 
[153]. From these results, the association with SSA/P 
with dysplasia or invasive carcinoma in proximal colon 
and female sex is suggested, and additional research 
focusing on sex differences in molecular pathways is 

Fig. 7. Pathways of colorectal carcinogenesis. (A) adenoma-carcinoma sequence, (B) serrated pathway, and (C) inflammatory pathway. CRC: 
colorectal cancer, CIN: chromosomal instability, CIMP: CpG island methylator phenotype. Adapted from the article of Keum and Giovannucci (Nat 
Rev Gastroenterol Hepatol 2019;16:713-32) [13] with original copyright holder’s permission.
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needed.

2) KRAS and BRAF oncogenes
KRAS and NRAS mutation status predict the ef-

ficacy and clinical benefit of anti-EGFR antibodies 
[154-156]. More than one-third of CRCs carry muta-
tions in exon 2 of KRAS, and an additional 15% carry 
mutations in exons 3 and 4 of KRAS and in exons 2, 3, 
and 4 of NRAS, that predict resistance to anti-EGFR 
antibody therapy [154,155,157,158]. In addition, muta-
tions in the PIK3CA (exon 20 vs. exon 9), which is part 
of the EGFR signaling pathway, may confer resistance 
to anti-EGFR therapies [158]. KRAS exon 2 mutations 
are reported to be associated with poor clinical out-
come, as shown in recent data from adjuvant studies in 
node-positive CRCs [159,160] and the adverse impact of 
KRAS mutations on prognosis seems to be stronger in 
the distal colon cancers compared to the proximal can-
cers [161], although the data are somewhat conflicting 
[149,162,163].

A point mutation (V600E) in the BRAF oncogene 
is known to be mutually exclusive with mutation in 
KRAS [164] and associated with a poor prognosis in 
metastatic [165] and node-positive CRCs [153,159,162], 
shows sex difference. First, sessile SSA/Ps, early pre-
cursor lesions in the serrated neoplasia pathway and 
results in BRAF-mutated CRCs, are known to be as-
sociated with advanced age, female sex, and proximal 
colon [152]. Additionally, BRAF-associated CRC was re-
ported to be associated with older age, female sex, prox-
imal tumor location and poor differentiation [166,167]. 
In addition, patients with tumors containing mutations 
in BRAF had markedly worsened prognosis than pa-
tient without these mutations [168,169]. The adverse 
prognostic impact of BRAFV600E mutant could be ex-
plained by feedback activation of EGFR when BRAF is 
inhibited, that is related to resistance to vemurafenib, 
the BRAF/MEK/ERK signaling pathway inhibitor [170].

3)  DNA mismatch repair/microsatellite 
instability

CRCs with dMMR/MSI-H are reported to have a 
favorable prognosis compared to pMMR/MSS cancers 
consistently [158,171-173], and the difference in sur-
vival appears to be stronger in earlier stage cancers 
compared to later stage diseases [174]. Recent National 
Comprehensive Cancer Network (NCCN) guidelines 
recommend MMR/MSI testing for all newly diagnosed 

CRC cases, since these tests provides prognostic infor-
mation. Meanwhile, the comprehensive effect of MMR/
MSI and CIMP on prognosis is conflicting, that a meta-
analysis concluded that CIMP was associated with a 
poor prognosis in both MSI-H and MSS tumors [175], 
while poorer survival was observed in those lacking 
MLH1 methylation compared to those with MLH1 hy-
permethylation in another study using CIMP-positive 
tumors [176]. CIMP has been shown to occur in sporadic 
cancers and has been associated with older age, female 
sex, proximal location, mucinous histology, and MSI, 
presence of BRAF mutation and K-ras mutations and 
wild type p53 in several cohort and population-based 
studies [177].

Tumors with dMMR/MSI-H are hypermutated and 
express abundant frameshift peptides, and these pep-
tides are reported to serve as neoantigens eliciting ac-
tive immune responses [178], and dMMR/MSI-H CRCs 
show increased expression of immune checkpoint (IC) 
proteins (PD-1, PD-L1, CTLA-4, LAG-3, IDO) [179]. As an 
extension of this, metastatic CRCs with MSI-H showed 
better treatment response to pembrolizumab, an anti-
PD-1 antibody compared to pMMR/MSS CRCs (response 
rate 62% vs. 0%) in a recent phase II study [180]. There 
is also sex difference in dMMR, that tumors with 
dMMR are reported to be more common in female sex, 
younger age, right colon, greater tumor burden, and 
poorer differentiation [181], and females with proximal 
CRC showed a significant association with dMMR/
MSI-high and high EGFR expression in recent study 
[153]. There is differential prognosis by stage between 
patients with right- and left-sided CRC, that right-
sided tumors have a slightly better prognosis in stage 
II colon cancer, but worse prognosis in stage III and IV 
colon cancers [31]. This would be likely associated with 
the higher prevalence of good-prognosis MSI-high tu-
mors in right-sided stage II cancers, in spite of aggres-
sive characteristic of right-sided cancer [31], a signifi-
cant difference in male and female colon cancer.

