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Nanopore adaptive sampling effectively enriches 
bacterial plasmids
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ABSTRACT Bacterial plasmids play a major role in the spread of antibiotic resist­
ance genes. However, their characterization via DNA sequencing suffers from the low 
abundance of plasmid DNA in those samples. Although sample preparation methods can 
enrich the proportion of plasmid DNA before sequencing, these methods are expensive 
and laborious, and they might introduce a bias by enriching only for specific plasmid 
DNA sequences. Nanopore adaptive sampling could overcome these issues by rejecting 
uninteresting DNA molecules during the sequencing process. In this study, we assess the 
application of adaptive sampling for the enrichment of low-abundant plasmids in known 
bacterial isolates using two different adaptive sampling tools. We show that a significant 
enrichment can be achieved even on expired flow cells. By applying adaptive sampling, 
we also improve the quality of de novo plasmid assemblies and reduce the sequencing 
time. However, our experiments also highlight issues with adaptive sampling if target 
and non-target sequences span similar regions.

IMPORTANCE Antimicrobial resistance causes millions of deaths every year. Mobile 
genetic elements like bacterial plasmids are key drivers for the dissemination of 
antimicrobial resistance genes. This makes the characterization of plasmids via DNA 
sequencing an important tool for clinical microbiologists. Since plasmids are often 
underrepresented in bacterial samples, plasmid sequencing can be challenging and 
laborious. To accelerate the sequencing process, we evaluate nanopore adaptive 
sampling as an in silico method for the enrichment of low-abundant plasmids. Our results 
show the potential of this cost-efficient method for future plasmid research but also 
indicate issues that arise from using reference sequences.

KEYWORDS adaptive sampling, readuntil, nanopore sequencing, plasmid, bacteria, 
enrichment

I nfectious diseases caused by bacterial pathogens have lost their threat to people 
living in high-income countries due to the discovery of antibiotic drugs within the 

last 70 years. However, adaptation processes within bacteria cause these drugs to lose 
their effectiveness in treating infectious diseases. The emergence of such antimicrobial 
resistance (AMR) already poses a significant threat to public health, with an estimated 
4.95 million deaths associated with bacterial AMR in 2019 (1), and will even worsen, with 
around 10 million expected deaths per year by 2050 (2, 3). Besides vertically passing 
antimicrobial resistance genes (ARG) to their offspring, bacteria can also transfer ARGs 
across the bacterial population by horizontal gene transfer. This process is mediated via 
mobile genetic elements, such as plasmids, which are epichromosomal DNA elements 
unique to bacteria (4, 5). Plasmids are a major driver in the spread of ARGs in bacte­
rial populations (6) and have recently been found to accelerate bacterial evolution by 
enhancing the adaptation of the bacterial chromosome (7). Classifying plasmid types 
is crucial to understanding antibiotic resistance transmission between bacteria. Several 
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recent studies have shown the benefit of whole genome sequencing for classifying 
plasmid types (8, 9). In particular, the emergence of long-read sequencing by Oxford 
Nanopore Technologies (ONTs) promises improvements for outbreak investigations due 
to its lower capital investment and shorter turnaround times (10, 11). However, these 
methods suffer from the small proportion of plasmid DNA within the sequenced 
samples (12). Therefore, a large proportion of the plasmids in such samples is proba­
bly missed, or the sequencing depth is insufficient to assemble them correctly (13). 
Thus, additional sample preparation steps are required to isolate or enrich plasmids 
before DNA sequencing, but they are too expensive and laborious for applications in 
clinical diagnostic settings. These are particularly interesting for nosocomial infections 
where the potential pathogens are known, and the focus lies in identifying antibiotic 
resistance genes, which are mainly present on plasmids and could impact the treat­
ment of patients. While nanopore sequencing has been shown to reconstruct plasmids 
accurately (14), the technology offers a feature called adaptive sampling (AS) that has the 
potential to improve plasmid classification. First described in 2016 by Loose et al. (15), 
nanopore adaptive sampling has been increasingly used for in silico target enrichment 
within the last 2 years. Here, DNA molecules can be rejected from individual nano­
pores if the corresponding sequence is not interesting for downstream analysis. Pulling 
out unwanted DNA frees the nanopore for the following molecule to be sequenced 
and reduces the time spent sequencing uninteresting DNA fragments. Different tools 
implement adaptive sampling (16–18), using dynamic time warping (UNCALLED), read 
mapping (Readfish, MinKNOW), or k-mer-based (ReadBouncer) strategies, all perform­
ing rejection decisions by analyzing the first 160–450 base pairs (bp) of each read. 
Recently, deep learning-based tools like SquiggleNet and DeepSelectNet have also 
been developed, addressing host depletion in human microbiome samples (19, 20). 
The potential enrichment reached by using adaptive sampling was already shown, and 
even mathematical models that predict the enrichment factor were recently described 
by some groups (17, 21, 22). In one study, Marquet et al. (23) could enrich the micro­
biome in human vaginal samples by depleting host DNA. Further, Kipp et al. (24) 
used adaptive sampling to enrich bacterial pathogens in tick samples, while Viehweger 
et al. (22) even enriched single ARGs in human microbiome samples. In the present 
proof-of-concept study, we investigate the efficiency of adaptive sampling to enrich 
plasmid sequences in the easiest use case, where the bacterial references are known. 
All five bacterial organisms we sequenced are known human pathogens that harbor 
antibiotic resistance genes on their plasmids. For testing whether similar enrichment can 
be achieved with different tools, we chose to perform adaptive sampling with two tools, 
which were shown to have high read classification performance, namely, the built-in 
adaptive sampling feature of MinKNOW (referred to as “MinKNOW” in this manuscript) 
and ReadBouncer (18, 19). Both tools use a combination of basecalling with ONT’s Guppy 
and read classification on the sequence level. While MinKNOW’s adaptive sampling 
feature is based on the Readfish (17) scripts and uses minimap2 to map read prefixes 
against a given reference sequence set, ReadBouncer utilizes pseudo-mapping based on 
k-mers and interleaved Bloom filters for making rejection decisions. We refrained from 
using UNCALLED because Bao et al. (19) showed that the combination of basecalling and 
mapping has a higher read classification accuracy than UNCALLED. In order to increase 
sustainability and reduce sequencing costs, we also investigate whether enrichment of 
plasmids can be achieved with adaptive sampling on expired flow cells with reduced 
active pores. Finally, we evaluate the effective plasmid enrichment by comparing it to the 
predicted enrichment calculated by the mathematical model proposed by Martin et al. 
(21) and demonstrate the usefulness of adaptive sampling for plasmid assemblies.

