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Abstract

Many genetic syndromes are associated with distinctive facial features. Several computer-assisted 

methods have been proposed that make use of facial features for syndrome diagnosis. Training 

supervised classifiers, the most common approach for this purpose, requires large, comprehensive, 

and difficult to collect databases of syndromic facial images. In this work, we use unsupervised, 

normalizing flow-based manifold and density estimation models trained entirely on unaffected 

subjects to detect syndromic 3D faces as statistical outliers. Furthermore, we demonstrate 

a general, user-friendly, gradient-based interpretability mechanism that enables clinicians and 

patients to understand model inferences. 3D facial surface scans of 2471 unaffected subjects and 

1629 syndromic subjects representing 262 different genetic syndromes were used to train and 

evaluate the models. The flow-based models outperformed unsupervised comparison methods, 

with the best model achieving an ROC-AUC of 86.3% on a challenging, age and sex diverse 

data set. In addition to highlighting the viability of outlier-based syndrome screening tools, our 

methods generalize and extend previously proposed outlier scores for 3D face-based syndrome 

detection, resulting in improved performance for unsupervised syndrome detection.
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1. Introduction

The process for diagnosing a genetic syndrome can be complex. Many affected patients and 

families face prolonged periods of waiting and uncertainty before receiving a diagnosis [1]. 

Genetic testing is a powerful diagnostic tool. However, genetic experts and clinics are often 

scarce in less affluent countries, and genetic tests are often unavailable or do not produce 

a definitive diagnosis [2]. Patients may not even be referred to a genetics expert or receive 

a genetic test if the possibility of them having a syndrome is not recognized in the first 

place. Because many syndromes affect facial morphology [3], systems for computer-assisted 

diagnosis based on facial characteristics have been proposed as a low-cost and non-invasive 

option for genetic syndrome diagnosis.

State-of-the-art approaches typically use supervised learning to diagnose specific syndromes 

given a facial image [4, 5], training a multi-class model to map an input facial image to 

an output syndrome class (e.g., down syndrome) based on example input-output pairs (see 

[6, 7] for reviews of supervised learning). Although such approaches can achieve excellent 

performance for the task of syndrome diagnosis, supervised models require large databases 

of syndromic facial images to train. Such syndromic facial image databases are expensive, 

challenging to collect, and, due to the variety and rarity of genetic syndromes, often contain 

imbalances across syndrome classes and other demographic factors. For these reasons, most 

supervised multi-class syndrome diagnosis models support diagnosis of only those genetic 

syndrome classes that are well represented in the available training data, and exclude very 

rare disorders altogether [4, 5]. Other supervised approaches train binary classification 

models with only two output classes. These models typically have an unaffected class and 

a single generic syndrome class (see [4] for examples of these methods). Although these 

models may not be strictly limited to a subset of syndromes, they still require syndromic 

data to train.
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In this work, we approach face-based syndrome detection as a statistical outlier detection 

problem, employing models that aim to capture typical facial morphological variation in 

an unaffected population. We use unsupervised normalizing flow models trained entirely 

on non-syndromic data to compute outlier scores that indicate unusual facial morphology. 

The primary advantage of an unsupervised outlier detection approach is the removal of any 

data requirement for labeled syndromic data [8]. Collecting diverse 3D facial scan data 

from syndromic patients is very challenging and expensive for a variety of reasons. While 

still challenging, collecting non-syndromic facial scans from diverse demographics is much 

easier than finding and imaging patients with numerous and rare diseases. Specifically, 

we explore two different approaches for modeling typical facial morphological variation 

using normalizing flows: probability density estimation and manifold estimation. A low 

dimensional example of both approaches is shown in the second column of the graphical 

abstract. Both, density and manifold estimation approaches, are often used for generative 

modeling as well as for outlier detection [9].

Instead of providing specific diagnostic suggestions based on syndrome-specific facial 

features, the outlier approach aims to identify unusual facial features in general. This 

approach is applicable to large scale, efficient genetic syndrome screening, where patients 

exhibiting unusual facial morphology for their demographic (e.g., age and sex) can be 

referred for genetic consultation and testing using more targeted approaches. In addition 

to greatly reduced data collection requirements, the outlier detection approach is also 

applicable in realistic clinical scenarios in which a patient may have an extremely rare 

or previously undocumented genetic disease that affects facial morphology.

1.1. Previous Work

1.1.1. Face-Based Syndrome Diagnosis—Many previously proposed face-based 

syndrome detection models [10, 11, 12, 4, 13, 14, 15] use 2D images of the subject’s 

face, as these can be easily acquired in a clinical setting. Less common are approaches that 

use 3D geometric information [5, 16] directly acquired via 3D facial scanning techniques. 

