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ABSTRACT There is growing interest in engineering Pseudomonas putida KT2440 as 
a microbial chassis for the conversion of renewable and waste-based feedstocks, and 
metabolic engineering of P. putida relies on the understanding of the functional 
relationships between genes. In this work, independent component analysis (ICA) was 
applied to a compendium of existing fitness data from randomly barcoded transposon 
insertion sequencing (RB-TnSeq) of P. putida KT2440 grown in 179 unique experimental 
conditions. ICA identified 84 independent groups of genes, which we call fModules 
(“functional modules”), where gene members displayed shared functional influence 
in a specific cellular process. This machine learning-based approach both success­
fully recapitulated previously characterized functional relationships and established 
hitherto unknown associations between genes. Selected gene members from fModules 
for hydroxycinnamate metabolism and stress resistance, acetyl coenzyme A assimila­
tion, and nitrogen metabolism were validated with engineered mutants of P. putida. 
Additionally, functional gene clusters from ICA of RB-TnSeq data sets were compared 
with regulatory gene clusters from prior ICA of RNAseq data sets to draw connections 
between gene regulation and function. Because ICA profiles the functional role of several 
distinct gene networks simultaneously, it can reduce the time required to annotate gene 
function relative to manual curation of RB-TnSeq data sets.

IMPORTANCE This study demonstrates a rapid, automated approach for elucidating 
functional modules within complex genetic networks. While Pseudomonas putida 
randomly barcoded transposon insertion sequencing data were used as a proof of 
concept, this approach is applicable to any organism with existing functional genom­
ics data sets and may serve as a useful tool for many valuable applications, such as 
guiding metabolic engineering efforts in other microbes or understanding functional 
relationships between virulence-associated genes in pathogenic microbes. Furthermore, 
this work demonstrates that comparison of data obtained from independent component 
analysis of transcriptomics and gene fitness datasets can elucidate regulatory-functional 
relationships between genes, which may have utility in a variety of applications, such as 
metabolic modeling, strain engineering, or identification of antimicrobial drug targets.

KEYWORDS transposon insertion sequencing, RB-TnSeq, independent component 
analysis, machine learning, Pseudomonas putida, aromatic catabolism, amino acid 
metabolism, functional genomics

P seudomonas putida KT2440 (hereafter, P. putida) has garnered much interest as a 
host for the valorization of heterogeneous chemical streams, such as biomass- and 

plastic-derived feedstocks, owing to its ability to adapt to several, often toxic, environ­
ments and funnel heterogeneous substrates toward a single product (1–9). However, 

March 2024  Volume 9  Issue 3 10.1128/msystems.00942-23 1

Editor Steven J. Hallam, University of British 
Columbia, Vancouver, British Columbia, Canada

Address correspondence to Bernhard O. Palsson, 
palsson@ucsd.edu, or Gregg T. Beckham, 
gregg.beckham@nrel.gov.

Andrew J. Borchert, Alissa C. Bleem, and Hyun Gyu 
Lim contributed equally to this article. Order of 
names for equal contributors was based on each 
author's longevity of involvement in the study.

The authors declare no conflict of interest.

See the funding table on p. 19.

Received 14 September 2023
Accepted 7 January 2024
Published 7 February 2024

Copyright © 2024 Borchert et al. This is an open-
access article distributed under the terms of the 
Creative Commons Attribution 4.0 International 
license.

https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00942-23&domain=pdf&date_stamp=2024-02-07
https://doi.org/10.1128/msystems.00942-23
https://creativecommons.org/licenses/by/4.0/


a deep understanding of the metabolic and stress tolerance capabilities of P. putida is 
essential for its use as an industrial biocatalyst (10–15).

For all organisms, including P. putida, activities of multiple gene products must be 
coordinated to form complex functional networks that permit survival and growth 
within the environments experienced by the cell, and metabolic engineering efforts 
do not always account for the complex, inter-related nature of these gene networks 
(16). One approach to illuminate these relationships is transposon insertion sequencing 
(TnSeq), a powerful functional genomics tool that combines high-density transposon 
mutagenesis with next-generation sequencing to simultaneously characterize bacterial 
gene essentiality and fitness (17, 18). By screening a pooled transposon library against 
various growth conditions, a TnSeq practitioner can establish the relative essentiality of 
each gene across the conditions tested, thereby generating a genotype-phenotype link 
that can help to elucidate the function of each feature. A variation on the TnSeq method, 
randomly barcoded transposon insertion sequencing (RB-TnSeq), uses unique barcode 
sequences encoded within transposons to reduce the sequencing burden of traditional 
TnSeq approaches (19). To date, RB-TnSeq has aided in the elucidation of the catabolism 
of aromatic acids, alcohols, fatty acids, lysine, and various nitrogen sources in addition 
to probing gene involvement during ionic, aromatic, and aliphatic acid stress in P. putida 
(20–24).

Nonetheless, while RB-TnSeq can aid in the assignment of gene function, this 
technique is restricted to the range of conditions studied, and identification of function­
ally related gene groups is often assessed through manual curation of the data sets. In 
contrast to principle component analysis (PCA), which uses dimensionality reduction 
to compress multivariate information, independent component analysis (ICA) is an 
unsupervised, multivariate signal separation algorithm used to decompose mixed signals 
into their individual parts (25). This approach performs best among many algorithms to 
identify sets of co-expressed genes (26) and has been successfully applied to microarray 
and RNAseq transcriptomics data (27–32).

In this work, ICA was applied to gene fitness data obtained from a set of diverse, 
previously conducted RB-TnSeq experiments, enabling rapid deconvolution of the 
complex genetic network of P. putida into groups of functionally independent genes. 
These functional groups, named fModules (for “functional modules”), represent sets of 
co-functioning genes that show correlated fitness performance across all conditions 
in the RB-TnSeq data set. The function of several genes was then examined in vivo 
to validate fModule membership. These included genes involved in hydroxycinnamate 
metabolism and tolerance, nitrogen assimilation from amino acid substrates, and 
acetyl-coenzyme A (CoA) utilization. The functional clustering data obtained from ICA 
of RB-TnSeq data sets were also compared with prior gene regulatory clustering data to 
establish regulation-function relationships between sets of genes in P. putida (32).

RESULTS AND DISCUSSION

ICA of multivariate gene fitness data separates genes into fModules

The appropriateness of applying ICA to gene fitness data was assessed through review of 
the required assumptions for the approach. ICA assumes that (i) independent compo­
nents are statistically independent and (ii) independent components have a non-Gaus­
sian distribution. For the first criterion, the statistical independence of functional gene 
networks seems counterintuitive given that the metabolic network consists of sets of 
intersecting anabolic, catabolic, and energy transfer reactions (33). However, empirical 
results have shown that ICA estimation of meaningful components is robust against 
some violation of the independence assumption (34). In practice, this means that 
ICA allows for variable membership to multiple independent components (as with 
metabolic intersection) but requires that interactions among members of an independ­
ent component be stronger than interactions between components to be effective. 
Therefore, the modularity of functional processes, like those within the metabolic 
network satisfies the requirement for independence (33, 35). This is similar to the 
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successful application of ICA to expression data based upon the modularity of regula­
tory networks, where large sets of genes are transcriptionally controlled by relatively 
independent sets of global regulators that, in some cases, can also control the expression 
of other global regulators (regulatory intersection) (30).