RESULTS

In this study, we present the application of nanopore adaptive sampling on the in 
silico enrichment of plasmids by depleting chromosomal reads during the sequencing 
of bacterial isolates. Therefore, we sequenced five bacterial strains—Campylobacter 
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jejuni, Campylobacter coli, Salmonella enterica, Enterobacter hormaechei, and Klebsiella 
pneumoniae—on four different flow cells for 24 hours, each separated into an adap­
tive sampling and a control region. All flow cells, except ReadBouncer1, were used 
2–3 months after reaching the manufacturer’s recommended storage duration, and 
throughout the manuscript, we will refer to the flow cells according to the adaptive 
sampling tool used. All of the chosen bacterial strains are clinically important human 
pathogens with ARG harboring plasmids, which have already been sequenced in our 
laboratory. Thus, their chromosomal and plasmid reference sequences were sequenced, 
assembled, and characterized before conducting this study, which provided us with the 
necessary ground truth for our data analysis. Four of the five bacterial strains harbor 
one plasmid with a size between 26 and 157 kb. Only Enterobacter hormaechei has four 
different plasmids with sizes ranging from 6 to 310 kb. The chromosome sizes of the five 
bacterial strains range from 1.6 to 5.4 Mb. We used these chromosomal references as 
depletion targets for all adaptive sampling experiments conducted in this study. Further 
information on the five strains can be found in Table S2. We further investigated the 
quality of the sequencing runs by looking at the number of active sequencing pores, 
read lengths, and mean Phred quality scores of reads from the control regions. Although 
the number of active sequencing pores on expired flow cells is generally below the 
minimum number of active pores covered by the manufacturer’s warranty of 800 pores, 
we did not recognize a significant effect on read lengths and Phred quality scores. 
Adaptive sampling also does not significantly impact the read quality or the degradation 
of active sequencing pores. A more detailed description of the results is provided as an 
investigation of the sequencing runs in the Supplemental Material.

Adaptive sampling increases plasmid yield while decreasing overall sequenc­
ing yield

We analyzed the effect of adaptive sampling on overall sequencing yield and the number 
of sequenced reads. In Fig. 1a and b, we see that for all four flow cells, the sequencing 
yield on adaptive sampling regions is significantly reduced in comparison to control 
regions. This observation aligns with previous studies (17, 21) and originates mainly from 
fewer active sequencing channels in adaptive sampling regions and also from a reduced 
overall time spent for sequencing the DNA and more overall time needed to capture 
the DNA molecules when adaptive sampling is applied. Assuming a read capturing time 
of 0.5 seconds and a sequencing pace of 420 bp/second, the second point can account 
for up to 50 Mbp if 250,000 additional reads are sequenced in the adaptive sampling 
region. However, this explains only a small fraction of the reduced yield, showing that 
fewer active sequencing channels are the main driver for the reduced overall yield. In 
general, we increased the yield in sequenced plasmid base pairs with adaptive sampling 
for all but one bacterial sample (Fig. 1b and 2). In this context, we also see on all four 
flow cells a higher number of reads sequenced on the adaptive sampling regions than 
on the control regions (Fig. 1c and d). Thus, many reads are classified as chromosomal 
by the adaptive sampling tools and rejected from the pores, leading to more reads 
sequenced on the adaptive sampling regions. Here, the flow cell run ReadBouncer2 has 
a higher number of reads on the adaptive sampling region than ReadBouncer1. This 
results from a lower relative plasmid abundance in samples sequenced on flow cell 
ReadBouncer2, which leads to a larger number of chromosomal reads that were rejected 
on the adaptive sampling region of flow cell ReadBouncer2 (approx. 400,000) than on the 
adaptive sampling region of ReadBouncer1 (approx. 370,000).