It is expected that 3D facial imaging will be become more common in the future, as 

consumer hardware and software products increasingly support 3D capture methods. For 

both 2D and 3D images, the most common modeling approaches involve training a 

supervised classification model. Binary classifiers, which discriminate between unaffected 

and syndromic subjects or between a single syndrome class and other syndromic or 

unaffected subjects, as well as multi-syndrome class models, have been developed for this 

purpose (see [4] for a survey). Both 2D and 3D classifier models can achieve excellent 

performance (above 90% sensitivity for the unaffected class [5, 4]). However, classification 

performance is typically highly variable across different syndrome classes and syndromes 

not represented in the training set cannot be classified at all.

Unsupervised approaches for face-based syndrome detection are rarely used. For example, 

Hammond et al. [16] proposed an outlier score, signature weight, as a ”relatively crude 

but useful estimate of the facial dysmorphism of an individual”. The signature weight 

corresponds to the magnitude of the face signature vector, which represents a normalized 

difference between a patient face and a demographic matched unaffected average face. 
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The absolute difference between the two faces is normalized by the magnitude of typical 

facial variation for that demographic. Therefore, the face signature vector also identifies 

which particular regions of a patient face are abnormal relative to a demographic matched 

unaffected population. More recently, Matthews et al. [17] developed a series of 3D facial 

surface growth curves along with a set of demographic specific shape models that support 

the computation of face signature vectors and weights.

In this work, we generalize the signature weight score and develop more sophisticated 

unsupervised facial dysmorphism scoring methods. We also develop a general method of 

identifying which specific facial regions and features are abnormal (similar to the face 

signature vector) that is compatible with more complex facial dysmorphism scoring models. 

To accomplish this, we use flexible normalizing flow models for both probability density 

and manifold estimation.

1.1.2. Normalizing Flows—A normalizing flow (NF) is a type of machine learning 

model in which an invertible, bijective function is learned for some objective such as 

probability density estimation or manifold estimation (see [18, 19, 20] for comprehensive 

reviews). NF models differ from traditional neural network models primarily in that they 

have a tractable inverse and Jacobian determinant. These properties are highly desirable for 

many machine learning applications. For example, NF density estimators support efficient 

exact likelihood inference, unlike other generative models such as variational auto-encoders 

and generative adversarial models. NF manifold estimation models can be constructed using 

a single invertible function, unlike auto-encoders, which require training separate encoder 

and decoder functions that are not guaranteed to be consistent with one another. Another 

advantage of NF models is that the invertibility lends itself to interpretability. The ability to 

propagate information in both directions through a model has been used to develop visual 

interpretability mechanisms, such as counterfactual generation, that are highly effective at 

explaining model inferences to non-technical users [21, 22]. NFs have been applied to 

outlier detection tasks in other contexts [23, 24], but not for the task of face-based syndrome 

detection. Furthermore, by using conditional NFs for co-variate adjusted outlier detection, 

our methods account for patient demographic information when computing an outlier score.

1.2. Contributions

The main contribution of this work is the development of a flexible and mathematically 

sound framework for unsupervised 3D face-based outlier detection applied to genetic 

syndrome screening. This is achieved through the use of conditional normalizing flows 

models, which handle density- as well as manifold-based outlier detection in a unified 

framework. We show that the proposed methods generalize and extend previous approaches 

for unsupervised 3D face-based outlier detection applied to genetic syndrome screening 

resulting in improved syndrome detection performance. Furthermore, we demonstrate a 

general gradient-based interpretability mechanism, applicable to both density- and manifold-

based NF models, that allows users to investigate which facial regions and features an outlier 

model identifies as unusual.
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2. Materials and Methods

This section will first describe the 3D scan data used in our experiments as well as 

the 3D facial measurement process. The proposed methods for computing outlier scores 

using density and manifold estimation NF models as well as the outlier score gradient 

interpretability mechanism are then described in subsequent subsections.

2.1. Data Description

The 3D facial surface scans used to train and evaluate our models were acquired using 

3DMD facial imaging systems1 and are available through the FaceBase Consortium2. 

Patients with syndromes were recruited through clinical geneticists at different sites across 

North America and have a clinical or molecular diagnosis. Ethics approval for this study was 

granted by the Conjoint Health Research Ethics Board (Id #: REB14-0340_REN4) at the 

University of Calgary.

The primary data used in this work consist of 1629 3D facial surface scans of syndromic 

patients representing 262 different genetic syndromes as well as 2471 scans of unaffected 

subjects. All subjects are between the ages of 5 and 40. Figure 1 shows the age and sex 

distribution of both syndromic and unaffected subjects. As is common among syndromic 

facial data sets, the data shows a prominent age imbalance between syndromic and 

unaffected subjects. Additionally, there is a prominent sex imbalance among unaffected 

subjects.

2.2. 3D Facial Measurement

3D facial surface scans are commonly represented in digital format using discrete polygonal 

meshes consisting of vertices connected by polygon faces. Generally, the mesh topology 

used to represent a 3D facial surface will not be the same across different facial scans. This 

means that there is no a priori correspondence between the vertices and polygons of different 

scans. Thus, as an initial data pre-processing step, we re-mesh all subject facial scans to 

a standardized mesh topology with a fixed number of vertices located at corresponding 

locations for each subject. Importantly, only the topology of the meshes is made uniform 

through this step. The vertex positions, which encode facial phenotype information like size 

and shape differences, are not the same across all subjects. Thus, our models are able to use 

facial size and shape information to detect outliers.