The second requirement for non-Gaussian distribution of the independent compo­
nents is also satisfied by the modularity of physiological processes, where the fitness 
distribution of a mutant strain is driven to non-Gaussian behavior, based upon the 
functional role of the gene product in each growth condition. For example, if a gene 
plays a functional role in efflux of a toxic compound, fitness outcomes from disrupt­
ing that gene would be skewed negative during growth in the presence of the toxic 
compound but neutral in conditions where the toxin is absent. If several genes are 
required for growth in the presence of the toxin, then they will exhibit similar, non-Gaus­
sian distributions in the data set and be grouped together into a single fModule.

With the applicability of ICA of gene fitness data established, a broad panel of 
publicly available RB-TnSeq data from P. putida was compiled into a set of gene fitness 
measurements, covering 4,732 of 5,564 protein-coding genes in P. putida (36) from 332 
samples grown in 179 unique conditions (Fig. 1A; see “Data Availability”). Gene fitness 
values were derived from a variety of selection conditions, including growth on single 
carbon sources, growth on single nitrogen sources, metabolite and osmotic stress, and 
volumetric scales ranging from microtiter plates to 2-L bioreactors (20–23, 37, 38). This 
data set was then subjected to matrix decomposition by ICA to obtain individual groups 
of genes unified by shared functional influence upon specific cellular processes.

When ICA was applied to the P. putida RB-TnSeq data set, F , gene fitness data were 
decomposed into a matrix of individual gene weight coefficients, M , for 84 underlying 
fitness profiles (fModules) (Fig. 1B), and a matrix of condition-specific activities, A , 
for each fModule (Fig. 1C). Most gene weight coefficients in an fModule were near 
zero, indicating that the underlying functional signal corresponding to each fModule 
affected a small number of significant genes. Genes with weight coefficients outside a 
predetermined threshold (see “Materials and Methods”) were removed, resulting in a set 
of outlier genes, which were identified as “member genes” for each fModule. Member 
genes with negative or positive gene weights displayed fitness profiles negatively or 
positively correlated with fModule activity, respectively. For example, if an fModule 
displayed negative activity for a particular condition, transposon-mediated disruption of 
its positively weighted member genes would be detrimental to growth in that condition. 
In this way, underlying fitness values were decomposed into a matrix of activities, A , 
which reflected the concerted changes in fitness displayed by all member genes for 
each condition. In this analysis, only fModule_80 failed to contain a gene that satisfied 
the predetermined weight cutoff, resulting in an fModule with zero members. The 84 
fModules contained 543 of the 4,732 unique genes used as input [11% of input, 9% of all 
P. putida open reading frames (ORFs)] with a median of 7 genes per fModule. In total, 83% 
of gene fitness variance within the RB-TnSeq data set was explained by the 84 fModules, 
and the proportion of total RB-TnSeq data set fitness variance explained by each fModule 
ranged from 0.14% to 8.47% (Table 1).

The functional role of each fModule was initially classified using the Database 
for Annotation, Visualization, and Integrated Discovery (DAVID) database functional 
annotation clustering tool (39–41). The fModules were then manually curated using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology designations and fModule 
activity patterns to assign a putative functional annotation for all fModules (42). An 
example of this process is provided for fModule_14, which contained five genes (Fig. 
1B). DAVID was unable to assign a functional clustering annotation, but fModule_14 
activity was negative for growth enrichments containing 4-coumarate or ferulate as 
a sole carbon source (Fig. 1C), and GO terms revealed that 4/5 genes played known 
roles in hydroxycinnamate catabolism (Fig. 1D). These findings led to fModule_14 being 
provided with the functional annotation of “4-coumarate and ferulate catabolism” (File 
S1). Table 1 provides a list of all 84 fModules with putative functional annotations and 
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the explained variance for each fModule. Most fModules could be assigned a functional 
annotation, but four fModules were left uncharacterized, due to ambiguity associated 
with member genes and corresponding fitness profiles (Table 1). Overall, over 57% 
of variance was explained by fModules annotated as amino acid metabolism, carbon 
metabolism, and nitrogen metabolism (Fig. S2). This is consistent with the fact that 
most conditions in the RB-TnSeq data set were designed to screen against various sole 
nitrogen sources, carbon sources, or amino acid dropout media compositions. Full details 
for each fModule, including gene weights, M , and fModule activities, A , are available 
at https://fmodules.github.io/putida.

FIG 1 Decomposition of RB-TnSeq multivariate gene fitness profiles using ICA. (A) Schematic of the general RB-TnSeq approach. A randomly barcoded 

transposon insertion library in P. putida is cultivated in a baseline (“time zero”, T0) condition and then enriched in a selective condition to mid-log (T1). Normalized 

barcode counts, which are indicative of specific mutant frequency in the population, are enumerated before and after enrichment to calculate a fitness value for 

each gene disruption. Genes with larger fitness magnitudes are expected to play a more important functional role for a given condition. In ICA, (A) fitness values, F , from RB-TnSeq experiments were decomposed into a matrix of (B) gene weights, M , and a matrix of (C) condition-specific activities, A  . In M , genes 

with outlier weight values were grouped together into a single functional group, termed a “functional module”, which we abbreviate as “fModule”. In A , the 

activity profile of an fModule characterizes the related biological functions of its member genes in each RB-TnSeq enrichment condition. Data from fModule_14 

is provided as an example of ICA fModule gene weight and fModule activity outputs. (D) fModule_14 contains several genes involved in hydroxycinnamate 

metabolism. The negative activity of fModule_14 for conditions with 4-coumarate or ferulate as a sole carbon source in panel C is consistent with the essential 

role of its member gene products in catabolism of these substrates.
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TABLE 1 fModule annotation and explained variancea

