
Evaluating Proteomics Imputation Methods with Improved 
Criteria

Lincoln Harris,
Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United 
States

William E. Fondrie,
Talus Biosciences, Seattle, Washington 98112, United States

Sewoong Oh,
Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, 
Washington 98195, United States

William S. Noble
Department of Genome Sciences and Paul G. Allen School of Computer Science and 
Engineering, University of Washington, Seattle, Washington 98195, United States

Abstract

Quantitative measurements produced by tandem mass spectrometry proteomics experiments 

typically contain a large proportion of missing values. Missing values hinder reproducibility, 

reduce statistical power, and make it difficult to compare across samples or experiments. Although 

many methods exist for imputing missing values, in practice, the most commonly used methods 

are among the worst performing. Furthermore, previous benchmarking studies have focused 

on relatively simple measurements of error such as the mean-squared error between imputed 

and held-out values. Here we evaluate the performance of commonly used imputation methods 

using three practical, “downstream-centric” criteria. These criteria measure the ability to identify 

differentially expressed peptides, generate new quantitative peptides, and improve the peptide 

lower limit of quantification. Our evaluation comprises several experiment types and acquisition 

strategies, including data-dependent and data-independent acquisition. We find that imputation 

does not necessarily improve the ability to identify differentially expressed peptides but that it can 

identify new quantitative peptides and improve the peptide lower limit of quantification. We find 

that MissForest is generally the best performing method per our downstream-centric criteria. We 

also argue that existing imputation methods do not properly account for the variance of peptide 

quantifications and highlight the need for methods that do.
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1. INTRODUCTION

The quantitative accuracy and sensitivity of tandem mass spectrometry proteomics have 

increased dramatically in the past decade. In spite of this trend, proteomics experiments 

are still limited by excessive “missingness,” which refers to peptides that are present in the 

sample matrix but are not assigned an abundance value. Missingness can be attributed to a 

variety of technical factors including ion suppression, coeluting peptides, the lower limit of 

quantification of the instrument, and the failure to confidently assign peptides to all observed 

spectra.1,2 Although low abundance peptides are generally more likely to be missing, 

peptides may be missing across the entire range of intensities. Missingness decreases the 

statistical power of proteomics experiments, hinders reproducibility, and makes it difficult to 

compare across batches or experiments.1,2

Imputation is a bioinformatic solution to the missingness problem. Imputation refers to 

the use of statistical or machine learning procedures to estimate missing values in a data 

set. While still relatively new within the proteomics community, imputation has long been 

standard practice for analysis of gene expression,3 clinical and epidemiological data,4 

and more recently astronomy5,6 and single-cell transcriptomic data.7,8 Imputation methods 

for proteomics data (Table 1) fall into three broad categories: “single-value replacement” 

methods, in which all missing values are filled in with a single replacement value; “local 

similarity” methods, which use statistical models to learn patterns of local similarity in 

the data, for example, between subsets of similar peptides or runs; and “global similarity” 

methods, which learn broad patterns of similarity across all peptides and runs.

It is not always clear what imputation method is best for a given proteomics data set. A 

number of studies benchmark imputation methods and offer guidelines for selecting an 
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appropriate method.1,2,14–17 A general recommendation is that single-value replacement 

strategies rarely work well. Another is that the optimal imputation method depends on the 

structure of the missingness in the data. Mass spectrometry-based proteomics experiments 

exhibit two major forms of missingness: missing completely at random (MCAR) and 

missing not at random (MNAR). MCAR describes missingness that does not depend on 

any observed variable; that is, missingness occurs independent of peptide intensity or 

relationships between samples. For MNAR, missingness is dependent on some observed 

variable. For example, in mass spectrometry-based proteomics, missingness is often a 

function of peptide intensity, with more missingness occurring in peptides closer to the 

instrument’s lower limit of quantification (LLOQ).

When comparing the performance of imputation methods, it is commonplace to use 

relatively simple criteria that are easy to compute but not necessarily relevant to most 

proteomics researchers. One example is calculating the mean squared error (MSE) between 

imputed and ground truth peptide quantifications for a withheld set of matrix entries. As an 

alternative, we introduce “downstream-centric,” criteria focused on differential expression, 

peptide LLOQ, and the total number of quantitative peptides in an experiment. We argue 

that these downstream-centric criteria are more relevant to the questions that proteomics 

researchers typically seek to answer. Furthermore, we observe that the best-performing 

imputation methods per traditional criteria often differ from the best performing methods per 

our downstream-centric criteria.