Rejecting chromosomal reads increases the relative plasmid abundance

In our four experiments, we investigate the potential relative enrichment of plasmid 
sequences in bacterial samples by rejecting the chromosomal reads using adaptive 
sampling. First, we determined the percentage of sequenced chromosomal and plasmid 
base pairs for each sample from the adaptive sampling and control regions. Figure 3 
presents each sample’s chromosome and plasmid base pair percentages on control and 
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adaptive sampling regions. After 24 hours of sequencing, we see that adaptive sampling 
increases the relative abundance of plasmid base pairs for all samples on the four flow 
cells. For instance, we could increase the abundance of Campylobacter coli plasmid bases 
from 3.68% to 24.75% when rejecting chromosomal reads with MinKNOW. We further 
examined whether the relative plasmid enrichment by composition and yield we 
observe in our experiments corresponds to the predicted relative compositional 
enrichment by the mathematical model proposed by Martin et al. (21). Therefore, we 
calculated the relative compositional enrichment by dividing the percentage of plasmid 
base pairs from adaptive sampling regions by those from control regions. Accordingly, 
we calculated the relative enrichment by yield using the number of sequenced plasmid 
base pairs from adaptive sampling and control regions. As predicted by the model, the 
enrichment factor was higher for samples with less abundant plasmids (Fig. 4a). The 
highest levels of compositional enrichment were obtained using MinKNOW, which can 
be explained by faster rejection decisions. An analysis of rejected reads revealed shorter 
read lengths for MinKNOW compared to ReadBouncer, which is caused by rejection 
decisions based on short read prefixes (see Fig. S9). In the histogram, we see that reads 
rejected by ReadBouncer are longer than those rejected by MinKNOW, with an average 
length of 848 bp compared to 520 bp. This confirmed our assumption that ReadBouncer 
rejects reads later during the adaptive sampling process, resulting in a higher abundance 
of unwanted chromosomal base pairs in the final output. To avoid confusion, we have to 
note that the lengths of rejected reads in the final output are not the same as the read 
prefix (or chunk) length used by adaptive sampling tools for making rejection decisions. 
Lengths of rejected reads in the final output represent the time needed for the whole 
decision process, including time for communication with the API and mapping of reads 

FIG 1 Comparison of flow cell yield in terms of sequenced base pairs and reads after 24 hours. (a) Yield in megabases for each flow cell separated by control and 

adaptive sampling region (depletion). (b) Yield in megabases for each flow cell region separated by plasmid and chromosome. (c) Number of sequenced reads for 

each flow cell separated by control and adaptive sampling region (depletion). (d) Number of sequenced reads for each flow cell region separated by plasmid and 

chromosome.
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against index data structures. The predictions from the mathematical model by Martin et 
al. (21) correlated moderately with our observations (Pearson’s r = 0.55), as shown in Fig. 
4b. In contrast, the original relative plasmid abundance has no impact on the relative 
enrichment by yield (Fig. 4), with enrichment by yield being significantly less than 
enrichment by composition. When using adaptive sampling, the composition of a 
sample changes, e.g., from 90% chromosome/10% plasmid to 80% plasmid/20% 
chromosome. Here, we see that the lower the plasmid abundance was in the original 
sample, the higher the fold change for this compositional abundance. However, when we 
use adaptive sampling, plasmid abundance does not impact the fold change in 
sequenced plasmid bases. Irrespective of whether we had 5% or 10% plasmid bases in 
our sample, the relative enrichment in plasmid bases will be between 1.1 and 1.8. Finally, 
we also noticed that the predicted enrichment values by the model do not correlate with 
the observed enrichment values by yield (Pearson’s r = −0.07, Fig. 4d). Thus, the model is 
able to predict the relative compositional enrichment but fails to predict the relative 
enrichment by yield.

Effective enrichment of plasmids by yield, read number, and mean depth of 
coverage

We examine the effective relative plasmid enrichment at different time points of 
sequencing for each experiment by calculating the plasmid enrichment for the five 
bacterial species in 30-minute intervals. According to equation 1 defined in Materials and 
Methods, the enrichment by yield is the ratio of cumulative plasmid bases from the 
adaptive sampling region and the control region at time point t. We calculate the 

FIG 2 Comparison of plasmid yield in megabases for each flow cell regarding sequenced base pairs after 24 hours. There is a small increase in plasmid yield 

for the two Campylobacter samples from (a) ReadBouncer1 and (b) MinKNOW1. (c) Plasmid yield is increased for all three bacterial samples from ReadBouncer2. 