fModule Description # of genes Explained 

variance

fModule Description # of genes Explained 

variance

1 Fatty Acid Metabolism 3 0.21% 43 Phenylalanine Catabolism 11 0.18%

2 Nitrogen metabolism 6 2.63% 44 Beta-alanine catabolism 10 0.31%

3 RidA 1 0.98% 45 Spermidine and propandiamine 

catabolism

17 0.27%

4 Transcriptional regulation 13 0.32% 46 Butyrolactam catabolism 5 0.15%

5 Benzoate catabolism 13 0.23% 47 Transcriptional regulation and 

cell:surface adhesion

6 0.65%

6 Glycine, serine, and threonine metabolism 9 0.14% 48 Acetic acid stress 7 0.57%

7 Choline, betaine, and carnitine catabolism 22 0.22% 49 4-Hydroxyvalerate catabolism 2 0.45%

8 Propanediamine catabolism 22 0.61% 50 1,4-Butanediol catabolism 7 0.34%

9 Maintenance of lipid asymmetry (Mla) system 14 0.50% 51 Phenolic acid stress 19 0.24%

10 Bioreactor growth 3 0.40% 52 Flagellar biosynthesis 25 0.39%

11 Levulinic acid catabolism 16 0.52% 53 Fatty acid metabolism 11 0.88%

12 Biotin biosynthesis and pyruvate carboxylase 9 1.24% 54 ParB 1 0.29%

13 Molybdopterin biosynthesis and 

benzaldehyde tolerance

20 0.42% 55 Lactic acid stress 14 0.78%

14 4-Coumarate and ferulate catabolism 5 0.15% 56 Thymine degradation 6 0.20%

15 Glutamate metabolism 3 1.09% 57 Branched-chain Amino acid 

biosynthesis

5 7.48%

16 Benzoate, 4-coumarate, and ferulate 

catabolism

16 1.96% 58 Fatty acid catabolism 4 0.64%

17 Pyrroloquinoline biosynthesis and 

short-chain alcohol catabolism

20 0.41% 59 Thiamine diphosphate biosynthesis 6 2.45%

18 Phenylacetate catabolism 16 0.30% 60 4-Aminobutyric acid catabolism 7 0.18%

19 Phosphoenolpyruvate:sugar phosphotrans­

ferase system

2 0.37% 61 Nitrogen metabolism 6 0.20%

20 4-Coumarate, ferulate, and catabolic 

intermediate stress tolerance

6 0.34% 62 Galacturonic acid and glucuronic 

acid catabolism

11 0.26%

21 Arginine metabolism 14 3.12% 63 Methionine biosynthesis 5 3.80%

22 Cobalamin biosynthesis and ethanolamine 

catabolism

22 0.50% 64 NadC 1 2.51%

23 Uncharacterized 4 0.71% 65 Glutamate transport 12 0.36%

24 Nitrogen stress sensor and glycogen 

biosynthesis

3 0.43% 66 Proline metabolism 2 2.05%

25 Bioreactor growth 14 0.68% 67 Valine biosynthesis 3 3.71%

26 Uncharacterized 11 0.27% 68 Lysine metabolism 18 0.60%

27 Membrane to surface adhesion 5 0.96% 69 Histidine biosynthesis 2 3.82%

28 Ferulate and catabolic intermediate 

catabolism

9 0.32% 70 Butyrate catabolism 9 0.34%

29 Transport of butylamine-containing 

compounds

6 0.16% 71 HisA 1 0.50%

30 Histidine biosynthesis 11 6.89% 72 Lysine metabolism 5 0.27%

31 Protocatechuate stress 8 0.58% 73 L-Lysine catabolism 3 0.24%

32 Nitrogen assimilation 4 0.95% 74 Tryptophan biosynthesis 9 8.47%

33 Biotin biosynthesis and isopentanol/isopre­

nol catabolism

12 0.35% 75 Uncharacterized 6 1.86%

34 Improved fitness factors 7 1.91% 76 Sodium tolerance 21 0.58%

35 Uncharacterized 6 1.12% 77 Fatty acid metabolism 2 0.15%

36 Possible Tween-20 catabolism 12 0.24% 78 Possible butyrate metabolism 7 0.18%

37 Lipopolysaccharide biosynthesis 12 0.27% 79 Fatty ester metabolism 7 0.32%

38 RuvC 1 0.37% 80 No gene 0 0.21%

(Continued on next page)
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Previous work applying ICA to E. coli transcriptomics data sets revealed that increas­
ing the number and diversity of samples analyzed by ICA leads to the identification of a 
greater number of gene modules, and these modules are of higher quality (31). Since the 
application of ICA to gene fitness data sets does not mathematically differ from its 
application to transcriptomics data sets, the number and quality of identified fModules 
characterized are also expected to increase as sample size of the input data set increases. 
Therefore, future studies appending additional conditions to the data set may further 
refine P. putida fModule abundance and quality described in this work.

Also of note, the mariner transposon used in the KT2440 library does not contain an 
outward-facing promoter, making polar mutations even more likely in situations where 
a disrupted gene is encoded within an operon. This is a potential pitfall of transposon 
mutagenesis, in which affected genes may display strong fitness scores despite a lack of 
true involvement in a biological process. fModules may therefore include a small number 
of physiologically irrelevant genes, underscoring the need for careful consideration of 
gene context in any reverse-engineering campaign based on ICA assignments.

ICA successfully identifies several well-established metabolic pathways as 
fModules

Many fModules contained genes with well-characterized shared functional roles, 
underscoring the utility of ICA for grouping genes according to common function. 
For example, fModule_21 contained genes with described roles in L-arginine biosyn­
thesis, transport, catabolism, and regulation (File S1) (43). The arginine biosynthesis 
genes displayed positive gene weights, while all other genes displayed negative gene 
weights. Accordingly, fModule_21 exhibited negative activity in all conditions lacking 
L-arginine supplementation (Fig. S3). In another example, fModule_68 and fModule_73, 
which exhibited negative activity when L-lysine, D-lysine (D-Lys), or catabolic inter­
mediates were used as carbon or nitrogen sources (Fig. S4), contained genes with 
recently described roles in lysine regulation, transport, and catabolism (File S1) (20). 
In an example unrelated to amino acid metabolism, fModule_5 contained genes with 
characterized roles in benzoate catabolism (File S1) and displayed negative activity in 
conditions where benzoate was a sole carbon source (Fig. S5). Interestingly, negative 
weight gene members of fModule_5 were involved in the catabolism of protocatechuate 
toward the same product from benzoate catabolism, β-ketoadipate enol-lactone (44).

An additional, notable example of ICA successfully grouping enzymatically distinct 
but functionally related genes was demonstrated by fModule_28 (File S1). fModule_28 
exhibited strongly negative activity for growth on the O-methylated aromatic com­
pounds ferulate, vanillate, and vanillin (Fig. S6). Accordingly, this fModule contained 
vanAB, encoding the vanillate O-demethylase essential for growth in these conditions 
(45, 46). Formaldehyde is liberated as a product of O-demethylation by the native Rieske 
non-heme iron monooxygenase system, VanAB (46–48), and fModule_28 also includes 
frmA (encoding a glutathione-dependent formaldehyde dehydrogenase). Consistent 
with the glutathione and zinc cofactor requirements of FrmA, gshB (PP_4993, glutathione 
synthetase) and znuB1 (PP_0117, inner membrane pore of the zinc ABC transporter (49)) 
were also members of fModule_28. Disruption of znuB1 presented complexity due to its 

TABLE 1 fModule annotation and explained variancea (Continued)

fModule Description # of genes Explained 

variance

fModule Description # of genes Explained 

variance

39 PP_1410 1 0.18% 81 SerA 1 1.32%

40 Acetate catabolism 3 0.23% 82 ProI 1 0.44%

41 Hexanoate and valerate catabolism 10 0.20% 83 Beta-ketoadipate and levulinic acid 

stress

4 0.22%

42 NADH:ubiquinone oxidoreductase I 14 1.68% 84 Nitrate metabolism 3 0.15%

aFunctional annotations for each fModule, the number of genes in each fModule, and the proportion of the RB-TnSeq data set variance explained by each fModule. 543 
unique genes are contained within the 84 fModules. Full details for each fModule are available at https://fmodules.github.io/putida.
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in-frame arrangement with znuC1 (PP_0118), but disruption of the transporter binding 
protein, znuA1 (PP_0120), led to poor growth with vanillate, relative to the wild-type, in 
the presence of zinc (Fig. S7).