To decide which imputation methods to include in our study, we carried out a systematic 

literature review. All Journal of Proteome Research articles published between January 1, 

2019 and January 31, 2023 were searched for the following terms: “impute,” “imputed,” 

“imputation.” For this survey, we excluded methodological and benchmarking studies. On 

the basis of the resulting citation counts (Figure 1), we selected four of the most popular 

imputation methods: k-nearest neighbor (kNN),3 MissForest,11 Gaussian sampling,9 and low 

value replacement. We also include a non-negative matrix factorization (NMF) imputation 

method, which has recently been proposed for proteomics.18–20 By focusing on only the 

most commonly used imputation methods, our aim is to provide a practical comparison that 

will be beneficial to experimental proteomicists. For this reason, seldom used R packages 

(e.g., imp4p, impSeqRob, and QRLIC) have been omitted from our analysis. We also omit 

PCA-based methods, as they did not come up in our literature review.

Additionally, we choose to conduct our analysis primarily on peptide-level quantifications. 

Our reason for this is severalfold: (i) summarizing peptide quantifications at the protein level 

reduces often-critical data heterogeneity,21 (ii) protein roll-up can introduce statistical bias,22 

and (iii) imputation may perform better at the peptide level.15

We evaluate the performance of the five imputation methods with both traditional and 

downstream-centric criteria. The latter include the ability to (i) identify differentially 

expressed peptides, (ii) generate new quantitative peptides, and (iii) improve peptide LLOQ. 

Our benchmarking study comprises a variety of experiment types including serial dilution 

series, data-dependent acquisition (DDA), data-independent acquisition (DIA), label-free, 

and isobaric labeled experiments. Critically, we include an unimputed condition in all 
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three downstream-centric evaluation experiments for evaluating whether imputation should 

be performed at all. Our findings suggest that imputation may not improve detection of 

differentially expressed peptides but that it can identify new quantitative peptides and 

improve peptide LLOQ.

We also demonstrate that the variance among the measured peptide intensities is greater 

than expected. Peptide quantifications from ion-counting mass spectrometers are often 

assumed to be well approximated by Poisson statistics.23–25 We demonstrate that peptide 

quantifications are overdispersed relative to a Poisson model for multiple mass spectrometry 

acquisition strategies. Furthermore, we demonstrate that the commonly used logarithmic 

transformation does not result in a uniform variance of peptide quantifications. These 

findings suggest that the statistical assumptions made by several prominent imputation 

methods are not met in the proteomics data. They also suggest the need for methods that 

employ variance stabilization prior to imputation, similar to strategies taken in genomics.26–

28

2. METHODS

2.1. Data Sets

For this study, we used 12 public quantitative proteomics data sets (Table 

2). Eight of the 12 data sets were accessed via the Proteomics Identification 

Database (PRIDE, https://www.ebi.ac.uk/pride/),29 and are indicated with their 

ProteomeXchange (PXD) labels.30 Two data sets were obtained from the National Cancer 

Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal (https://

proteomic.datacommons.cancer.gov/pdc/).31 The remaining two data sets, PXD034525 

and PXD014815, were obtained from Panorama (https://panoramaweb.org/home/project-

begin.view). Additional details on data set acquisition are provided in Data 2.

For experiments processed with MaxQuant, we used the.txt output files to generate peptide-

by-run intensity matrices by selecting only the “Sequence” and “Intensity” columns. For 

the CPTAC experiments, we obtained peptide-spectral match files (.psm) from the CPTAC 

data portal and converted them to matrix format with custom scripts (available at https://

github.com/Noble-Lab/2023-prot-impute-benchmark). The peptide-by-run matrices from 

these CPTAC studies were large (S047: 110,000 peptides × 226 samples; S051: 291,000 

peptides × 35 samples). For efficiency, we downsampled these matrices by randomly 

selecting 40,000 peptides and 30 runs from each.

For the two DIA data sets, peptide quantification matrices were obtained directly from 

Panorama.

2.2. Traditional Evaluation Measures

We first used a traditional machine learning-style train-test setup to evaluate the performance 

of imputation methods. With this approach, the values in the peptide-by-run matrix were 

randomly partitioned into two groups: a training set and a test set. The imputation method 

was trained on the training set values, and we measured how well the method imputed the 
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values in the test set. For each data set, peptides with fewer than four present values in the 

training set were removed prior to imputation.