4)  Programmed cell death-ligand 1 and immune 
pathway

PD-1 and PD-L1 are a pair of ICs that work as the 
brake on the immune system and play a crucial role 
in the tumor immune escaping process [182]. PD-1 is 
the most important receptor for activating T-cell ex-
pression and mediating immunosuppression, while 
the PD-L1 facilitates apoptosis of activated T-cells via 
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causing T-cells dysfunction and anergy [183,184]. The 
overexpression of PD-L1 weakens the cytolytic activity 
of T cells and promotes the occurrence and invasion of 
tumors [185]. In opposite, PD-1/PD-L1 inhibitors could 
stop T-cell apoptosis and dysfunction, which further 
enhances the activation of T cells (Fig. 9) [186]. PD-L1 
is highly expressed on the surface of many tumor cells, 
which can also induce immune cells to secrete immu-
nosuppressive factors and further inhibit the killing 
effect of the antitumor immunity [187]. Anti-PD-1/PD-
L1 therapy can bind to PD-1 and PD-L1 correspond-
ingly, further preventing the combination of PD-1 on 
the surface of T cells and PD-L1 on the surface of tu-
mor cells [188]. Current NCCN guidelines version 2.2021 
suggested that anti-PD-1/PD-L1 therapy not only can 
be applicable to stage IV dMMR/MSI-H CRC patients 
but also be used as part of neoadjuvant therapy. Cur-
rently, nivolumab and pembrolizumab received the ac-
celerated approval of the U.S. Food and Drug Admin-
istration as the second-line treatment for patients with 
dMMR/MSI-H mCRC in 2017 [189], and pembrolizumab 
or nivolumab, alone or in combination with ipilimumab 
was recommended as a first-line treatment option for 
patients with dMMR/MSI-H mCRC in consideration of 
the above outcomes, whether it is eligible for intensive 

therapy in NCCN guidelines version 2.2021 [190].
It is expected that there will be a sex difference in 

expression of ICs, but there are only few studies so far. 
In recent study in mice CRC model, co-treatment with 
E2 and anti-PD-L1 antibodies significantly inhibited 
mouse colon 38 (MC38) tumor growth and reduced 
PD-L1-expressing cells in male mice compared to treat-
ment with either E2 or anti-PD-L1 antibodies alone 
[191]. Furthermore, combination treatment with E2 and 
anti-PD-L1 decreased tumor-associated macrophages 
(TAM) population (CD11b+F4/80+) in the tumor mass 
while increasing M1 TAMs (CD11b+F4/80+CD86+), 
suggesting that estrogen inhibits MC38 tumor growth 
by downregulating PD-L1 expression and regulating 
tumor-associated cell populations and boosts the effect 
of anti-PD-L1 antibody in the MC38 tumor model [191]. 
In another human study, PD-L1 expression was higher 
in serrated polyps than in conventional adenomas, 
higher in cancer cells than in normal control or ad-
enoma cells and seemed to be inversely correlated with 
male proximal CRC patients (OR, 0.28; p=0.034) (Fig. 
10) [153]. Sex differences in expression of ICs are impor-
tant because they can lead to differences in responses 
to ICI treatment. Studies have reported differences in 
immunogenic missense mutation load, treatment re-
sponse (durable clinical benefit), and survival between 
males and females in lung cancer [192] and melanoma 
[193,194]. In the case of CRC, there are lack of data on 
sex difference so far, and further studies on sex differ-
ences will be needed to predict treatment response as 
ICI treatment is expected to be activated in the future.

4. Gut microbiome and its metabolite
The gut microbiome is located in close proximity to 

the colorectal epithelium and there is cross interaction. 
Dysbiosis, a state of pathological imbalance in the gut 
microbiome contribute to CRC [195]. The development 
of CRC has been associated with an overall reduction 
in microbial diversity [196] and specific enrichment of 
individual bacteria such as Fusobacterium nucleatum 
[197] and loss of potentially protective bacteria such as 
Roseburia [198]. In addition, the metabolic factors of 
microbiota such as bile acid and butyrate affect colon 
carcinogenesis (Fig. 11) [199].