Overall, the examples from arginine, lysine, benzoate, and catabolism of O-methy­
lated aromatic substrates above demonstrate that ICA applied to fitness data can 
identify sets of genes with known functional relationships. Additionally, while the 
gene annotations of member genes within fModule_21, fModule_68 and fModule_73 
together, fModule_5, and fModule_28 could be used to assign functional roles for these 
fModules in arginine metabolism, lysine catabolism, benzoate catabolism, and O-methy­
lated aromatic catabolism, respectively, the activity profiles for these fModules were 
consistent with their functional annotations (Fig. S3 to S6), underscoring the power in 
using fModule activity profiles to assign function.

ICA predicts genes with complementary roles in otherwise well-characterized 
functional groups

In several cases, the function of an fModule could be assigned based upon established 
roles for its constituent genes in a well-characterized pathway, but it also contained one 
or more genes with unintuitive roles in the pathway. One example of this observation is 
the inclusion of glcB (PP_0356), annotated as a malate synthase, in the well-characterized 
functional gene groups for fatty acid metabolism (fModule_53) and 4-coumarate and 
ferulate catabolism (fModule_14) (Fig. 2A; File S1). fModule_53 also included aceA, which 
together with glcB forms the glyoxylate shunt pathway to assimilate acetyl-CoA into the 
tricarboxylic acid (TCA) cycle (50). In conditions where catabolism of substrates results in 
the production of acetyl-CoA, such as with butanol and acetate, organisms are required 
to divert flux away from the oxidative steps of the TCA cycle and toward the anaplerotic 
steps of the glyoxylate shunt, conserving carbon for gluconeogenesis and subsequent 
biomass production (51). Accordingly, the abundance of glyoxylate shunt enzymes has 
been shown to increase in response to butanol (52), helping to explain the presence of 
glcB and aceA within fModule_53 for fatty acid metabolism.

Upregulation of the glyoxylate shunt genes has also been demonstrated during 
benzoate degradation, likely as a means to assimilate the acetyl-CoA generated by PcaF 
(53). Acetyl-CoA is also a product of the Fcs:Ech:Vdh pathway for 4-coumarate and 
ferulate catabolism (Fig. 2B), and the genes for these enzymes are members of fMod­
ule_14, along with glcB (Fig. 2A). The membership of glcB in both fModule_53 and 
fModule_14 was bolstered by growth experiments, where the transposon disruption 
mutant of glcB grew no different from wild-type P. putida in minimal medium supple­
mented with glucose (Fig. 2C), but its growth was severely inhibited on 4-coumarate (Fig. 
2D) and ferulate (Fig. 2E; Fig. S8) and entirely abolished on butanol (Fig. 2F). Expression of 
additional copies of glcB from a plasmid (strain ACB329; Table S1) led to modest growth 
improvements on 4-coumarate and ferulate but did not affect growth on glucose or 
butanol, relative to the wild-type (Fig. 2C through F, blue lines). The poor growth of the 
functional glcB knockout strain on 4-coumarate and ferulate indicates a critical role for 
the glyoxylate shunt in facilitating the anaplerotic assimilation of acetyl-CoA generated 
during 4-coumarate and ferulate catabolism. Importantly, since catabolism of 4-
coumarate or ferulate produces both acetyl-CoA and succinyl-CoA products (53), the 
glyoxylate shunt is not essential to the same degree as with the catabolism of butanol 
and acetate, where acetyl-CoA is the sole product. Nonetheless, engineering strategies 
that leverage glcB may offer an underutilized, broadly applicable approach to improve 
growth outcomes for processes that rely upon the catabolism of feedstocks containing 
ferulate or 4-coumarate.

ICA aids in reannotation of gene function

Occasionally, gene annotation seemed to be in conflict with a functional annotation 
derived from ICA. The membership of amaC (PP_3590, annotated as a D-lysine amino­
transferase), in the phenylalanine catabolism functional module (fModule_43) serves as 
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one example. fModule_43 exhibited a strongly negative activity during growth with L-
phenylalanine (L-Phe) as the nitrogen source, so it was putatively annotated as a 
functional gene module for phenylalanine catabolism (Fig. 3A; Table 1). L-Phe catabolism 
proceeds through L-tyrosine (L-Tyr) in P. putida (Fig. 3B), but L-Tyr was not examined as a 
nitrogen source in the RB-TnSeq data set. To validate the role of genes included in 
fModule_43 (file S1) in L-Phe catabolism, single transposon disruption mutants of 
member genes phhA, amaC, and hpd were cultivated in M9 minimal medium with 20 mM 
glucose as a carbon source and either ammonium, L-glutamate (L-Glu), L-Phe, L-Tyr, or D-
Lys as the sole nitrogen source (Fig. 3C through F). As expected, all mutants grew 
similarly to the wild-type strain when ammonium was used as the nitrogen source (Fig. 
3C), and only a slight increase in lag time was observed for all mutants, except hpd when 
L-glutamate, a product of L-tyrosine aminotransferase, was used as the nitrogen source 
(Fig. S9). A substantial growth defect was observed when functional knockouts of phhA, 
hpd, and PP_3434 were grown with L-Phe as the sole source of nitrogen (Fig. 3D). The 

FIG 2 GlcB plays an important functional role within short-chain fatty acid metabolism and 4-coumarate and ferulate catabolism. (A) Membership and 

associated gene weights for fModule_14 and fModule_53. (B) Metabolic pathways for P. putida short-chain fatty acid metabolism, the glyoxylate shunt, and 

4-coumarate (R=H) and ferulate (R=OCH3) catabolism. Growth profiles of a functional knockout of glcB (glcB::Tc1) and an overexpression mutant (pBTL-2_glcB) 

were compared with wild-type (KT2440) in M9 minimal medium supplemented with (C) 20 mM glucose, (D) 10 mM 4-coumarate, (E) 10 mM ferulate, and (F) 