The training/test partitioning was performed with two different procedures: MCAR and 

MNAR. For MCAR, 25% of the present (i.e., nonmissing) matrix entries were randomly 

selected for the test set. The remaining matrix entries were used as the training set. For 

MNAR, we took a similar approach to the one described by Lazar et al.15 For a given 

peptide-by-run matrix, we constructed an equally sized threshold matrix filled with values 

sampled from a Gaussian distribution centered about the 30th percentile of the distribution 

of quantifications, with a standard deviation 0.6. For each element Xij in the peptide-by-run 

matrix, if the corresponding thresholds matrix element Tij < Xij, then Xij was assigned to 

the training set. Otherwise, a single Bernoulli trial with a probability of success of 0.75 

was conducted. If the Bernoulli trial was successful, then Xij was assigned to the test set. 

Otherwise Xij was assigned to the training set. The Bernoulli success probability and the 

Gaussian distribution mean and standard deviation were selected in such a way that 25% of 

the present matrix entries were ultimately assigned to the test set. The remaining 75% were 

assigned to the training set. The distributions of the training and test set values following 

the MCAR and MNAR partitions are shown in Supplementary Figure 1, for experiment 

PXD034525.

Once the peptide-by-run matrices were partitioned into train/test, imputation was performed 

with five procedures: NMF, kNN, MissForest, low value replacement (run minimum), and 

Gaussian sample impute. A custom PyTorch model was used for NMF imputation. This 

model used an MSE loss function and stochastic gradient descent to converge on an ideal 

matrix factorization. This model is available at https://github.com/Noble-Lab/MSFactor. For 

kNN, we used the KNNImputer implementation from scikit-learn. MissForest version 1.5 

was used (https://CRAN.R-project.org/package=missForest).11 Custom code was used for 

the low value replacement and Gaussian sample impute procedures. For Gaussian sample 

impute we replicated the procedure taken by Perseus.9 For low value replacement, we filled 

in missing values with the lowest measured peptide intensity for each run. NMF and kNN 

analyses were performed with four latent factors and neighbors, respectively. MissForest 

was performed with 100 trees, the default setting.

Following imputation, we computed the MSE between the observed and imputed values for 

each test set (Figure 2).

2.3. Downstream-Centric Evaluation Measures

2.3.1. Differential Expression.—For differential expression analysis we obtained data 

from PXD034525, a DIA study of Alzheimer’s disease.35 Clinical samples had previously 

been assigned to experimental groups based on several genetic, histopathological, and 

cognitive criteria. We compared differentially expressed peptides between (i) autosomal 

dominant Alzheimer’s disease dementia and (ii) high cognitive function and low 

Alzheimer’s disease neuropathologic change. Both experimental groups were composed of 

nine patient samples and 32,614 detected peptides.
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Ground truth differentially expressed peptides were determined by performing two-sample 

t tests between experimental groups for each detected peptide. P-values were corrected 

for multiple hypothesis testing using the Benjamini-Hochberg procedure.48 Peptides with 

corrected p-values <0.01 were considered ground truth differentially expressed.

MCAR and MNAR partitioning was performed similar to above, but this time we created 

three disjoint sets: training, validation, and test. For the MCAR partition, 15% of matrix 

entries were randomly selected without replacement for the validation set, and a separate 

15% was selected for the test set. For the MNAR partition, matrix entries corresponding to 

successful Bernoulli trials were assigned in an alternating fashion to either the validation or 

the test set. The Bernoulli success probability and Gaussian distribution mean and standard 

deviation were tuned so as to generate a 70%/15%/15% train/validation/test split.

The validation sets were used to select the optimal hyperparameters for NMF and kNN. 

For MissForest a full hyperparameter search proved computationally unfeasible, so we again 

selected the default value of 100 for the n trees parameter. None of the other methods 

had tunable hyperparameters. The following values were included in our hyperparameter 

searches for n latent factors and k neighbors: [1,2,4,8,16,32].

Following hyperparameter selection, imputation was performed with each method. 

Differentially expressed peptides were determined for the imputed matrices, as previously 

described. Precision-recall curves comparing ground truth to imputed differentially 

expressed peptides were generated with scikit-learn (Figure 3). For the unimputed condition, 

the differential expression calculation was performed as previous while simply ignoring the 

missing matrix entries. That is, the differential expression test was performed on training set 

values only.

We performed an additional differential expression experiment for PXD034525 in which 

we varied the missingness fraction from 25% to 30% to 50% (Supplementary Figure 2). 

For MNAR, this was accomplished through tuning the Bernoulli success probability and 

Gaussian distribution mean and standard deviation parameters in order to achieve the desired 

missingness fraction.