To achieve this, a template mesh is non-linearly registered to all subject meshes. The 

estimated transformations are then used to propagate the template vertices to all subject 

scans, which guarantees point-to-point correspondence and a uniform mesh topology across 

the population. A bilateral mapping between mesh vertices across the median plane of the 

template was also used to produce a flipped and symmetrized version of each face as a form 

of data augmentation. Irrelevant information associated with 3D facial position and rotation 

relative to the 3D scanner’s frame of reference was removed from each registration using 

rigid body transformations. At the end of this process, the 3D facial morphology of each 

1 www.3dmd.com 
2See www.facebase.org for more information and how to access the data.
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subject i is encoded as a vector xi ∈ X = ℝ3nvert where nvert is the number of vertices used to 

represent 3D facial morphology. We also combine each subject’s demographic information 

into a conditioning variable yi = agei, sexi ∈ Y = ℝ+ × male, female .

The objective of the methods presented below is to learn an outlier scoring function 

s x, y :X × Y ℝ that quantifies abnormal 3D facial morphology for specific unaffected 

demographic groups. The outlier scoring function is then used to discriminate between 

unaffected faces and syndromic faces. Given an outlier scoring function, outlier detection 

can be performed by thresholding outlier scores, or by presenting raw scores to users with 

appropriate context to support their decisions. In this work, we construct outlier scoring 

functions that rely on probability density estimation as well functions that rely on manifold 

estimation. Both approaches will be described in detail in the following sections.

2.3. Conditional Density Estimation

Intuitively, a density-based approach will identify a face as an outlier if it is improbable 

among unaffected subjects in the same demographic group. Therefore, the density-based 

outlier detection approach proposed in this work involves estimating a probability density 

pX x ∣ y  over the space of 3D facial morphology X for unaffected training subjects only. The 

conditional likelihood of test subject faces is then used as an outlier scoring function.

To model the complex and potentially non-Gaussian distribution pX x ∣ y , we construct 

a trainable bijective function ℎθ zid, y :Zid × Y X that maps points in X to and from a 

Gaussian latent variable space Zid Normal 0, I  conditional on demographic variable y. The 

potentially complex conditional likelihood pX x ∣ y  can then be conveniently evaluated using 

the Gaussian prior via a change of variables formula:

pX(x ∣ y) = pZid ℎθ
−1(x, y) ⋅ det Jℎθ ℎθ

−1(x, y), y −1

(1)

Here, Jℎθ zid, y  represents the Jacobian of function ℎθ zid, y  with respect to the variable zid. 

Given npop unaffected training samples xi, yi , parameters θ are then optimized to minimize a 

negative log likelihood loss:

ℒdensity(θ) = −1
npop

∑
i = 1

npop
log(pX(xi ∣ yi))

(2)

We use conditional density estimation models to leverage available demographic 

information (age and sex) as well as to account for demographic imbalance biases that 

may be present in facial image databases. This means that our models estimate probability 

densities specific to different demographic groups (e.g., females at 5 years of age) by 

making the bijection ℎθ conditional on the demographic variable y. Thus, faces are identified 
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as outliers if they are improbable with respect to their specific demographic group rather 

than with respect to unaffected faces in general.

2.4. Conditional Manifold Estimation

Intuitively, a manifold-based approach will identify a face as an outlier if it is far from 

a low-dimensional manifold representing the facial variation of unaffected subjects in the 

same demographic group. This approach assumes that 3D facial variation is well captured 

by low dimensional sub-manifolds of the input data space X, which has been shown to be a 

valid assumption in previous studies [25, 5]. Therefore, the manifold-based outlier detection 

approach proposed in this work estimates a low dimensional manifold of maximum data 

variation ℳ(y) ⊂ X embedded within the data space X conditional on demographic variable 

y for unaffected training patients only.

Demographic-specific manifolds of maximum facial variation ℳ(y) are defined 

by a coordinate chart gϕ
−1(x, y) :X × Y Zℳ and a corresponding inverse 

gϕ zℳ, y :Zℳ × Y ℳ ⊂ X, which map faces ∈ X to and from the manifold coordinate space 

Zℳ. The reconstruction error ∥ x − gϕ(gϕ
−1(x, y), y) ∥2, which represents the squared distance 

between a face and its projection onto the demographically corresponding low dimensional 

manifold, is used as the outlier scoring function.