10 mM butanol. Error shading indicates the standard deviation from the mean for three biological replicates.
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PP_3434 gene lies immediately upstream of hpd and presumably elicits a polar effect on 
the expression of hpd, but this was not explored further in the current work. While Hpd 
acts downstream of nitrogen assimilation within the L-Phe and L-Tyr catabolic pathway, it 
is possible that 4-hydroxyphenylpyruvic acid accumulation inhibits the activity of the 
upstream L-Tyr aminotransferase. This is bolstered by prior work, where an hpd knockout 
was used to increase the L-tyrosine concentration in P. putida (54). In accordance with the 
function of PhhA as a phenylalanine-4-hydroxylase, disruption of phhA did not substan­
tially inhibit growth on L-Tyr (Fig. 3E). Surprisingly, disruption of tyrB (PP_1972, annotated 
as an L-Tyr aminotransferase) did not inhibit growth with L-Phe or L-Tyr, but disruption of 
amaC [PP_3590, sometimes called tyrB2 (55)] completely abrogated growth with L-Phe 
and L-Tyr (Fig. 3D and E) and did not substantially inhibit growth on D-Lys (Fig. 3F), 
inconsistent with its annotation as a D-lysine aminotransferase. Given these results and 
findings from previous work suggesting that AmaD, not AmaC, is the predominant D-
lysine aminotransferase in P. putida (20, 55), we propose re-annotation of AmaC as an L-
Tyr aminotransferase.

fModules uncover previously uncharacterized functional relationships 
between genes

Activity and gene membership of fModules also helped define pathways for tolerance 
to hydroxycinnamate stress. The activity of fModule_20 was strongly negative during 

FIG 3 ICA suggests reannotation of AmaC from a D-lysine aminotransferase to an L-tyrosine aminotransferase. (A) Activity profile of fModule_43 across 

all conditions in the RB-TnSeq data set, with the inset showing strongly negative activity during growth with L-Phe as a nitrogen source. (B) Proposed 

catabolic pathway for L-Phe and L-Tyr in P. putida. The growth of individual transposon disruption mutants was compared with wild-type (KT2440), using 

M9 minimal medium supplemented with 20 mM glucose as a carbon source and either (C) 5 mM ammonium, (D) 5 mM L-Phe, (E) 5 mM L-Tyr, or (F) 5 mM 

D-Lys as the sole nitrogen source. Error shading indicates the standard deviation from the mean of three biological replicates. 2-OG, 2-oxoglutarate; HPPA, 

4-hydroxyphenylpyruvic acid; HGA, homogentisic acid.
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growth on glucose with stressful concentrations of hydroxycinnamic acids such as 
4-coumarate, 4-hydroxybenzoate, and vanillate (Fig. 4A). This module contained only 
six genes: PP_1150–1152, amaC (PP_3590), panB (PP_4699), and PP_0856 (Fig. 4B). 
Transposon disruption mutants of these genes were utilized for growth assays to probe 
the function assigned by the fModule (Fig. 4C through H). PanB is involved in the 
biosynthesis of pantothenate, a precursor to CoA (56, 57); therefore, this mutant was 
unable to grow in M9 minimal medium without supplementation of pantothenate. 
PP_0856 was also excluded from analysis since no transposon disruption mutants were 
isolated for this gene. Nonetheless, growth assays with functional knockouts of PP_1150 
and amaC effectively recapitulated the activity trends observed for fModule_20, where 
both mutants grew similarly to the wild-type strain with glucose as a sole carbon 
source (Fig. 4C), but both exhibited growth defects during growth on glucose with 
high concentrations of hydroxycinnamates (Fig. 4D through F) or during growth with 
high concentrations of 4-coumarate or ferulate as the sole carbon and energy source 
(Fig. 4G and H). PP_1150–1152 constitute a membrane protein complex, so these 
genes may be responsible for osmotic stress mitigation. Additionally, the operon is 
at least partially regulated by FleQ (32, 58), and previous reports have shown that 
overexpression of PP_1150–1152 enables enhanced growth on high concentrations of 

FIG 4 Functional knockouts of genes in fModule_35 reflect its strongly negative activity during hydroxycinnamate stress. (A) Activity profile of fModule_20 

across all conditions in the data set, with the inset demonstrating negative activity during hydroxycinnamate catabolism and stress. (B) Membership and 

associated gene weights for fModule_20. The growth of individual transposon disruption mutants of P. putida (PP_1150::Tc1 and amaC::Tc1) was compared with 

wild-type (KT2440), using M9 minimal medium supplemented (C) 20 mM glucose as the carbon source, (D) 20 mM glucose with 60 mM 4-hydroxybenzoate 

stress, (E) 20 mM glucose with 60 mM 4-coumarate stress, (F) 20 mM glucose with 60 mM vanillate stress, (G) 100 mM 4-coumarate as the carbon source, or 

(H) 160 mM ferulate as the carbon source. Error shading indicates the standard deviation from the mean of three biological replicates. Glc, glucose; 4-HBA, 

4-hydroxybenzoate; 4-CA, 4-coumarate; VA, vanillate; FA, ferulate.
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ferulate and 4-coumarate, relative to wild-type P. putida (22). The amaC gene, which was 
also included in fModule_43 for its role in L-Phe catabolism, has not been previously 
identified as a fitness contributor for hydroxycinnamate tolerance, so we engineered P. 
putida to overexpress amaC (strains ACB272 and ACB287; Table S3). Unfortunately, amaC 
overexpression failed to improve growth with 4-coumarate, ferulate, or protocatechuate, 
relative to the wild-type (Fig. S10), perhaps due to regulatory mechanisms or an as-yet 
misunderstood contribution of this gene to the function of fModule_20.

Inclusion of genes in multiple fModules reveals pathway integration

Notably, multiple genes were members of two fModules (70 genes), three fModules (22 
genes), four fModules (nine genes), five fModules (four genes), and six fModules (two 
genes). Given the promiscuity of many proteins and the integrated nature of genetic 
networks, it is perhaps unsurprising to see several genes playing a role in multiple 
functionally distinct fModules. For example, cbrB (PP_4696) and cysB (PP_2327) were 
the two genes hat were each present in six different fModules. CbrB is a σ54 response 
regulator known to regulate central carbon metabolism and amino acid uptake (59, 60), 
while CysB is a LysR-type regulator that controls sulfate metabolism in P. putida (61). 
Consequently, both genes play far-reaching roles across metabolism, explaining their 
membership to several fModules. Overall, the ability for ICA to assign multiple func­
tional groups to a gene better approximates the complex nature of biological systems 
and distinguishes this approach from other unsupervised machine learning clustering 
algorithms that cannot place genes into more than one group, such as k-means and 
agglomerative clustering (62, 63).