The differential expression procedure was repeated for a TMT data set, CPTAC-S04741 

(Supplementary Figure 3). This was a study of pediatric brain cancer. We compared clinical 

samples annotated as “Low-grade glioma/astrocytoma” to “Ependymoma”. Twenty-three 

patient samples were used for each condition, and 26,923 detected peptides. We performed a 

70%/15%/15% train/validation/test split.

The differential expression test was repeated for protein-level quantifications of PXD034525 

(Figure 4). Once again, we performed a 70%/15%/15% train/validation/test split. 4,999 

proteins were included in this analysis.

2.3.2. Quantitative Peptides.—To examine the effects of imputation on the number of 

quantitative peptides in a proteomics experiment, we obtained data from PXD014815.36 

This was a serial dilution experiment in which peptides were successively diluted by 

increasing the concentration of a matched background matrix. As a result, the total protein 
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concentration in each sample was known. The authors then used a custom statistical model 

to fit the relationship between observed and expected signal and to determine whether 

increases in signal corresponded to proportional increases in peptide abundance. Peptides in 

which the increase in signal did indeed correspond to increases in quantity across a linear 

range were considered quantitative.

We used this statistical model to assess the number of quantitative peptides before and 

after imputation of the serial dilution series data set (Figure 5). MCAR partitioning was 

performed as described above. Hyperparameter tuning for kNN and NMF was performed as 

described above. The peptide-by-run matrix was imputed with each method, and quantitative 

peptides were identified in the imputed matrices. The UpsetR package was used to generate 

Figure 5.49

2.3.3. Lower Limit of Quantification.—We used the serial dilution experiment from 

PXD014815 to examine the effects of imputation on the peptide LLOQ (Figure 6). We 

again used the statistical model from Pino et al.36 to determine the LLOQ of each detected 

peptide before and after imputation. One-sided binomial tests were performed to determine 

whether each imputation method decreases the LLOQ for significantly more peptides than it 

increases. Binomial p-values were corrected with the Benjamini–Hochberg procedure.

2.4. Runtime Evaluation

We used Python’s time module to compare the runtimes of the various imputation methods 

(Figure 7). NMF, kNN, low value replacement, Gaussian sample, and MissForest were run 

on 14 public proteomics data sets accessed from PRIDE. This experiment was performed 

on a dual CPU Intel Xeon E5–2620 machine with 32 GB RAM, running CentrOS 7.6. 

NMF was specified to run on a maximum of 10 cores, and the remaining methods were 

run on a single core. This was because the kNN implementation we used, scikit-learn’s 

KNNImputer, does not support multiprocessing, nor do our custom implementations of low 

value replacement and Gaussian sample impute. MissForest does support multiprocessing, 

though in our experience, the parallelized version of MissForest proved nearly impossible to 

run to completion. Thus, we choose to limit MissForest to a single core.

3. RESULTS

3.1. Evaluating with Traditional Criteria

We began by assessing the performance of popular imputation methods with a traditional 

machine learning criterion: prediction error on a withheld test set. Accordingly, we obtained 

peptide-level quantifications for seven of the experiments shown in Table 2. These included 

DIA, DDA and TMT experiments, with a missingness range of 0 to 92%. We assessed the 

ability of the imputation methods to reconstruct missing values after MCAR and MNAR 

procedures were used to simulate an additional 25% missing in each data set.

Our results (Figure 2) demonstrate that the relative performance of imputation methods 

depends on the type of missingness. MissForest and NMF perform the best for all seven data 

sets under the MCAR condition. In the MNAR condition, the two single-value imputation 

methods—Gaussian sample and low value replacement—appear to work the best, though 
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MissForest also performs well for some data sets. In both conditions, the two TMT data sets

—CPTAC-S047 and CPTAC-S051—yield lower reconstruction errors across all imputation 

methods when compared to the DDA and DIA data sets.

3.2. Evaluating with Downstream-Centric Criteria

Although traditional machine learning-style evaluations such as shown in Figure 2 

are informative, we argue that prediction error on a held-out set is neither the most 

convincing nor the most relevant metric for most proteomics researchers. Additionally, 

good performance per traditional evaluation criteria may not translate to good performance 

on downstream analysis tasks. Furthermore, recent benchmarking studies have made the 

assumption that imputation will improve performance on downstream analysis tasks relative 

to no imputation. This assumption is generally unfounded, as imputation can introduce bias 

even when used appropriately.50,51 With these considerations in mind, we compared the 

performance of five commonly used imputation methods on three downstream analysis tasks 

that we argue are more congruent with the questions proteomicists typically seek to answer.