As described in [20], we construct gϕ
−1 and gϕ using the forward and inverse directions 

of a shared bijective function fϕ(zℳ, zℳ− , y) :Zℳ × Zℳ− × Y X, thus ensuring that gϕ
−1 and 

gϕ are consistent with one another. Intuitively, bijection fϕ maps between the data space 

X and a latent space with the same dimensionality as X. Unlike density estimating NF 

models, where a base density is defined over the latent space, the latent space of manifold 

estimating NF models is divided into two complementary parts: Zℳ−  and Zℳ. Zℳ represents 

the coordinate space of the learned manifold, while Zℳ−  is a null space. To project a face into 

the manifold coordinate space using gϕ
−1(x, y), we apply the inverse of the bijective function 

fϕ
−1(x, y) and discard zℳ−  to get zℳ. To reconstruct a face from manifold coordinates zℳ using 

gϕ zℳ, y , we set zℳ−  to zero and compute fϕ zℳ, 0, y . Parameters ϕ are selected to minimize a 

reconstruction loss representing the magnitude of data variance not captured by the learned 

manifold given npop unaffected training samples xi, yi :

ℒmanifold(ϕ) = 1
npop

∑
i = 1

npop
xi − gϕ(gϕ

−1(xi, yi), yi) 2

(3)

We use conditional manifold estimation models to leverage available demographic 

information (age and sex) as well as to account for demographic imbalances that are 

commonly present in facial image databases. This means that our models estimate manifolds 

of maximum data variation that are specific to different demographic groups (e.g., females 

at 5 years of age) by making the bijection fϕ conditional on the demographic variable y. 

Thus, faces are identified as outliers if they are far from the manifold of maximum variation 
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for their specific demographic group rather than the manifold of maximum variation for 

non-syndromic faces in general.

2.5. Normalizing Flow Layers

The manifold and density estimation approaches described above require the specification 

of a trainable bijective function (ℎθ and fϕ respectively) that we model using a NF. Just 

as in regular neural network models, a series of simple trainable functions called layers 
are composed to produce a complex trainable NF model. Unlike regular neural network 

models, bijective NF layers also support efficient evaluation of the inverse and Jacobian 

determinant of the layer. Furthermore, to construct conditional density and manifold 

estimation models, we use conditional NF layers that depend on variable y. The linear and 

non-linear conditional NF layers used in our experiments are described below. Section 2.6 

then describes how the layers are composed to construct the models used in our experiments. 

The code for all NF layers and models is available on github3.

2.5.1. Translation—The linear translation layers used in our study represent the bijective 

function ltranslation(x, y) = x + tα(y) where tα(y) :Y ℝ3nvert is a dense neural network with 

trainable parameters α. Function ltranslation is invertible and always has a Jacobian determinant 

of 1.

2.5.2. Scaling—The linear scaling layers used in our study represent the bijective 

function lscaling(x, y) = x ⊙ exp scβ(y)  where scβ(y) :Y ℝ3nvert is a dense neural network with 

trainable parameters β. Function lscaling is invertible and has a tractable Jacobian determinant.

2.5.3. Rotation—The linear rotation layers used in our study represent the bijective 

function lrotation(x, y) = x ⋅ rγ(y) where rγ(y) :Y SO 3nvert  produces a rotation matrix from the 

special orthogonal group in 3nvert dimensions SO 3nvert . Here, special techniques are required 

to produce a smooth paramaterization of SO 3nvert  (see [26] for a full discussion). The 

function rγ(y) is composed of a dense neural network with trainable parameters γ that first 

produces a skew symmetric matrix ∈ ℝ3nvert × 3nvert. The Cayley transform is then applied to 

the skew symmetric matrix to produce a rotation matrix. The function lrotation is invertible and 

has a fixed Jacobian determinant of 1.

2.5.4. Affine Coupling—To learn non-Gaussian densities and non-linear manifolds, 

non-linear transformations must be included in our NF models. The non-linear 

layers used in our study are entropy preserving affine coupling layers as proposed 

in [27]. As coupling layers, function lcoupling(x, y) splits the input x into two 

parts. Let u1 represent the first 3nvert/2 dimensions of x and u2 represent the 

remaining dimensions. The coupling layers used in our models represent the 

bijective function lcoupling(x, y) = concatenate exp scξ u2, y ⊙ u1 + tξ u2, y , u2  where scξ(x, y) and 

tξ(x, y):ℝ3nvert/2 × Y ℝ3nvert/2 are dense neural networks with shared trainable parameters ξ. 

3 https://github.com/JJBannister/3D-Face-Normalizing-Flows 
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The function lcoupling is invertible and the Jacobian determinant is fixed to 1 by imposing an 

additional constraint on function scξ(x, y) as proposed in [27].

Permuting or mixing the input dimensions between affine coupling layers is necessary 

because interactions between dimensions would be restricted otherwise. Therefore, we place 

random, fixed permutations after every affine coupling layer.

2.6. Normalizing Flow Models

In this section, the different NF model architectures used in our study are described in detail. 

Table 1 shows a high level summary of all models.

2.6.1. Density Estimation Models—By composing different combinations of linear 

and non-linear NF layers, we construct three different density estimation models with 

different degrees of freedom. The simplest and most constrained model is only able to learn 

independent Gaussian densities. This independent Gaussian density model is also equivalent 

to the signature weight score (see Sec 2.7 for full details). Non-independent Gaussian, 

and non-Gaussian models are also explored to investigate if more complex models lead 

to improved syndrome detection performance. All models have the same, isotropic, unit 

variance Gaussian distribution for the latent variable space Zid.