In six instances, cofactor biosynthesis genes were placed in the same fModule as 
genes for metabolic pathways requiring that cofactor. These are fModule_12 (bio­
tin biosynthesis and pyruvate carboxylate) (64), fModule_13 (molybdopterin biosyn­
thesis and benzaldehyde tolerance) (65), fModule_17 (pyrroloquinoline biosynthesis 
and short-chain alcohol catabolism) (23, 66), fModule_22 (cobalamin biosynthesis 
and ethanolamine catabolism) (67), fModule_28 (glutathione biosynthesis and vanillin 
catabolism/formaldehyde detoxification), and fModule_33 (biotin biosynthesis and 
isopentanol/isoprenol catabolism) (23).

fModule_28 is described above, but another notable example of cofactors being 
grouped with enzymes dependent on those cofactors involves bioBFHC and the 
independently transcribed bioA gene, which encode biotin biosynthesis enzymes (68) 
and are members to both fModule_12 and fModule_33 (Fig. 5; File S1). fModule_12 
included genes encoding the two subunits of the biotin-dependent pyruvate carbox­
ylase, PycAB (PP_5346–5347) (64), and its regulator (PP_5348). fModule_33 included 
the ivd:mccB:liuC:mccA operon, where MccA and MccB form a biotin-binding enzyme 
complex (69). The ivd:mccB:liuC:mccA operon and the two remaining members of 
fModule_33, atoAB, are critical for the catabolism of isopentanol and isoprenol, 
consistent with negative activity of this fModule when isopentanol or isoprenol were 
used as sole carbon sources (23).

Inclusion of biotin biosynthetic pathway genes in the same fModules as those 
containing biotin-dependent carboxylase genes provides a powerful illustration of 
the physiological relationships predicted by ICA. Additionally, the presence of biotin 
biosynthesis genes in multiple fModules helps illustrate the potential of ICA for capturing 
the complex nature of biological systems, where genes and pathways can have several 
distinct functional relationships with other gene sets. Overall, ICA of RB-TnSeq fitness 
data may help identify uncharacterized links between metabolic processes and cofactor 
requirements.
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Single-gene fModules often contain genes with unique, far-reaching 
physiological roles

Interestingly, eight fModules contained only a single gene (fModules 3, 38, 39, 54, 64, 
71, 81, and 82; File S1). All the single-gene fModules, excluding fModule_39, displayed 
negative activity across most of the conditions tested. fModule_64 contained nadC 
(PP_0787), encoding a phosphoribosyltransferase that catalyzes the third step in NAD+ 

biosynthesis from L-aspartate (70). fModule_81, contained serA (PP_5155), which plays a 
critical role in serine biosynthesis and NAD+/NADH recycling (71). fModule_03 contained 
ridA (PP_5303), a conserved deaminase that controls accumulation of reactive and 
toxic enamine and imine intermediates generated by several metabolic processes (72). 
fModule_71 contained hisA (PP_0292), a gene with a role in histidine and purine 
biosynthesis (73). fModule_82 contained proI (PP_5095), which is involved in the final 
step of proline biosynthesis. Surprisingly, fModule_82 also displayed negative gene 
fitness in conditions containing supplemented proline, suggesting that proI may play 
a role beyond proline biosynthesis (Files S1 and S2). Interestingly, fModule_38 and 
fModule_54 contained ruvC (PP_1215) and parB (PP_001), respectively. These genes are 
involved in DNA processing and repair, where ParB is a chromosome-partitioning protein 
and RuvC is a crossover junction endodeoxyribonuclease (74, 75). Curiously, activities 
for fModules 38 and 54, while generally negative across all conditions, were positive for 
conditions where P. putida was grown in a bioreactor. Overall, most single-gene fModules 
contained genes with known far-reaching and pleiotropic metabolic roles. Therefore, 
identification of single-gene fModules during the application of ICA to TnSeq data sets 
from other organisms may be a useful tool for identifying important genes with several 
connections to distinct metabolic and physiological processes.

FIG 5 Biotin biosynthesis genes are members of both fModule_12 and fModule_33, in which each also contains genes encoding biotin-dependent carboxylases.
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Comparing fModule data with iModulon data uncovers regulatory control of 
functional elements

In a previous study, ICA was applied to transcriptomics data from P. putida for revealing 
co-regulated sets of genes, termed “iModulons” (32). The fModules described in this work 
are distinct from iModulons because fModules delineate groups of genes with shared 
function but not necessarily those with shared regulation. Nevertheless, synchronizing 
the expression of genes with shared physiological functions is critical to cell survival and 
proliferation (76). Therefore, the extent to which genes within a single fModule were 
colocalized within a single iModulon was explored (Fig. 6; File S2). In total, 176 genes 
that were grouped into an fModule were also found in one or more iModulons, and the 
extent to which groupings were conserved between the two analyses varied.

In some cases, genes that were members of a single iModulon were also present 
within a single fModule. One example of this includes the relationship between the 
“FleQ/AmrZ” iModulon and fModule_52 (flagellar biosynthesis), where all gene members 
from the “FleQ/AmrZ” iModulon with membership to an fModule belong to fModule_52 
(File S2). Another example includes the “HutC” iModulon and its strong relationship to 
fModule_30 (His metabolism). These instances exemplify the occurrence of specific 
transcriptional circuits, where a transcriptional regulator, such as FleQ or HutC, controls 
the expression of genes all involved in a specific physiological function, such as flagellar 
motility or histidine metabolism, respectively (58, 77).

In other cases, gene members of a single iModulon were dispersed across several 
distinct, but related, fModules. As an example, several genes within fModules relevant to 
catabolism of specific fatty acids were members of the iModulon for PsrA, a transcrip­
tional repressor of the β-oxidation pathway for catabolism of all fatty acids in P. putida 
(78). The “TCA cycle” iModulon offered a variation on this theme, where member genes 
were dispersed across several catabolic fModules that are all expected to funnel carbon 
toward the TCA cycle. These cases are indicative of instances where a single global 
transcriptional circuit may coordinate expression of related, interconnected functions.

Finally, there were instances where fModules contained genes present in two or more 
iModulons. Examples include fModule_5 (benzoate catabolism) and fModule_55 (lactic 
acid stress). In the case of fModule_5, six genes involved in the catabolism of benzoate to 
β-ketoadipate were included as part of the “BenR” iModulon, while four genes involved 
in the parallel pathway for catabolism of protocatechuate toward β-ketoadipate were 
members of the “PcaR” iModulon (File S2). Coordinated expression of benzoate and 
protocatechuate catabolic genes has been observed previously in P. putida, and coordi­
nation of these peripheral pathways is believed to be important for hierarchical assimila­
tion of related metabolites that share a common downstream pathway (44, 79). 
Generally, these are examples of integrated transcriptional circuits, where a common 
cellular function is subject to multiple points of transcriptional control.

In isolation, analysis of an fModule or iModulon data set can provide high-throughput 
functional or regulatory information, respectively. However, comparison of the two data 
sets can characterize whether functional gene sets are subject to regulatory control by 
specific or global transcriptional circuits and determine the extent to which these circuits 
are integrated. Furthermore, this comparative analysis illustrates that concerted changes 
in fitness are not necessarily driven by concerted changes in transcriptional regulation.