3.2.1. Differential Expression.—We began with a differential expression analysis. 

We obtained peptide-level quantifications from a DIA-based clinical study of Alzheimer’s 

disease.35 Patient-derived brain samples had been assigned to experimental groups based on 

several genetic, histopathological, and cognitive criteria. We compared samples belonging to 

two experimental groups: (i) autosomal dominant dementia and (ii) high cognitive function 

and low Alzheimer’s disease neuropathologic change. These experimental groups represent 

opposite ends of the spectrum of Alzheimer’s disease severity and Merrihew et al. found 

significant biological heterogeneity between them.

We compared the abilities of imputation methods to identify differentially expressed 

peptides after simulating missingness with either MCAR or MNAR (Figure 3). To perform 

this experiment, we identified ground truth differentially expressed peptides in the low-

missingness Alzheimer’s disease DIA data set, simulated 30% missingness, then imputed 

with various methods, and identified differentially expressed peptides in the imputed 

matrices. We also included an unimputed condition in which differentially expressed 

peptides were identified directly from the unimputed training set. The sharp elbows in the 

MNAR precision-recall curves are due to the fact that an alpha value of 0.01 was used for 

determining significantly differential peptides for both ground truth and imputed matrices. 

It is likely that many peptides had p-values very close to the 0.01 threshold but were not 

considered differentially expressed, resulting in sharp decreases in precision as soon as this 

threshold was crossed.

In the MCAR condition, MissForest, kNN and no imputation all performed well, with areas 

under the curve (AUCs) of 0.80, 0.78, and 0.76, respectively. In the MNAR condition, kNN, 

no imputation, and NMF performed the best, with respective AUCs of 0.87, 0.86, and 0.82. 

While the two single-value imputation methods performed well in the MNAR condition of 

the traditional evaluation experiment (Figure 2), they performed poorly on the differential 

expression test, with the lowest AUCs for both MCAR and MNAR. In both conditions, no 

imputation performed nearly the same or better than the five imputation methods.
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We also performed differential expression experiments for a TMT (Figure 3) and a label-free 

DDA (Figure 4) data set. For the TMT data set, no imputation performed the best for 

MCAR, and was slightly outperformed by kNN for MNAR. For the label-free DDA data set, 

no imputation performed the best for both MCAR and MNAR. For the label-free DDA data 

set the single-value impute methods were the worst performing for both MCAR and MNAR.

We revisited the Alzheimer’s disease DIA data set to perform a final differential expression 

experiment for protein-level quantifications (Figure 4). In both MCAR and MNAR 

conditions, the single-value imputation strategies performed the worst. Interestingly, the 

AUCs of the nonsingle value imputation strategies were all in the range of 0.87–0.9. This 

indicates that for this particular DIA data set differential expression analysis was more 

accurate at the protein level. We again observed that no imputation performs remarkably 

well relative to commonly used imputation methods with AUCs of 0.88 and 0.89 for MCAR 

and MNAR, respectively.

3.2.2. Quantitative Peptides.—Next, we assessed whether imputation can generate 

quantitative peptides. While peptide detection rates have increased significantly over the 

past decade, not every detected peptide is necessarily quantitative. For a peptide to be 

considered quantitative, increases in measured signal must correspond to increases in 

peptide abundance, across a linear range.36 We obtained data from a serial dilution series 

experiment (PXD014815) in which the protein concentration was known for each sample. 

We used a statistical model developed by Pino et al. to determine whether each detected 

peptide was quantitative before and after imputation.36

The results of this experiment (Figure 5) show that several imputation methods produce 

new quantitative peptides. MissForest, kNN and NMF each generated large sets of peptides 

that were quantitative only after imputation (2,768 for MissForest; 1,050 for kNN; 1,128 

for NMF). However, MissForest was the only method that increased the total number 

of quantitative peptides relative to no imputation, producing 10,475 quantitative peptides 

relative to the 7,707 obtained with no imputation.

3.2.3. Lower Limit of Quantification.—We also assessed whether imputation can 

improve the peptide LLOQ, which refers to the minimum abundance at which a peptide 

can be considered quantitative. For this analysis, we again used the serial dilution data set 

from Pino et al. We found that while imputation did indeed decrease the LLOQ for many 

peptides, it also increased the LLOQ for some peptides, which was the opposite of the 

intended effect. Strikingly, MissForest was the only method that decreased the LLOQ of 

significantly more peptides than it increased (Figure 6, one-sided binomial p-value corrected 

with Benjamini–Hochberg < 0.01).