(d) Plasmid yield is increased for two of the three samples from flow cell MinKNOW2. There is a decreased plasmid yield for K. pneumoniae with adaptive 

sampling using MinKNOW.
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enrichment by the number of plasmid reads and mean depth of coverage in the same 
manner as proposed by equations 2 and 3 outlined in Data Analysis. In general, we see a 
steep increase in enrichment at the beginning of each experiment, followed by a steady 
decline as the experiments progress. While the steep increase at the beginning is very 
surprising, we assume that the slow decrease is caused by pore degradation and most 
chromosomal reads being rejected early in the experiments, resulting in a relatively 
constant number of plasmid reads sequenced throughout the later stages in the 
experiments on both sides of the flow cells. Figure 5a illustrates that we obtain an 
enrichment of plasmid reads for all samples in all experiments at any given time point. 
This observation confirms that the number of sequenced plasmid reads can be increased 
by using adaptive sampling. We can see the same effect for the enrichment by yield (Fig. 
5b) for all but one sample. For the Klebsiella pneumoniae sample of flow cell MinKNOW2, 
we observe that the number of plasmid bases from adaptive sampling is less than that 
from the control channels. Thus, we failed to obtain an enrichment of Klebsiella pneumo­
niae plasmids in that experiment where we used MinKNOW to deplete chromosomal 
reads. For all other samples, we observe an enrichment of 1.1×–1.8× after 24 hours, 
corresponding to 10%–80% more plasmid data when using adaptive sampling, even 
when using expired flow cells with reduced active pores. We further investigated the 
difference in enrichment between the same samples from experiments ReadBouncer2 
and MinKNOW2. First, flow cell MinNKOW2 has fewer active sequencing channels (see 
Fig. S1) and yields less sequenced base pairs than the flow cell from experiment Read­
Bouncer2 (see Fig. 1). Figure S7 also illustrates that the average read quality in the 
adaptive sampling region of flow cell MinKNOW2 is smaller than that for flow cell 
ReadBouncer2. Both observations suggest a decreased pore quality of flow cell 

FIG 3 Comparison of relative plasmid abundances in five bacterial samples. Adaptive sampling with MinKNOW was used on flow cells MinKNOW1 and 

MinKNOW2, and ReadBouncer was used as an adaptive sampling tool on flow cells ReadBouncer1 and ReadBouncer2. For all experiments, plasmid abundances 

for each sample were measured after 24 hours of sequencing for control regions and adaptive sampling regions (depletion). Plasmid abundances are highest 

when using MinKNOW for the depletion of chromosomal nanopore reads.
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MinKNOW2. Although this might explain the reduced enrichment by yield in this 
experiment, it does not explain why there is an effective depletion of plasmid bases for 
Klebsiella pneumoniae in experiment MinKNOW2. Thus, we identified all reads from the 
final output that mapped against the Klebsiella pneumoniae plasmids but were rejected 
by MinKNOW. We extracted these falsely rejected plasmid reads of Klebsiella pneumoniae 
and mapped them to the corresponding bacterial chromosome reference sequences 
with minimap2. Using samtools depth, we could identify four regions (between 829 and 
2,101 bp long) on the Klebsiella pneumoniae chromosome with read depth ≥10. An 
investigation of the annotated GenBank file revealed that two of those regions code for 
IS6-like element IS26 family transposase and IS110-like element IS5075 family transposase, 
both belonging to the group of insertion sequences (ISs), which are small DNA segments 
(<2 kbp) that encode an enzyme, the transposase, which catalyzes the DNA cleavage and 
strand transfer reactions enabling movement of the element between DNA molecules 
(25). The third region codes for group II intron reverse transcriptase/maturase, a mobile 
genetic element encoding reverse transcriptases that are important for RNA splicing 
(maturase activity) by helping the intron RNA fold into the catalytically active structure 
(26), and the fourth region encodes CusA/CzcA family heavy metal efflux RND, which is an 
efflux pump transporting heavy metal ions out of the bacterial cell and is important for 
antimicrobial resistance (27). These findings reveal regions of high identity between 
Klebsiella pneumoniae plasmid targets and non-target chromosome sequences. Such 

FIG 4 Scatterplots for relative plasmid enrichment by composition and yield. (a) Observed enrichment factor by composition against relative abundance. Each 

point represents a bacterial sample, with the position on the x-axis indicating the original relative abundance of plasmids in the sample and the position on 

the y-axis indicating the enrichment factor obtained. Points above the dashed line indicate enrichment, and points below the line indicate plasmid sequence 

depletion. (b) Correlation between observed enrichment values by composition and predicted enrichment values by the mathematical model (Pearson’s r of 

0.55). (c) Enrichment factor by yield against relative abundance. Relative enrichment of plasmids is independent of the plasmid abundance in the sample. 