In some cases, transcriptomic data may inform the function of poorly annotated 
fModules and vice versa. For example, fModule_26 was annotated as “Uncharacterized,” 
but one of its member genes belongs to the “PcaR” iModulon (File S2), which primarily 
contains genes required for the catabolism of aromatic compounds. Similarly, iModulon 
“Unchar-3” contains two genes within the “Transcriptional regulation & cell-surface 
adhesion” fModule (fModule_46) (File S2). Together, these data suggest that fModule_26 
and the iModulon “Unchar-3”may play roles in aromatic catabolism and cell-to-surface 
adhesion, respectively.

Of the appropriately sized RB-TnSeq data sets that exist for other organisms, a 
companion iModulon data set already exists for Escherichia coli BW25113 (30), opening 
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FIG 6 ICA assigns genes to different groups, depending on the input data set. Some KT2440 genes with membership in fModules (ICA of RB-TnSeq data, this 

study) were also members of iModulons (ICA of transcriptomics data, a separate study [32]). Genes that were members of the same iModulon (i.e., co-regulated) 

were not necessarily members of the same fModule (i.e., co-functioning). The thickness of each line corresponds to the number of genes, and labels on left 

and right indicate iModulon and fModule annotations, respectively. Numerical data for this figure are provided in File S2. Code for the Sankey diagram plotting 

function was adapted from https://github.com/anazalea/pySankey/blob/master/pysankey/sankey.py and is provided in File S3.
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the possibility of comparing future fModule data from E. coli BW25113 with existing 
iModulon data for characterizing regulatory control of functional elements in this 
organism. However, for both P. putida and E. coli BW25113, the publicly available RB-
TnSeq and transcriptomics data were not collected following growth in a shared set of 
conditions. While this did not preclude the extraction of meaningful regulatory informa­
tion from the P. putida data sets, future studies, where gene fitness and expression data 
are obtained from a shared set of growth conditions, may yield stronger relationships 
between functional sets of genes than those achieved here.

Conclusions

This work describes the application of ICA to a P. putida RB-TnSeq data set for elucidating 
functional relationships between genes. In total, this approach successfully (i) identified 
well-characterized functional relationships between sets of genes, (ii) uncovered new 
gene members with overlooked roles in otherwise well-characterized functional gene 
groups, (iii) was used to reannotate one gene’s functional role, (iv) uncovered otherwise 
overlooked functional gene relationships, (v) revealed instances of pathway integra­
tion, (vi) highlighted genes with far-reaching pleotropic functional roles, and (vii) was 
analyzed alongside iModulon data to uncover the transcriptional control mechanisms 
governing expression of various functional gene sets.

Overall, the technique presented in this work represents a rapid and automated 
approach to characterize functional modules within complex genetic networks and 
elucidate how an organism coordinates the expression of these modules. The approach 
also represents an opportunity to extract newfound value from previously generated 
data sets. ICA has successfully been applied to transcriptomics data sets containing as 
few as 23 unique conditions (80). Publicly available RB-TnSeq data sets containing at 
least 23 unique screening conditions exist for 37 additional organisms on the Fitness 
Browser (https://fit.genomics.lbl.gov/cgi-bin/myFrontPage.cgi), so it is possible that the 
use of these RB-TnSeq compendia might also reveal informative functional relationships 
between genes. Furthermore, the approach is applicable to functional genomics data 
sets from any organism, regardless of whether they were obtained specifically through 
the RB-TnSeq method. This opens ICA to a wide range of industrially, medically, or 
environmentally important organisms, where its ability to simultaneously identify several 
functional groups of genes can expedite the annotation of relatively uncharacterized 
organisms, as compared with classical genetic and biochemical approaches or stepwise 
analysis of individual data sets.

MATERIALS AND METHODS

Generation of an RB-TnSeq fitness data compendium for P. putida KT2440

An initial RB-TnSeq fitness data compendium was generated by collecting 332 publicly 
available P. putida RB-TnSeq data sets collected between 2017 and 2022, consisting of 
a mixture of duplicate or triplicate samples spanning 183 unique growth conditions. 
The Fitness Browser (https://fit.genomics.lbl.gov/cgi-bin/myFrontPage.cgi) was used to 
obtain data for 254/332 of the samples, and the remaining data were generated by the 
Beckham group, available through the NCBI Sequence Read Archive (SRA) with accession 
numbers PRJNA809672, PRJNA856070, and PRJNA1011287 (22, 38). In instances where 
gene fitness data for a particular gene did not exist across all 332 data sets, the gene 
was eliminated from analysis. Biological and technical replicates present in the data 
were not averaged or normalized in any other way prior to analysis. This resulted in a 
final data set, where 4,732/5,564 protein-coding genes from P. putida contained fitness 
data for the 332 samples (36). Unlike previous ICA experiments using RNAseq data (32), 
fitness values were not normalized by batch, since each fitness measurement was already 
normalized by transposon insertion counts in the baseline (“time zero”) condition. Gene 
fitness values, associated statistics, and metadata for each sample are available at https://
github.com/beckham-lab/fModule.
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ICA of the RB-TnSeq data set

ICA was performed for the final compendium containing fitness values for 4,732 
genes profiled across 332 samples, using the FastICA algorithm of the scikit-learn 
package (v0.23.2), as described previously (30). This algorithm was executed 100 times 
with random seeds and a convergence tolerance of 10−7. The resulting independent 
components (ICs) were clustered and compared using DBSCAN (81) with an epsilon of 
0.1 and minimum cluster size of 50, to identify robust ICs. To account for the occurrence 
identical ICs with opposite signs, a distance metric (d) was used to compute the distance 
matrix as follows:

dx, y = 1 − ρx, y
where ρx,y is the Pearson correlation between components x and y. The final robust 

ICs were then defined as the centroids of the cluster.
Since the number of selected dimensions during ICA can alter the results of the 

analysis (82), the optimal dimensionality was determined by comparing the number of 
ICs with single genes to the number of ICs correlated (Pearson R > 0.7) with ICs in the 
largest dimension, using increasing dimension from 10 to 180 and a step size of 10. The 
optimal dimension was chosen to be 130, in which the final number of ICs (fModules) 
was greater than the number of multi-gene components, while minimizing the number 
of single-gene ICs (Fig. S1).

Using the optimal dimensionality of 130, the member genes for each fModule were 
determined by iteratively removing genes with the largest gene weight size in the 
fModule and computing the D’Agostino K2 test statistic (83) for the remaining genes. 
All genes that were removed prior to the test statistic dropping below a cutoff value 
were deemed member genes of the fModule. The threshold was determined as the value 
for K2, where non-removed genes were sufficiently normally distributed around 0, as 
described previously (30).