1) Gut microbiome
As mentioned before, dysbiosis contribute to CRC 

and there are hypotheses suggested. First, several stud-

Fig. 9. Schematic mechanism of programmed cell death 1 (PD-1)/
programmed cell death ligand 1 (PD-L1) inhibitors to restore T-cell 
functions. TCR: T cell receptor, MHC: major histocompatibility com-
plex, Ag: antigen. Adapted from the article of Bie et al (Front Oncol 
2022;12:769124) [188].
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ies in animal models have reported that estrogen sig-
naling can help to maintain microbiome diversity [3] 
and OVX has led to microbial dysbiosis although this 
was affected by strain and diet [200]. Furthermore, di-
etary supplementation with the hormone E2 has been 
shown to increase microbial diversity in healthy male 
mice and to impact the ratio of bacteria in the microbi-
ome of a CRC-induced mouse model [201].

The potential protective effect of estrogen was ex-
amined in a recent study using the AOM/DSS mouse 
model of intestinal specific ERβ deletion in the colitis-
induced CRC model, suggesting that ERβ expression 
influenced gut microbiome diversity and attenuated 
these diseases [202]. Similarly, another study showed a 
reduction in gut microbiota diversity with the develop-
ment of CRC, which was exacerbated in the absence 
of ERβ [203]. In addition, significant increases in the 
microbial diversity (Chao1 index) in females, males 

supplemented with E2, and males treated with AOM/
DSS/E2 compared with normal males were observed 
[201]. In AOM/DSS-treated male mice, E2 supplementa-
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Cancer Prev 2018;23:117-25) [199].
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tion showed significantly lower level of the Firmicutes/
Bacteroidetes (F/B) ratio, and the ratio of commensal 
bacteria to opportunistic pathogens was higher in fe-
males and E2-treated males compared to normal males 
and females subjected to OVX [201]. These findings 
suggest that estrogen alters the gut microbiota in ICR 
(CrljOri:CD1) mice, particularly AOM/DSS-treated 
males, by decreasing the F/B ratio and changing Shan-
non and Simpson index, and highlights a possibility 
that estrogen could cause changes in the gut micro-
biota, thereby reducing the risk of developing CRC [201].

A recent study showed interesting data, that the sex 
and age-dependent gut microbial differences seen in 
the healthy controls disappeared as CRC progressed 
[204]. That is, Lactate-producing bacteria (Bifidobacte-
rium adolescentis, Bifidobacterium catenulatum group 
and Lactobacillus ruminis) was more abundant in fe-
male than in males, and Actinobactetia and butyrate-
producing bacteria (Agathobaculum butyriciproducens 
and Blautia faecis) were more abundant in the young-
er patients than in older patients in healthy controls. 
However these sex and age-dependent differences were 
not observed in the adenoma and CRC groups, sug-
gesting the potential carcinogenic role of gut microbial 
change in CRC [204]. Summarizing, it is thought that 
changes in gut microbiota under the influence of sex 
hormones such as estrogen will contribute to the sex 
difference in the occurrence of CRC.

2) Gut microbiome metabolites
Metabolic property of gut bacterial population has 

been investigated in relation to tumorigenesis. The 
well-known factor is short-chain fatty acids (SCFAs), 
nitroso compounds (NOCs), heme and secondary bile 
acids [199]. The SCFAs, namely acetate, butyrate, and 
propionate are quantitatively and metabolically the 
most important microbial end-products of the human 
colon fermentation process [205,206]. Among them, 
butyrate produced by fermentation of dietary fiber is 
considered to be the main reason for the health benefit 
from the indigestible carbohydrate [207]. Most butyrate 
producers in the human colon belong to the Firmicutes 
phylum and in particular Clostridium clusters IV and 
XIVa [205]. Butyrate is the preferred energy source 
for the colonic mucosa, and it suppresses the growth 
of tumor cells [208]. Butyrate induces cell differentia-
tion, promotes cell apoptosis and reduces tumor cell 
invasiveness [209]. The most investigated mechanism 