The independent Gaussian NF model is composed of only translation and scaling layers. 

Therefore, the Gaussian distribution over the latent space pZid zid  is scaled along each 

dimension and translated according to variable y producing the conditional distribution 

pX(x ∣ y). Because both NF layers are linear, and the latent distribution is Gaussian, 

distribution pX(x ∣ y) will also be Gaussian. Furthermore, translation and scaling layers 

alone are not able to produce a distribution pX(x ∣ y) where the dimensions of X are not 

independent. The co-variance matrix of the Gaussian distribution pX(x ∣ y) is always diagonal 

because the scaling and translation layers are strictly diagonal. To construct a Gaussian NF 

model that allows for non-zero co-variance between different dimensions of X, we introduce 

an additional rotation layer into the model.

To transform a Gaussian latent distribution into a non-Gaussian conditional distribution 

pX(x ∣ y), non-linear layers must be introduced into the NF model. Thus, for our non-

Gaussian density estimation model, we replace the linear rotation layer with a chain of 

three non-linear affine coupling layers interspersed with random permutations.

2.6.2. Manifold Estimation Models—We construct two different manifold estimation 

models: linear and nonlinear. The simpler and more constrained linear model is much like a 

conditional version of principal component analysis in that it also estimates linear manifolds 

of maximum data variation. Matthews et al. [17] accomplish a similar task using a sliding 

window approach to singular value decomposition. A non-linear NF model is also explored 

to investigate if more complex, non-linear manifold structures lead to improved syndrome 

detection performance. The linear model is composed of rotation and translation layers, 

which enable it to learn any linear sub-manifold of the input space. Like the non-Gaussian 
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density estimation model, we replace the rotation layer with a chain of three non-linear 

affine coupling layers in order to learn non-linear manifolds.

2.7. Signature Weight Score

The independent Gaussian density estimation NF model described above differs from 

the signature weight score only in that it uses all three spatial components of point 

displacements, as opposed to the signature weight, which considers only the surface normal 

component. Although not described in a probabilistic way, the signature weight score 

proposed by Hammond et al. [16] is equivalent to a density-based outlier score in our 

framework. Computing a signature weight score involves first estimating expected faces as 

well as typical point displacement magnitudes for different patient demographics. These 

estimates effectively define the vertex mean and variance parameters for an independent 

Gaussian probability density conditioned on demographic variables. The signature weight 

score is then the square root of the sum of the squared normalized differences between 

a patient face and the corresponding demographic mean face. Importantly, this score is 

monotonically related to the negative likelihood of a patient face under a Gaussian density 

with corresponding demographic mean and variance parameters. Thus, if the signature 

weight score of patient A is larger than that of patient B, the negative conditional likelihood 

of patient A is also larger than that of patient B under a corresponding Gaussian density. 

This property makes the two scores equivalent as outlier scoring methods. Therefore, we 

use an independent Gaussian density estimator to emulate the signature weight score in our 

experiments.

2.8. Outlier Gradient Interpretability Mechanism

Clinicians are understandably hesitant to introduce black-box models into their medical 

decision making processes. Therefore, we propose a simple interpretability mechanism to 

visualize the 3D facial attributes that our unsupervised outlier detection models identify as 

unusual. For a manifold or density based outlier scoring function s(x, y), we visualize the 

gradient of the score ∇xs xi, yi  for the 3D face xi of interest using both color maps and 

counterfactual facial morphs. Caricature morphs show patient faces that are transformed 

along the outlier score gradient to exaggerate unusual facial characteristics. Normalized 

morphs show patient faces that are transformed along the outlier score gradient in the 

opposite direction to soften unusual facial characteristics. In this application, the gradient of 

the outlier score represents the most efficient transformation that would make a face more or 

less of an outlier according to the model.

Outlier score gradients are also a partial generalization of the face signature vector proposed 

by Hammond et al. [16] to identify which specific facial regions and features are unusual in 

a given subject’s face. Gradient vectors for the independent Gaussian density model (used 

in this work to emulate the signature weight score) also point in the same direction as the 

corresponding face signature vector.
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3. Experiments and Results

All results presented below are cross validated using five Monte-Carlo 80%/20% train/

test splits of the subjects. Syndromic subjects were excluded when training unsupervised 

models. Models were also trained using different numbers of vertices to represent 3D facial 

morphology. In order to accomplish this, sets of nvert vertices were selected uniformly at 

random from the full resolution mesh topology.

3.1. Supervised Baselines

To establish performance baselines for the task of syndrome detection, we first trained and 

evaluated linear and non-linear (multi-layer perceptron) binary logistic regression models. 

These models discriminate unaffected subjects from patients with any genetic syndrome 

and are trained on data that includes both unaffected and syndromic subjects. Age and 

sex information is not provided to the supervised models. Areas under receiver operating 

characteristic curves (ROC-AUC) results are shown in Table 2.