Characterization of fModules

Functional clustering annotations for each fModule were initially explored using the 
DAVID 2021 functional annotation clustering tool, with P. putida KT2440 set as the 
analysis background and classification stringency set to the lowest setting, keeping all 
other settings at default. The gene membership list for each fModule was used as input, 
and the DAVID functional annotation output is provided in File S1. These annotations 
were refined by KEGG and Cluster of Orthologous Groups (COG) information obtained 
using the EggNOG-mapper (84) together with fModule activity patterns across all test 
conditions to manually assign putative functional annotations for all fModules ( File S1). 
Known transcription factor associations and any iModulon membership(s) for each gene 
were taken from previous assignments in the study by Lim et al. (32).

The interactive P. putida fModuleDB page was generated by using the imodu­
londb_export function in the Pymodulon package, adapted from the use for the 
iModulonDB (85).

Bacterial strains, plasmids, and growth conditions

Plasmids used in this study are described in Table S1, primers are listed in Table S2, 
bacterial strains are described in Table S3, and synthetic DNA sequences are listed in 
Table S4. PCR reactions were performed with Q5 High-Fidelity 2X Master Mix (New 
England Biolabs), and the pACB131 plasmid was assembled by the method of Gibson 
using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs). Plasmid-bearing 
E. coli strains were grown at 37°C and 225 rpm. P. putida and mutants were maintained 
in lysogeny broth (LB) medium at 30°C unless otherwise indicated. For overexpression 
of PP_3590 (amaC) in P. putida strains ACB272 and ACB287, overnight cultures of the 
P. putida KT2440 wild-type were electroporated with 500 ng of pACB127 or pACB131, 
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respectively, according to an established method (86). Plasmids contained 1,000-bp 
homology arms on either side of the Ptac:PP_3590 construct, which enabled recombi­
nation at the desired loci in the P. putida genome. Recombination was enabled with 
a previously established protocol in which transformants were selected twice on LB 
agar with 50 mg/L kanamycin (Km) and counter-selected twice on YT agar with 25% 
sucrose (87). The same procedure was used for knockout of PP_0120 (znuA1) in P. putida 
strain KDD007. For plasmid-based overexpression of glcB in P. putida strain ACB329, an 
overnight culture of the P. putida KT2440 wild-type was electroporated with 100 ng 
of pACB145, and plasmid-bearing mutants were selected on LB agar supplemented 
with 50 mg/L Km. All subsequent cultivations of ACB329 were performed in media 
supplemented with 50 mg/L Km.

Isolation of P. putida strains from an individually arrayed insertion mutant 
library

All RB-TnSeq data in the ICA data set were generated with a previously described, 
randomly barcoded transposon mutant library in P. putida KT2440 (Putida_ML5) (88). This 
pooled library was individually arrayed, and barcode assignments were determined for 
each transposon mutant as previously described (89). Individual transposon insertion 
mutants (Table S3) were withdrawn from the arrayed library by scraping a small amount 
of relevant glycerol stock into a round-bottom tube filled with 3 mL of LB medium 
with 50 mg/L Km. Each mutant culture was grown overnight at 30°C and 225 rpm, and 
permanent stocks were generated by combining overnight culture with sterile glycerol 
to 20% (vol/vol). Additionally, 1 µL of overnight culture was used as a template for a PCR 
reaction to verify the barcode sequence of each mutant. Each PCR reaction contained 
12.5 µL of Q5 High-Fidelity 2× Master Mix (New England Biolabs), 1.25 µL each of the 
previously described BarSeq_P1 and BarSeq_P2 primers (Table S2), 0.5 µL of dimethyl 
sulfoxide (Sigma-Aldrich), 1 µL of overnight culture, and water to 25 µL. Thermal cycles 
were as follows: (i) 98°C for 4 min; (ii) 25 cycles of 98°C for 30 s, 55°C for 30 s, and 72°C for 
30 s; and (iii) 72°C for 5 min. PCR products were Sanger sequenced with oACB441 (Table 
S2) to verify the barcode sequence of each mutant.

Growth analysis of the P. putida wild-type and mutants. Growth media were prepared 
by mixing equal volumes of 2× M9 medium and 2× carbon source solution to achieve 
a final concentration of 1× M9 medium (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 
1 g/L NH4Cl, 2 mM MgSO4, 100 µM CaCl2, and 18 µM FeSO4) with the desired final 
concentration of each carbon source. For zinc experiments with strain KDD007, 100 nM 
ZnSO4 was added to 1× M9 medium. Carbon sources were glucose, 4-hydroxybenzoate, 
4-coumarate, ferulate, vanillate, protocatechuate, vanillin, benzoate, and butanol. Where 
indicated, M9 medium omitted NH4Cl and instead utilized an alternative nitrogen source: 
5 mM of L-Glu, L-Phe, L-Tyr, or D-Lys. Aromatic compounds were titrated with base (4 
M NaOH) to solubilize the compound in aqueous solution prior to sterile filtration and 
addition to media. Amino acid nitrogen sources were titrated with acid (1 M H2SO4, for 
L-Tyr) or base (4 M NaOH, for D-Lys and L-Phe) to solubilize the compound in aqueous 
solution prior to sterile filtration and addition to media. The pH of solubilized L-Tyr was 
3.8, but upon addition of this solution to M9 medium, the pH remained neutral (pH = 
7.1), as with all other carbon and nitrogen sources. No precipitation of carbon or nitrogen 
sources was observed during growth. All chemicals for media preparation were obtained 
from Sigma-Aldrich, except for protocatechuate (Acros Organics) and D-Lys (Ambeed 
Inc.).

To assess the growth of the P. putida wild-type and all mutants, besides ΔznuA1, 
biological triplicate cultures of each strain were inoculated from single colonies into 4 mL 
of LB medium in round-bottom tubes and incubated overnight at 30°C and 225 rpm. For 
each condition, 2 µL of overnight culture was directly inoculated into 200 µL of medium 
(1:100 dilution) in a Honeycomb plate (Growth Curves Ltd.). Plates were incubated at 
30°C and maximum shaking speed in a BioscreenC Pro instrument (Growth Curves Ltd.), 
and the optical density at 600 nm (OD600) was measured every 15 min.
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For growth experiments with zinc added to the medium, biological triplicate cultures 
of the P. putida wild type and KDD007 were inoculated from single colonies into 4 mL 
of LB medium in round-bottom tubes and incubated overnight at 30°C and 225 rpm. 
The next day, overnight cultures were used to inoculate secondary seed cultures in 
5 mL M9 medium + 30 mM glucose. Seed cultures were grown to mid-log phase (~4 h 
at 30°C and 225 rpm), and then, each culture was washed twice in 1× M9 salts and 
diluted to an OD600 of 3. Next, 10 µL of each cell suspension was directly inoculated 
into wells of a Nunc Edge 2.0 96-well plate (Thermo Scientific) containing 200 µL of M9 
medium with 30 mM glucose or 20–80 mM vanillate as the carbon source. In half of 
the samples, media were amended to include 100 nM ZnSO4. Plates were incubated at 
30°C and 500 rpm in a LogPhase 600 instrument (Agilent), and the OD600 was measured 
every 20 min. Background correction for each sample was performed by subtracting the 
average optical density of the appropriate negative controls.
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