3.3. Runtime

For imputation methods to be incorporated into existing proteomics data processing 

workflows, they must be runnable in a reasonable time frame. With this in mind, we 

compared the runtimes of our five imputation methods (Figure 7). The two simplest 

methods, Gaussian sample and low value replacement, ran in a matter of seconds; NMF and 

kNN ran in a matter of minutes; and MissForest took several hours to complete. Thus, with 
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the possible exception of MissForest, runtime should not present a barrier for incorporation 

into data processing workflows.

3.4. Variance in Quantitative Proteomics Data

We investigated the statistical assumptions underlying several imputation approaches. 

Peptide quantifications are often modeled with Poisson statistics.23–25 One feature of a 

Poisson distribution is that the variance is equivalent to the mean. Additionally, it is 

commonplace to logarithmically transform quantifications prior to analysis. One assumption 

with a logarithmic transformation is that the variance of the transformed quantifications 

will be uniform. Parametric imputation methods with a Gaussian prior include least-squares 

regression, the Gaussian sample impute method, and standard NMF.

To empirically investigate the variance of peptide quantifications, we obtained data from 

four experiments, each of which contained technical replicates (Table 2). We used three 

DDA experiments and one DIA. We calculated the means and variances of peptide 

quantifications across technical replicates for each detected peptide for each experiment. 

We found that peptide quantifications are overdispersed relative to the Poisson distribution 

(Figure 8, left); that is, for nearly every peptide, the variance across replicates was greater 

than the mean intensity across replicates. Log transformation resulted in more uniform 

variance across intensities, but many peptides still displayed extraordinarily high variances 

(Figure 8, right).

We found that for multiple data sets obtained with both DDA and DIA acquisition strategies 

neither Poisson nor Gaussian assumptions hold. This suggests that parametric imputation 

methods with implicit Gaussian assumptions may be ill-suited for these data.

We also observed that imputation with NMF and MissForest had little effect on the variance 

of peptide quantifications (Figure 5). The Gaussian sample method, however, introduced 

additional variance. This finding suggests that while NMF and MissForest imputation do not 

profoundly affect the underlying distribution of peptide quantifications, single-value impute 

strategies may do so. In this way, single-value impute strategies may introduce artifacts into 

proteomics data when their underlying assumptions are not met.

4. DISCUSSION

The two most popular imputation methods—Gaussian sampling and low value replacement

—performed poorly in our downstream-centric experiments. These single-value imputation 

strategies were the worst perfoming for peptide-level differential expression detection in 

DIA data (Figure 3), protein-level differential expression in DIA data (Figure 4), and 

peptide-level differential expression in label-free DDA data (Supplementary Figure 4), 

generating quantitative peptides (Figure 5) and decreasing peptide LLOQ (Figure 6).

However, the results of the downstream-centric experiments did not always agree with those 

of the traditional evaluation experiment. In particular, the single-value imputation strategies 

often outperformed the local and global similarity strategies for the traditional benchmarking 

experiment shown in Figure 2, especially for MNAR. This was likely because the single-
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value imputation strategies assume that missing values are drawn from the low end of the 

distribution of peptide quantifications, and this assumption was met in the MNAR condition 

of the traditional evaluation experiment. We argue that traditional evaluation experiments 

such as Figure 2 are misleading because they inflate the performance of single-value impute 

strategies. Performance on our downstream-centric criteria is more relevant than the test 

set MSE, because the downstream criteria are more congruent with questions proteomics 

researchers typically seek to answer. Thus, we urge the community to move away from 

traditional performance evaluations in favor of the downstream-centric criteria presented 

here.

Our results suggest that imputation may not be necessary for the differential expression 

analysis. For a DIA experiment with MCAR and MNAR simulated missingness, no 

imputation worked roughly as well as the best imputation methods (Figure 3). In the MCAR 

condition, the largest AUC value belonged to MissForest at 0.8, only slightly higher than 

that of unimputed at 0.76. In the MNAR condition, kNN had the highest AUC at 0.87, and 

unimputed was close behind, with 0.86. This result generalized to a label-free DDA data set 

(Supplementary Figure 4), in which no imputation outperformed all imputation methods for 

MCAR and MNAR. For a TMT data set, no imputation had the highest AUC for MCAR and 

was tied for the second highest for MNAR (Supplementary Figure 3).

We found that as the missingness fraction increased, unimputed performed better and better 

relative to the five imputation methods (Supplementary Figure 2). For example, in the case 

of MNAR with a 50% missingness fraction, unimputed had an AUC of 0.65, whereas the 

best imputation method was MissForest with an AUC of 0.55.