The first set of supervised experiments used 100% of the syndromic data available in each 

training set. All model configurations achieved excellent results (above 99% AUC-ROC). 

To investigate the impact of limited syndromic data, we conducted additional experiments 

where only 10% of the syndromic data from each training set was used. Performance for 

these models was slightly worse that that of models trained with complete data (98.9% 

AUC-ROC for the best performing model). Additionally, non-linear models and models 

using more vertices began to overfit and perform worse. Finally, we conducted experiments 

where data from a single syndrome (Down only) was available for model training, and the 

same syndrome was excluded from the test set. While these models produced even more 

over-fitting and worse performance than previous experiments, some configurations still 

performed well (92.9% AUC-ROC for the best performing model).

3.2. Density-Based Outlier Detection

All density and manifold estimation models used in this work were trained using only 

unaffected subjects (roughly 60% of the subjects used to train the supervised models). For 

the task of density-based outlier detection, we explored three different density estimation 

models. The first model (independent Gaussian) was designed to emulate the signature 

weight score as described in Section 2.7. The second model (Gaussian) relaxes the 

assumption of point independence through the addition of a rotation layer, but retains the 

Gaussian assumption. We found Gaussian model training to be intractable for large numbers 

of vertices due to the large computational cost of the conditional rotation layer. The third 

and most flexible model (non-Gaussian) completely relaxes the Gaussian assumption by 

introducing nonlinear transformations as described in section 2.5. The ROC-AUC results for 

density-based outlier scores are shown in Table 3.

Overall, density-based outlier detection performed well. The results do not fully reach the 

performance of supervised models, but this is not surprising given the valuable syndromic 

training data available to the supervised models. The independent Gaussian model 

performed surprisingly well given its simplicity. However, the non-Gaussian model achieved 
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the highest ROC-AUC (86.3%) among the density-based outlier detection approaches. The 

Gaussian model also outperformed the independent Gaussian model when using a smaller 

number of vertices. Increasing vertex count from 100 to 1k improved results slightly, while 

the results from 1k and 5k are generally similar.

3.3. Manifold-Based Outlier Detection

Compared to NF density models, manifold estimation models have an additional hyper-

parameter, which corresponds to the dimensionality of the sub-manifold to be estimated. 

In this work, we experiment with manifolds of dimension 1, 10, 50, and 100. Previous 

results from principal component analyses of 3D faces have shown that a 100-dimensional 

linear subspace is capable of capturing the overwhelming majority of data variance in 

neutral 3D facial data [5]. We further experiment with two different manifold estimation 

models, the simpler of which learns a linear sub-manifold. The more flexible, non-linear 

model uses non-linear layers as described in section 2.5. We found that training the linear 

manifold estimation model was intractable when using values of nvert ≥ 1k, again, due to the 

computational cost of the large matrices in the conditional rotation layer. The ROC-AUC 

results for manifold-based outlier scores are shown in Table 4.

Overall, manifold-based outlier detection also performed well, with ROC-AUC values 

reaching 85.5% for the best performing model. The results do not reach the performance of 

supervised models, but this is, again, not surprising given the additional syndromic training 

data available to the supervised models. The best manifold estimation results are similar 

to the density estimation results. However, some manifold estimation configurations (e.g., 
those with one dimensional manifolds) were reliably outperformed by density estimation 

models. For low vertex data, non-linear manifold estimation outperformed linear manifold 

estimation, especially for models with manifolds of dimension 50 and 100. Increasing vertex 

count improved performance for the two lowest dimensional manifold estimation models 

while the higher dimensional manifold results are quite similar.

3.4. Outlier Gradients

Figure 2 shows how outlier score gradients can be used to interpret outlier model inferences 

and identify specific facial features as unusual. Contrasting caricatured and normalized 

counterfactual facial morphs is a visually effective method to highlight facial features that 

contribute most to the outlier score. Another method is to visualize the surface normal 

component of the gradient using a colored map. The results shown in Figure 2 were 

produced using a non-Gaussian density estimation model with 1k vertex representations. 

The deformations were then mapped from the 1k representations to the full resolution mesh 

surface (shown in the figure) using a thin plate spline transform and an additional Laplacian 

smoothing step to remove noise associated with point sampling.

The example faces used in Figure 2 are a real unaffected subject as well as facial averages 

from patients with Down and Williams syndrome under the age of 15. The gradient figures 

show that the unaffected subject has a larger face and more prominent jaw and zygomatic 

bones compared to what the NF model expects for an unaffected person of their age and sex. 

The syndromic gradient morphs show that the NF model is able to identify characteristic 
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facial features for both Down (flat nose and face, small chin) and Williams (puffy cheeks 

and lips, depressed nasal bridge) syndrome.

4. Discussion

Overall, our results demonstrate that outlier detection is a feasible method for population 

level genetic syndrome screening. Although unsupervised outlier scores did not reach the 

performance of supervised models trained using labeled syndromic subjects for the task 

of face-based syndrome detection, they did achieve a level of performance that would be 

clinically valuable in the context of population level syndrome screening. Furthermore, 

our results suggest that the use of non-linear layers (in non-Gaussian density estimation 

models and non-linear manifold-estimation models) improved performance over strictly 

linear models.