is that butyrate inhibits histone deacetylases and thus 
results in inactivation of many oncogenic signaling 
pathways [208]. The metabolic rearrangement in can-
cerous colonocytes is an appropriate means for provid-
ing biomaterials as well as energy that are essential 
for growth (Warburg effect). Human study revealed 
that high red meat consumption increased the levels 
of pro-oncogenic microRNA including miR17–92 clus-
ter in rectal biopsies, and increased butyrate supply 
through consumption of a butyrylated-resistant starch 
restored the miR17–92 miRNAs to baseline levels [210]. 
Butyrate insufficiency may contribute to the develop-
ment of inflammatory conditions because the acid has 
been shown to induce the differentiation of colonic T 
regulatory lymphocytes, which suppress inflammatory 
and allergic responses [211,212]. Actually, butyrate was 
shown to suppress development of colon carcinogenesis 
in ApcMin/+ mice due to its Gpr109a agonist property 
through T regulatory cell differentiation [213]. There 
was a age difference in this butyrate producing gut mi-
crobiota, that major bacterial taxa changed in 31-week-
old rats when gut microbiota in cecal contents of 6-, 31-, 
and 74-week-old and 2-year-old male Fischer-344 rats 
(corresponding to 5, 30, 60, and 80-year-old humans in 
terms of age) were analyzed using 16S ribosomal RNA 
metagenome sequencing [214]. Especially, Lachnospira-
ceae, a SCFAs-producing family, increased at this age 
and unknown species EU622775_s and EU622773_s 
showed strong relationship with cecal butyrate level at 
31-weeks of age, suggesting that butyrate production is 
different during lifespan with a peak in the middle age 
in rat [214]. However, there is no research regarding 
the sex difference of microbiota in the patients with 
CRC so far.

3) Nitroso compounds/heme
NOCs are known to exert highly carcinogenic effects 

following the formation of potent DNA alkylating 
agents during metabolism [215]. Although most dietary 
nitrate and nitrite are absorbed in upper GI tract and 
excreted in the urine, people consuming large amount 
of red meat can have nitrosating agents through colon 
[216]. Heme iron is more abundant in red meat than 
white meat and fish, and they mediate transporta-
tion of  nitrosating agents [216]. Dietary heme was 
also reported to alter the microflora by decreasing the 
number of gram-positive bacteria, leading to expansion 
of Gram-negative community [217,218]. In addition, a 
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recent study reported that dietary heme induces gut 
dysbiosis such as a decrease in α-diversity, a reduc-
tion of Firmicutes and an increase of Proteobacteria, 
particularly Enterobacteriaceae [219], similar to DSS-
induced colitis model. A reduction in fecal butyrate 
levels and an increase of large adenomatous polyps 
were also found in mice fed the heme supplemented 
diet compared to control mice [219]. However, there is 
no research regarding the sex difference of NOCs or 
heme in the patients with CRC, so far.

4) Bile acids
As bile acids are involved in the absorption of di-

etary fat in the intestine [220], high-fat diets induce 
an increase in bile secretion. Secondary bile acids are 
the metabolites produced by intestinal bacteria from 
primary bile acids (cholic and chenodeoxycholic acids). 
Large bowel anaerobic bacteria deconjugates and de-
hydroxylates, cleaving glycine and taurine residues to 
form the secondary bile acids such as deoxycholic acid 
and lithocholic acid [206,221]. Metagenomic analysis 
showed that the microbial bile salt hydrolase activ-
ity is identified in all major bacterial divisions in the 
gut [222]. Bile salt hydrolase confer bile tolerance and 
hence improvement in survival of bacteria in murine 
intestine [222]. However, to the host, continuous expo-
sure to the certain hydrophobic bile acids may induce 
oxidative DNA damage that might lead to tumorigen-
esis [220]. In serum and bile of patients with colonic 
adenomas, more deoxycholic acid was detected than in 
healthy controls [223]. Secondary bile acids are toxic 
to several cell systems at physiological concentrations 
[223]. Direct installation of secondary bile acids in the 
large bowel can be tumor promoting. Infusion of de-
oxycholic acid led to damage of the mucosa, provoking 
increased cell proliferation [224]. Deoxycholic acid has 
been reported to cause resistance to apoptosis, as sug-
gested from tissue specimens [225] and cell-line studies 
[226]. However, there is no research regarding the sex 
difference of secondary bile acids in the patients with 
CRC, so far.