We also found that for a DIA experiment differential expression analysis was more 

accurate when performed at the protein level (Figure 4). This makes sense because 

protein roll-up reduces missingness and hides variability between peptides of the same 

protein, therefore making the differential expression identification task easier.21 Researchers 

should approach protein-level analysis with caution, however, because protein roll-up may 

introduce statistical bias and reduce data heterogeneity.21,22 It should be noted that once 

again, the unimputed condition had one of the highest AUC values for both MCAR and 

MNAR.

Taken together, our differential expression results cast doubt on the practice of imputing 

missing values prior to differential expression analysis. We have shown that at the peptide 

and protein level, for DIA, label-free DDA and TMT experiments, no imputation generally 

works, as well as the most commonly used imputation methods. Our results are in line 

with Wolski et al., who suggest that statistical models of differential expression that do not 

impute, but rather explicitly model missingness, tend to outperform traditional models.52

As we performed differential expression analysis on only three data sets, we do not 

claim our results will generalize to all proteomics data. Instead, our results suggest that 

researchers should empirically evaluate whether imputation improves accuracy of their 

differential expression analysis on a case-by-case basis, using procedures similar to the one 

we introduce here.
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Bai et al. have shown that the choices in normalization procedure and statistical analysis 

method can affect differential expression results.53 The normalization procedures used by 

the data sets we analyzed are provided as Supplementary Table 1. We acknowledge that 

differences in normalization may have introduced variation that cannot be explained by 

imputation methods alone. It is also possible that the spectral processing tools themselves—

for example, MaxQuant versus Skyline—may have contributed additional variation. Future 

work will aim to repeat our benchmark analysis with standardized spectral processing and 

normalization procedures.

We choose a two-sample sample t test for differential expression analysis because it 

represents a simple, transparent and commonly used procedure.54,43,39,32 Furthermore, the 

three data sets that we analyzed all had relatively simple experimental designs. For the 

DIA35 and TMT41 data sets, each analyzed sample came from a different individual, and 

serial biopsies and time series data were excluded from our analysis. For the label-free 

DDA data set,39 biological replicates from two Brucella species were compared. For 

simple experimental designs such as these, differential expression analysis does not require 

complicated statistical procedures. For more complex designs we recommend MSstats, 

which can model a variety of experimental designs in a statistically rigorous manner.55

We found that imputation can identify new quantitative peptides (Figure 5). As modern 

proteomics techniques increase the number of identifications, it is important to remember 

that not all of the detected peptides are quantitative. Here we show that MissForest 

can be used as a postprocessing tool to generate additional quantitative peptides in 

a proteomics experiment (Figure 5). Additionally, NMF and kNN can produce new 

subsets of quantitative peptides even though they may still decrease the total number 

of quantitative peptides. Increasing the number of quantitative peptides will increase the 

statistical power of any downstream prediction or inference task that relies on peptide 

abundances. Such tasks include identifying differentially expressed peptides, clustering 

samples or peptides, dimensionality reduction, and identifying coexpression modules and 

protein–protein interaction networks.

Imputation with MissForest can also improve the peptide LLOQ (Figure 6). It is worth 

acknowledging that while MissForest decreased the LLOQ of significantly more peptides 

than it increased, it did still increase the LLOQ for a large number of peptides (3,115/24,204 

detected peptides). That said, any proteomics study that examines biologically important 

low-abundance peptides may still benefit from MissForest imputation. As the scale and 

sensitivity of proteomics experiments increase, MissForest—and future imputation methods

—may help researchers study key peptides derived from ever-smaller sample volumes.

Finally, we provide empirical evidence that peptide quantifications exhibit more variance 

than can be explained under Poisson or Gaussian modeling assumptions (Figure 8). While 

ion counting may be a Poisson process,23–25 it is clear that the resulting quantifications 

are not Poisson distributed. One property of a Poisson distribution is that the mean and 

variance are equal. We found that this property was violated by several proteomics data sets: 

the variance among peptide quantifications across technical replicates was greater than the 

corresponding means (Figure 8). This result held true for both DDA and DIA experiments 
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and for protein-level quantifications (Figure 6). We speculate that this additional variance 

may be due to an unaccounted-for noise source such as electrospray ionization. Another 

assumption is that log-transformed intensities are roughly Gaussian. Under this model, 

variance would be uniform across mean intensities. We show this assumption is also violated 

in DIA and DDA data: we observed nonuniform variance after log transformation (Figure 8, 

right). It is worth noting that Poisson is a discrete probability distribution, whereas Gaussian 

is continuous. From a statistical standpoint, it should not be assumed that a logarithmic 

transformation can convert a discrete probability distribution into a continuous one.