Previous work found that NF models can have poor out of distribution detection 

performance when applied to image data. The results of their experiments suggest that 

this is due to the inductive biases of coupling layers that encourage models to learn local 

pixel correlations rather than relevant semantic details of images [24]. In our experiments, 

we train and evaluate non-Gaussian and non-linear NF models with coupling layers as well 

as Gaussian and linear models without coupling layers (see Table 1 for full descriptions). 

The results, shown in Tables 3 and 4, demonstrate that models with coupling layers 

outperformed models without coupling layers. Thus, for the type of coupling layer used 

in our experiments, the inductive bias of coupling layers does not appear have a detrimental 

effect on outlier detection for this application.

Aside from the added ability to estimate non-Gaussian densities and nonlinear manifolds, 

the NF framework proposed in this work offers a mathematically elegant and unified 

approach to Gaussian and linear modelling of 3D facial morphology. The previously 

proposed signature weight score requires the creation of demographic bins to compute 

demographic-specific expected faces and point variances. In contrast, our equivalent 

independent Gaussian density estimating NF smoothly incorporates categorical and 

continuous demographic information in a single conditioning variable passed to a unified 

parametric model. Previous approaches for demographic-specific manifold estimation [17, 

28] train multiple age and sex specific linear manifold estimation models. In contrast, our 

unified conditional linear manifold estimating NF model can smoothly account for age, sex, 

and other types of demographic information.

One important consideration is that the supervised models explored in this work do not 

incorporate or adjust for demographic information and may therefore exploit demographic 

biases present in the training and evaluation data. For example, the average age of syndromic 

subjects is less than that of unaffected subjects. A supervised discriminative model may 

spuriously associate youthful features with syndromic faces unless corrective measures are 

employed. One common way of controlling for demographic imbalances in training data 

is to model the demographic effects first and adjust all training data so as to remove the 

demographic effects. In fact, the conditional density estimation NF models used here could 

be used for exactly this purpose. Therefore, the development of good models of unaffected 
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facial variation across different demographic groups is also highly valuable for correcting 

demographic biases in supervised syndrome diagnosis applications.

The direct comparison of various density and manifold estimation models in our evaluation 

also yielded some interesting insights. Generally speaking, density estimation can more 

completely capture a data distribution compared to a manifold estimation model (e.g., the 

toy 2D data shown in the graphical abstract). Somewhat surprisingly, our best performing 

manifold estimation model reached nearly the performance of the best density estimation 

model. This may be due to the fact that density estimation is also more challenging for 

high dimensional data. Another interesting observation from our results is the performance 

gap between linear and non-linear manifold estimation that emerges primarily for manifolds 

of dimension 50 and 100. It appears that lower dimensional manifolds of maximum 3D 

facial variation may be well approximated using linear manifolds, while higher dimensional 

manifolds have more non-linear structure.

Finally, comparing results between models trained and evaluated using different numbers of 

vertices to represent facial shape produced valuable insights. Generally, we saw improved 

performance using 1k vertices compared to 100 vertices. Using 5k vertices produced 

marginally increased or even decreased performance. This suggests that the models are 

primarily using low frequency information as opposed to fine surface details to detect 

outliers. This conclusion is also supported by the relatively smooth outlier score gradient 

visualizations shown in Fig 2.

4.1. Limitations

An important limitation of our approach is its dependence on 3D facial scanning technology. 

While 3D scanning devices are less expensive and more available than ever before, 

collecting a 3D facial scan is more complex and difficult compared with 2D color 

photography. Obtaining 3D facial scans from young patients is often more difficult than 

for older patients due to inability or unwillingness to cooperate and pose during image 

acquisition. Thus, a 3D approach may be sub-optimal for very young patients. For both, 

2D and 3D image modalities, subjects with previous facial trauma or surgery are not 

good candidates for face-based syndrome diagnosis tools. An additional complexity of an 

outlier-based approach is that, in a clinical setting, an appropriate classification threshold 

would need to be selected and applied to the outlier scores to produce a binary classification.

Further limitations of our models are related to the data used in our experiments. Our data 

does not include children under the age of five years and, therefore, further data collection 

would be required to train and evaluate our model for very young children. Although this is 

a limitation of the current study, this is not a limitation of the proposed technical method. 

The proposed outlier detection approach can be easily extended to subjects below the age 

of 5 by retraining on an expanded data set. Our model does not consider ear morphology 

(which can be an important syndromic biomarker [5]). Additionally, we were unable to use 

facial texture information, which is also captured by some 3D facial scanners. Finally, ethnic 

variation was limited within our data. Generally, the data used to train an outlier detection 

model should include a large sample that is representative of the population on which the 
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tool will be applied. Future work on conditional face models would ideally incorporate 

ethnicity into the conditioning variable y along with age and sex information.