(d) Correlation between observed enrichment values by yield and predicted enrichment values by the mathematical model (Pearson’s r of −0.07). The model fails 

to predict relative plasmid enrichment by yield.
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FIG 5 Comparison of enrichment in five bacterial samples. (a) Enrichment by the number of plasmid reads for the five 

bacterial strains across all four sequencing runs. (b) Enrichment by the number of sequenced plasmid bases for all five 

bacterial strains across the four sequencing runs. (c) Enrichment by mean depth of coverage of plasmid references for the 

five bacterial strains across the four sequencing runs. The dashed line indicates the enrichment factor threshold, which values 

above 1.0, implying effective enrichment. Values below 1.0 imply depletion of plasmid sequences. All strains but the Klebsiella 

pneumoniae sample show a slight enrichment, where MinKNOW was used for adaptive sampling.
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similar regions between target and non-target sequences pose a challenge for the 
application of nanopore adaptive sampling and potentially lead to an increased number 
of falsely rejected target reads. Here, it seems that ReadBouncer can avoid a high number 
of false rejections by using longer read prefixes (see Fig. S7 and S9) for making rejection 
decisions. Our observations suggest that using more sequence information by increasing 
the chunk size for adaptive sampling with MinKNOW could circumvent such issues, 
which is currently not a tunable parameter.

Adaptive sampling helps improve plasmid assemblies

Our experiments demonstrated an effective enrichment of plasmids after 2–5 hours 
by using adaptive sampling. Since plasmid assemblies are possible after 3–4 hours of 
sequencing without adaptive sampling (10), we wanted to see if adaptive sampling 
enables faster plasmid assemblies. In order to evaluate the effect of adaptive sam­
pling on the de novo assembly of low-abundant plasmids, we separately assembled 
all available reads from the control and adaptive sampling regions after 1, 2, and 3 
hours of sequencing using metaFlye assembler (28). After one round of polishing with 
Medaka consensus, we measured quality metrics for the final assemblies using Quast 
(29). Table S3 shows results for all bacterial isolates from each sequencing run. In almost 
all cases, we observe a higher average depth of coverage for plasmids sequenced with 
adaptive sampling. Only for Klebsiella pneumoniae, plasmid assemblies with adaptive 
sampling show no benefit over control assemblies after 1 and 2 hours of sequencing. 
However, after 3 hours, we see a slightly increased average coverage depth and fewer 
mismatches and indels per 100 kbp. Further, after 2 and 3 hours, only de novo assemblies 
of adaptive sampling regions from ReadBouncer correctly assemble the plasmid into 
one contig. We also recognize that metaFlye only assembles all four plasmids from 
Enterobacter hormaechei at all three time points for data from the adaptive sampling 
region of the ReadBouncer run. Although we effectively enrich plasmid sequences for 
four out of five bacterial isolates, we cannot consistently demonstrate an improvement 
with regard to the number of mismatches and indels per 100 kbp. For some assemblies, 
the results also seem counterintuitive, with increasing mismatches and indels while the 
reference coverage increases too. This can be observed particularly for Campylobacter 
coli assemblies. Since we do not see these results across all assemblies from adaptive 
and control regions, we suggest that these results are artifacts from the Quast pipeline. 
In general, our results show that adaptive sampling can improve the quality of plasmid 
assemblies by increasing the depth of coverage even when sequencing was performed 
on flow cells with fewer active pores.

DISCUSSION

Recent studies have demonstrated the utility of adaptive sampling for the enrichment 
of underrepresented sequences in various applications, such as host depletion in human 
vaginal samples or antibiotic resistance gene enrichment in metagenomics samples. 
In this study, we examine the potential of adaptive sampling for the enrichment of 
low-abundant plasmid sequences by rejecting chromosomal sequences in bacterial 
isolate samples. We demonstrate the possibility of using even older or expired flow 
cells with fewer active sequencing pores for the in silico enrichment via adaptive 
sampling. Since we wanted to know if enrichment is independent of the adaptive 
sampling tool, we evaluated plasmid enrichment for two tools, namely, ReadBouncer 
and ONT’s MinKNOW sequencing control software. Our study was by no means designed 
to benchmark different adaptive sampling tools, which would require the inclusion of 
more tools and a setup that ensures that all tools use the same amount of sequence 
information for making rejection decisions. This can only be ensured by using adaptive 
sampling simulation tools like Icarust (30) or SimReadUntil (31). However, both tools 
consistently enriched low-abundant plasmid sequences, with only one exception where 
MinKNOW failed to enrich plasmid sequences for Klebsiella pneumoniae. The fact that 
ReadBouncer uses longer read prefixes for the decision-making algorithm seems to 