TREATMENT AND CANCER 
SURVEILLANCE

1. Treatment
First of all, it is necessary to consider fertility in 

the treatment of female CRC patients. A retrospective 

study of females receiving adjuvant 5-fluorouracil, leu-
covorin, oxaliplatin (FOLFOX) chemotherapy reported 
that 41% experienced amenorrhea during chemother-
apy and 16% exhibited persistent amenorrhea 1 year 
after the completion of treatment, that chemotherapy 
may affect early menopause and fertility [227]. Second, 
it is necessary to consider gender-specific recurrence 
and survival differences. For example, the genotype 
of the TP53 tumor suppressor gene was predictive of 
survival following adjuvant chemotherapy in females 
with stage III colon cancer [228]. In cases of stage II and 
III CRC patients, polymorphisms in PLS3 and LCP1 
were associated with tumor recurrence in females 
with proximal CRC [229]. In addition, the effect of sex 
on drug efficacy and toxicity is also should be consid-
ered. Females were less likely to receive 5-fluorouracil 
treatment and showed a shorter duration of treatment 
compared to males in a study of 1,785 CRC patients 
aged more than 65 years old, which were possibly as-
sociated with the observation that females were more 
prone to dehydration than males [230]. Indeed, females 
experienced more severe toxicity including stomatitis, 
leukopenia, alopecia, and diarrhea compared to male 
when receiving 5-fluorouracil-based treatment [231]. 
Recent studies reported that stage III female colon 
cancer patients tend to omit adjunctive chemotherapy 
sessions compared to male counterparts [232-234]. Also, 
a greater percentage of elderly female patients and fe-
male patients with a prolonged hospital stay exhibited 
a higher rate of discontinuation [232]. Taken together, 
research efforts towards the development of anti-can-
cer drugs displaying less toxicity to the reproductive 
system are required [5].

2. Cancer screening
Gender differences in CRC screening have been 

noted with females tending to consider CRC as a 
male disease and taking time to choose females gas-
troenterologists [235], whereas males tend to undergo 
colonoscopy right away more than females [236]. In 
addition, as mentioned above, right-sided tumors occur 
predominantly in females than in males [5], and right- 
and left-sided tumors are different in morphology 
that right-sided tumors are more often flat while left-
sided tumors are more often polypoid [35]. Therefore, 
appropriate bowel preparation before colonoscopy is 
important for early detection of flat-shaped right colon 
cancer as inadequate bowel preparation affects the ef-
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fectiveness and accuracy of examination [237]. Several 
studies have reported that age, sex/gender, physical 
activity, and disease are associated with bowel prepa-
ration [238], and there might be several reasons. First, 
the length of colon is known to be longer in females 
than in males [239]. In previous studies, male sex [240] 
and men gender [241] were associated with inadequate 
bowel preparation, and males were associated with pro-
longed cecal intubation time [242]. In contrast, males 
showed higher success rate of cecal intubation within 
20 minutes than females [243]. Females showed better 
bowel preparation than males, but significantly longer 
cecal intubation time was needed in females in study 
of 12,561 patients (6,148 females and 6,413 males) [237]. 
In contrast, withdrawal time was significantly longer 
in men, which was caused by the higher rate of colo-
noscopy biopsy in males and higher polyp detection 
rate in males [237]. In summary, sex-based strategy in 
indication, follow-up interval, bowel preparation meth-
od and withdrawal of colonoscopy would be needed.

CONCLUSIONS

Clinical and preclinical studies have indicated that 
there are sex- and gender-associated differences in CRC 
development. Both genetic and environmental factors 
play roles in sex/gender differences in CRC, that sex 
hormones including estrogen and androgen contrib-

ute to CRC risk, but this is modulated by lifestyle and 
environmental factors such as diet, alcohol drinking, 
tobacco smoking and exercise (Fig. 12). Males are at a 
higher risk of CRC than females, but females have a 
higher risk of developing right-sided colon cancer than 
males, which seems to be associated with differences in 
carcinogenic sequence of CRC, that the CIN pathway 
is more common in left colon cancer while the MSI and 
serrated pathways are more common in right colon 
cancer. In addition, molecular heterogeneity including 
CIN, oncogene mutation and dMMR is a factor that 
determines the difference between left- and right-sided 
tumors in males and females. It is necessary to consid-
er sex/gender differences in terms of effectiveness and 
toxicities of drugs in treatment of CRC, and in terms of 
indication, follow-up interval, bowel preparation meth-
od and withdrawal of colonoscopy in screening of CRC. 
Summarizing, biological and pathophysiological differ-
ences in CRC between sexes need to be clarified, and 
gender-specific analyses should be conducted to provide 
optimal cancer treatment and prevention strategies to 
reduce CRC both in males and females.
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