Future imputation methods should explicitly model the variance present in the proteomics 

data. One obvious choice of generating distribution is the negative binomial distribution, 

which has an additional parameter that can account for variance independent of the 

mean. This strategy has been employed previously to model counts from single-cell RNA 

sequencing experiments.27,28 Another option would be to perform variance stabilization 

prior to imputation. This is the goal with the log transformation; however, as we 

have shown, logging does not successfully stabilize variance. VSN, a custom variance 

stabilizing transformation originally developed for microarrays, has been shown to stabilize 

the variance of protein quantifications,16,56 as has the generalized log transformation.57 

However, the proteomics community has yet to broadly adopt these methods. Proteomics 

may also benefit from the variance stabilization technique developed by Bayat et al., in 

which a variance stabilizing function is empirically learned from the data.26 Successful 

modeling and variance stabilization approaches could benefit not just imputation but also 

data analysis for proteomics more broadly.

We speculate that the unusual dimensionality of peptide-by-run matrices, generally 

thousands of peptides by fewer than 100 runs, may cause problems for existing imputation 

methods. Many proteomics imputation methods were originally developed for microarrays 

and relatively square matrices. Future imputation methods may benefit from explicitly 

accounting for the dimensionality of peptide-by-run matrices.

The proteomics community would benefit from easy-to-use and broadly applicable 

imputation methods. As previously reported,1,2,14,15 we found that the best choice in 

imputation method depends on the analysis task and the details of the experiment. This 

suggests the need for new imputation methods that are generalizable enough to accurately 

handle data from any acquisition strategy and type of missingness. Deep neural networks 

have proven to be highly generalizable in other contexts. Recent “deep” impute methods 

may be a step in the right direction,20 though much work remains to be done. In the future, 

data-driven imputation methods may be broadly adopted as part of general signal processing 

workflows for proteomics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Identifying the most commonly used proteomics imputation methods. Results of a literature 

survey of Journal of Proteome Research articles from January 2019 to January 20, 2023 are 

shown. Methods labeled “Other” appear in just a single publication, and refer to the imp4p 

and QRLIC R packages, as well as methods based on Euclidean distances and randomly 

drawing from the entire peptide intensity range. The full results of this literature search, 

including the names and DOIs of the identified studies, are included as Data 1.
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Figure 2. 
Evaluating imputation methods with traditional criteria. Test set reconstruction error (MSE) 

for imputation with five methods is shown for seven proteomics data sets. MCAR and 

MNAR procedures were used to simulate the missing values
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Figure 3. 
Comparing the abilities of imputation methods to identify differentially expressed peptides. 

Precision-recall curves are shown for MCAR and MNAR simulated missingness. Data were 

obtained from PXD034525, a DIA study of Alzheimer’s disease. Differentially expressed 

peptides were identified between two clinically annotated Alzheimer’s disease groups.35 The 

areas under the precision-recall curves (AUCs) for the MCAR and MNAR are indicated.
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Figure 4. 
Comparing the abilities of imputation methods to identify differentially expressed proteins. 

DIA data were obtained from PXD034525. Differentially expressed proteins were identified 

between two clinically annotated Alzheimer’s disease groups. Missingness was simulated by 

MCAR and MNAR. AUC values are given in parentheses.
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Figure 5. 
Comparing the abilities of imputation methods to generate additional quantitative peptides. 

Orange indicates peptides that were quantitative in both the imputed and the unimputed data 

sets. Blue indicates peptides that were only quantitative after imputation. Data were obtained 

from PXD014815.36
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Figure 6. 
Comparing the abilities of imputation methods to decrease peptide LLOQ. In (A) the 

asterisk indicates a one-sided binomial Benjamini-Hochberg corrected p-value <0.01. In 

panels B–E the LLOQs of unimputed peptides are plotted against the LLOQs of the same 

imputed peptides. Only peptides with changes in LLOQ following imputation are plotted. 

Data were obtained from PXD014815.36
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Figure 7. 
Runtime comparison for the imputation methods. Each point represents a data set. Data 

sets are ordered by the number of nonmissing observations in their training sets after an 

80%/20% MCAR train/test partition.
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Figure 8. 
Variance of peptide quantifications is greater than expected. Means and variances were 

calculated across technical replicates for every detected peptide. Each dot corresponds to a 

peptide. Data from DIA (PXD034525) and DDA (PXD016079, PXD014525, PXD006109) 

experiments are plotted.
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