Methods and Protocols mSystems

March 2024  Volume 9  Issue 3 10.1128/msystems.00945-23 9

https://doi.org/10.1128/msystems.00945-23


prevent false rejection decisions. Unfortunately, the prefix length, alignment identity, or 
minimum alignment length for decision-making cannot be parameterized via MinKNOW, 
which suggests that more tunable tools such as ReadBouncer are better suited for 
complex samples. However, MinKNOW is more user-friendly for less complex samples 
and potentially achieves higher enrichment values by faster rejection decisions. The 
enrichment by yield, the most critical value for researchers, lies for all but one sam­
ple in our experiments between 1.1× and 1.8× after 24 hours of sequencing on an 
ONT MinION sequencing device. We also demonstrated that the difference between 
enrichment by yield, number of reads, and mean depth of coverage is negligible in all 
our samples. De novo assemblies of plasmids are possible within 2 hours of sequencing 
with adaptive sampling and show even better results than plasmid assemblies without 
adaptive sampling. These results reflect the benefit of adaptive sampling in assembling 
low-abundant plasmid sequences. Since we sequenced three bacterial isolates on only 
half an expired flow cell, we reason that up to 20 bacterial isolates can be sequenced 
on a flow cell with adaptive sampling for plasmid enrichment. Our experiments showed 
that expired flow cells (2–3 months after the manufacturer’s recommended storage time) 
with decreased active pores could be used in combination with adaptive sampling. 
Previous studies demonstrated that the number of active sequencing pores decreases 
faster when using adaptive sampling. Although we observe that the number of active 
sequencing channels in control regions is higher than that in the adaptive sampling 
region, we cannot see a faster deterioration of pores in our study. We also do not see 
a negative impact of adaptive sampling on the enrichment of target sequences and 
the average quality of sequenced reads. Thus, we encourage researchers to use flow 
cells with reduced active pores in adaptive sampling experiments for more sustainable 
lab experiments and cost savings in core facilities and larger research institutions. Our 
results show that rejecting chromosomal sequences with adaptive sampling increases 
the abundance of plasmid sequences in the final output. Depending on the plasmid 
abundance in the original sample, the values for plasmid enrichment by composition 
are between 2.5× and 8×. These observations moderately correlate with the predictions 
from the mathematical model proposed by Martin et al. (21). Furthermore, a consistent 
enrichment of plasmid sequences with regard to the number of base pairs, number of 
reads, and depth of coverage was shown by using adaptive sampling. Independent of 
the size of the sequencing libraries, we could increase the amount of sequenced plasmid 
base pairs by 10%–80% after 24 hours of sequencing. However, in one experiment, 
we recognized the depletion of plasmid sequences of Klebsiella pneumoniae after 24 
hours when ONT’s MinKNOW was used as an adaptive sampling tool. Our investigations 
reveal that regions with high sequence identity located both on the chromosome and 
the plasmid lead to false read rejections, which result in a depletion of the targeted 
plasmid sequences. This highlights potential issues with the usage of nanopore adaptive 
sampling and sounds a note of caution if target and non-target sequences are similar. 
We hypothesize from our findings that using larger read chunks for making rejection 
decisions could circumvent this issue. However, such an examination is beyond the 
scope of this study and needs systematic investigations to find the optimal read chunk 
length that minimizes false rejection decisions while still rejecting unwanted reads fast 
enough to obtain sufficient enrichment. Both adaptive sampling tools used in this study 
need known reference sequences to reject the chromosomal reads. If the bacterial 
species in the given sample are unknown, a more extensive reference database of all 
potential bacterial chromosome references must be used to enrich plasmids success­
fully. Alternatively, researchers could also do a targeted enrichment of the plasmids by 
using plasmid databases such as PLSDB (32) and reject all reads that do not match 
the database. However, this approach risks missing unknown plasmids not covered by 
the database. Using specific plasmid markers, like the origin of replication, to classify 
unknown plasmids correctly is also tricky in an adaptive sampling experiment. The 
specific markers would need to be located on the first 1,000 bp of the read to prevent 
false rejection of plasmid reads. These limitations reinforce the need for improved 
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classification algorithms that can even classify reads from unknown plasmids based on 
the raw nanopore signals. We envisage several applications for the in silico enrichment 
of plasmids in the near future. One possibility is the surveillance of plasmid outbreaks in 
hospital settings. Here, clinicians are interested in studying the transmission of specific 
antibiotic resistance genes harboring plasmids from one bacterial species to another. 
Such community transmissions can indicate the selection pressure on bacteria caused 
by antibiotic pharmaceuticals and help decide on the future usage of the corresponding 
drugs. Another possible application of adaptive sampling is the improvement of known 
bacterial assemblies. In this study, we demonstrated the improved time to assembly of 
plasmids by depleting the known bacterial chromosomes. We plan to develop a pipeline 
for the real-time de novo assembly of bacterial isolates in the future. Using adaptive 
sampling, we could reject reads that cover assembled regions with a minimum depth of 
coverage, enriching for unseen or assembled regions with low sequencing depth. In such 
a way, we could complement the dynamic re-sequencing framework BOSS-RUNS (33) 
with a dynamic de novo adaptive sampling framework. We believe this could improve 
both the quality of bacterial and plasmid assemblies as well as metagenomics assemblies 
of unknown bacterial species.