We believe that combining NF-based manifold and density estimation (as in [20]) for outlier 

detection would be an challenging and interesting extension of this work. One specific 

challenge with combining manifold and density estimation is that likelihood values from 

such models are only defined for points on the manifold. Future work could investigate 

effective methods to combine the different outlier scores used for manifold and density NF 

models.

5. Conclusion

In this work, we presented a flexible and general framework for unsupervised 3D 

face-based outlier detection applied to genetic syndrome screening. This was achieved 

using normalizing flows models, which handle probability density- as well as manifold-

based outlier detection in a unified framework. We showed that the proposed methods 

generalize and extend previous approaches for unsupervised 3D face-based outlier detection 

resulting in improved syndrome detection performance. Furthermore, we presented a general 

gradient-based interpretability mechanism, applicable to both density- and manifold-based 

NF models, that allows users to investigate which facial regions and features an outlier 

model identifies as unusual. Our results demonstrate that outlier detection is a feasible 

approach for face-based genetic syndrome screening that, unlike supervised approaches, 

does not require any syndromic facial data to train.
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Highlights

• A flexible framework for unsupervised 3D face-based outlier detection using 

conditional probability density and manifold estimation normalizing flow 

models is proposed.

• Outlier score gradient visualizations improve interpretability by showing 

users the specific facial regions and features the model identifies as unusual.

• Models are trained and evaluated using 3D surface scans of 2471 unaffected 

subjects and 1629 syndromic subjects representing 262 genetic syndromes.

• Both, density estimating and manifold estimating normalizing flow models, 

outperformed unsupervised baseline methods with the best model achieving 

an ROC-AUC of 86.3.
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Figure 1: 
A kernel density plot of the subject demographic distribution. This data set shows a 

prominent age imbalance between syndromic and unaffected subjects, as well as a sex 

imbalance among unaffected subjects.
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Figure 2: 
Faces (original column) that have been transformed along the outlier score gradient to look 

more normal (normalized) and more unusual (caricatured). The outlier gradient color map 

shows the surface normal component of the gradient with positive values indicating that the 

surface is pushed outwards compared to a normalized face and negative values indicating the 

opposite. The top row is a real example subject. The bottom two rows represent the average 

faces of Down or Williams syndrome subjects under the age of 15 years.
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Table 1:

A summary of the NF model architectures used for probability density and manifold estimation.

NF Model Architecture

Probability Density

Independent Gaussian Scaling ↦ Translation

Gaussian Scaling ↦ Rotation ↦ Translation

Non-Gaussian Scaling ↦ Affine Coupling (×3)↦ Translation

Manifold

Linear Rotation ↦ Translation

Non-Linear Affine Coupling (×3)↦ Translation
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Table 2:

Areas under receiver operating characteristic curves (%) for different supervised multi-layer perceptron 

models trained using different syndromic facial data. Standard deviations across the cross validation folds are 

shown in parentheses.

Model Syndrome Training Data

nvert

100 1k 5k

Linear 100% 99.2 (0.3) 99.3 (0.2) 99.3 (0.2)

Non-Linear 100% 99.2 (0.2) 99.3 (0.2) 99.2 (0.2)

Linear 10% 98.9 (0.3) 98.8 (0.2) 96.4 (2.6)

Non-Linear 10% 96.6 (0.3) 96.3 (0.6) 95.6 (0.6)

Linear Down Only 92.9 (0.8) 87.1 (2.3) 75.3 (20.8)

Non-Linear Down Only 76.9 (1.4) 75.8 (1.7) 75.1 (1.1)
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Table 3:

Areas under the receiver operating characteristic curve (%) using conditional likelihood as an outlier score for 

the task of syndrome detection. Results are not shown for the full Gaussian model with large numbers of 

vertices due to intractable training. Standard deviations across the cross validation folds are shown in 

parentheses.

nvert

100 1k 5k

Independent Gaussian 81.6 (2.8) 84.1 (1.8) 83.5 (2.3)

Gaussian 84.3 (3.8)

non-Gaussian 84.6 (1.5) 86.3 (1.3) 85.7 (1.6)

Artif Intell Med. Author manuscript; available in PMC 2024 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bannister et al. Page 24

Table 4:

Areas under receiver operating curves (%) using conditional manifold reconstruction error as an outlier score 

for the task of syndrome detection. Results are shown for linear and non-linear manifolds of different 

dimensionality. Results are not shown for the linear model with large numbers of vertices due to intractable 

training. Standard deviations across the cross validation folds are shown in parentheses.

Model nvert

dim(ℳ)

1 10 50 100

Linear 100 73.7 (1.4) 82.1 (2.4) 74.1 (0.9) 75.7 (1.3)

Non-Linear 100 74.9 (1.0) 81.2 (2.6) 82.9 (1.9) 83.8 (0.4)

Non-Linear 1k 76.5 (2.0) 84.7 (1.8) 82.6 (1.2) 82.2 (1.4)

Non-Linear 5k 78.2 (1.6) 85.5 (2.3) 82.2 (1.4) 81.5 (0.8)
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