MATERIALS AND METHODS

Culture and DNA extraction

Campylobacter strains were streaked on Columbia Blood agar (Oxoid, Thermo Fisher 
Scientific, USA) and incubated at 42°C under a microaerobic atmosphere. The Enter­
obacter, Salmonella, and Klebsiella strains used in this study were streaked out on 
a Luria–Bertani plate and incubated overnight at 37°C. DNA extraction for Campylo­
bacter jejuni (GCF_008386335.1) (34) was done using the MagAttract HMW Genomic 
Extraction Kit (Qiagen). For Salmonella enterica (GCA_025839605.1), Campylobacter 
coli (GCF_025908295.1) (35), Klebsiella pneumoniae IMT44613 (GCF_025837075.1), and 
Enterobacter hormaechei IMT49658-3 (GCF_001729785.1) DNA was extracted using the 
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 
instruction. The total amount of DNA was quantified using a Qubit fluorometer (Thermo 
Fisher Scientific) and frozen at −80°C until further analysis.

Library preparation and sequencing

Sample preparation was performed according to the manufacturer’s instructions without 
any optional pre-enrichment steps or size selection using the Rapid Barcoding Kit 
SQK-RBK004. Different barcodes were used for each of the bacterial isolate samples 
to correctly assign sequenced reads in the data analysis. Since we used expired flow 
cells with less expected overall sequencing yield, we decided to sequence only two or 
three bacterial isolates on one flow cell. Finally, the barcoded samples were sequenced 
on an Oxford Nanopore MinION (Oxford, UK) using FLO-MIN106D (R9.4.1) flow cells. 
All sequencing experiments were started via ONT’s MinKNOW control software (version 
4.5.0).

In silico enrichment via adaptive sampling

We performed four sequencing runs using MinKNOW software v4.5.0 on an Nvidia Jetson 
AGX Xavier (512-core NVIDIA Volta GPU, 32 GB LPDDR4X Memory) for 24 hours. In all 
experiments, we compared adaptive sampling with standard sequencing by dividing the 
flow cells into two parts: adaptive sampling was performed on the first 256 channels, and 
standard sequencing was performed on channels 257–512. We used a new flow cell with 
1,153 active pores for the first run (ReadBouncer1) and sequenced two Campylobacter 
isolates using barcodes RBK01 and RBK02. For the second run (ReadBouncer2), we used 
an expired flow cell with only 636 active pores for sequencing the three barcoded 
bacterial isolates (Enterobacter, Salmonella, and Klebsiella) using barcodes RBK03, RBK04, 
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and RBK05. The third run (MinKNOW1) used the same Campylobacter samples as the first, 
but we performed sequencing on an expired flow cell with only 557 active pores. For the 
fourth run (MinKNOW2), we used the identical three bacterial isolates as for the second 
run and performed sequencing on an expired flow cell with only 718 active pores after 
the initial flow cell check. On the first two flow cells, we performed adaptive sampling 
with ReadBouncer (18) using the chromosomal references of the bacterial isolates as 
depletion targets. Here, a k-mer size of 15, a chunk length of 250 bp, a fragment size 
of 200,000 bp, and an expected error rate of 5% were used as parameters for the read 
classification. ReadBouncer’s k-mer size parameter was chosen accordingly to the default 
k-mer size used for mapping with minimap2 (36), which is used by MinKNOW’s adaptive 
sampling feature. The expected error rate reflects the current average per-read accuracy 
by ONT’s Guppy basecaller. The other two parameters are default parameters. For flow 
cells three and four, MinKNOW’s adaptive sampling feature was used, which is based 
on the Readfish (17) scripts and uses minimap2 (36) to map read prefixes against a 
given reference sequence set for read classification. We built a minimap2 index file 
(parameter -x map-ont) for these experiments, including the chromosomal reference 
sequences, which we used as depletion targets for adaptive sampling. Read prefixes 
classified as “chromosomal” were rejected from the pore, and decisions were written to 
log files by both tools, ReadBouncer and MinKNOW. In all experiments, ReadBouncer and 
MinKNOW used Guppy GPU basecaller (fast model, v6.0.6. Oxford Nanopore Technolo­
gies) for real-time basecalling of the raw signal data received from the device. We set the 
break_reads_after_seconds parameter to 0.4, which results in receiving the first chunks 
of raw data from a read after 0.4 seconds. Both methods concatenate basecalled read 
chunks to longer prefixes if the prefixes are too short to reliably classify them as a 
plasmid or chromosome.

Data analysis

All data analysis scripts were written in Python and R and are freely available in 
the GitHub repository https://github.com/JensUweUlrich/PlasmidEnrichmentScripts. All 
plots were created in R using ggplot2. After the sequencing runs were finished, we 
basecalled and demultiplexed all raw data with Guppy GPU basecaller (super accu­
racy model, v6.0.6. Oxford Nanopore Technologies). Guppy trimmed barcodes and 
adapter sequences from the resulting nanopore reads during that process. Afterward, 
we computed read length metrics (see Table S1; Fig. S1c and S2 to S5) and created 
contour plots (see Fig. S6 and S7) using the sequencing_summary files provided with 
the MinKNOW and Guppy output directories. Next, we mapped all demultiplexed and 
base-called reads against the reference genomes (including plasmid sequences) of the 
five bacterial strains using minimap2 v2.19 (36) with parameter -x map-ont. Based on the 
mapping results, we could assign each mapped read to either the bacterial chromosome 
or plasmid(s) of one of the bacterial isolates to create Fig. 1. We also used the map­
ping results to calculate the percentage of sequenced plasmid and chromosome base 
pairs after 24 hours for each bacterial sample, resulting in Fig. 3. We further used the 
sequencing summary file to separate the reads by their species of origin and partitioned 
them to comprise the cumulative data from the beginning of each experiment up to 
24 hours, separated by 30 minutes of sequencing, which resulted in 48 individual time 
point data sets. With this information, we calculated for each experiment time point t the 
plasmid enrichment by yield for each bacterial strain:

(1)Enrichmentyield(t) = yieldAS(plasmid, t)
yieldCTRL(plasmid, t)

where yieldAS(plasmid,t) is the number of sequenced plasmid bases of a strain from 
the adaptive sampling region at time point t and yieldCTRL(plasmid,t) is the number of 
sequenced plasmid bases of a strain from the control region (without adaptive sampling) 
at time point t. Similarly, we calculated the enrichment by the number of reads:
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(2)Enrichmentreads(t) = readsAS(plasmid, t)
readsCTRL(plasmid, t)

and the enrichment by the mean depth of coverage of the plasmid reference 
sequences.

(3)Enrichmentdepth(t) = depthAS(plasmid, t)
depthCTRL(plasmid, t)

According to the definitions above, readsAS(plasmid,t) and readsCTRL(plasmid,t) 
represent the number of reads from the AS or control region (CTRL) that map to a 
plasmid of a given bacterial strain at experiment time point t. Furthermore, depthAS(plas­
mid,t) denotes the mean sequencing depth of plasmids from a strain using mapping 
data from the adaptive sampling region at time point t, and depthCTRL(plasmid,t) is the 
mean sequencing depth of plasmids on the control region at time point t. Here, we 
used samtools coverage (37) to calculate the mean depth of coverage of every species’ 
plasmid reference at each time point for the control and adaptive sampling regions. The 
different enrichment factor values calculated for each bacterial sample at any of the 
48 time points are plotted and shown in Fig. 5. For the plots of active channels over 
time (Fig. S8), a channel was defined as active from the beginning of the experiment 
up until the time it sequenced its final molecule (as long as it sequenced at least one 
molecule). The enrichment by composition shown in Fig. 4a and b was calculated by 
dividing the relative plasmid abundance from adaptive sampling regions by the relative 
plasmid abundance from control regions, both shown in Fig. 3. We compared observed 
enrichment by composition and yield against predicted enrichment values using the 
mathematical model from Martin et al. (21). To calculate predicted enrichment values, we 
used the recommended sequencing speed of 420 bp/sec, capture time of 0.5 seconds, 
decision time of 1 second, mean read lengths for each bacterial sample as provided in 
Table S1, and plasmid abundances of control regions for each sample as shown in Fig. 
3. Since we expect plasmid sequences in our use case scenario to be usually unknown, 
we also did a de novo assembly of the demultiplexed fastq files, containing all reads 
sequenced after 1 and 2 hours of sequencing. This helps us to estimate the time required 
to obtain high-quality plasmid assemblies. Therefore, we assembled all demultiplexed 
nanopore reads from control and adaptive sampling regions separately. Since most 
long-read assemblers struggle to correctly assemble small plasmids (38), we decided 
to use Flye/metaFlye assembler (v2.9.2, parameter “–meta”) (28, 39), which is meant 
to improve the assembly of contigs with uneven sequence depths—a situation often 
experienced with plasmid sequences that are present at high copy numbers in a single 
cell. Then, we polished the obtained metaFlye assemblies with one round of Medaka 
consensus (v.1.8.0, default parameters, model r941_min_sup_g507, Oxford Nanopore 
Technologies) using the same nanopore read set. We assessed the quality of the final 
assemblies with Quast (v5.2.0) (29) and combined reported metrics like the mean depth 
of coverage for both time points.
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