Skip to main content
. Author manuscript; available in PMC: 2024 Mar 19.
Published in final edited form as: J Proteome Res. 2023 Oct 20;22(11):3427–3438. doi: 10.1021/acs.jproteome.3c00205

Table 1.

Existing Proteomics Imputation Methodsa

Method Type Description Examples
Zero replacement S Replace missing values with zeros
Mean replacement S Replace missing values with the mean peptide intensity for a peptide or sample
Low value replacement S Replace missing values with the lowest observed intensity in any sample (sample minimum) or peptide (peptide minimum)
Gaussian random sample S Randomly sample from a Gaussian distribution centered around the lowest observed intensity Perseus9
Regression L Linear regression is used to estimate missing values lm, glm
kNN L Weighted average intensity of k most similar peptides impute.knn,3 VIM10
MissForest G Nonparametric method to impute missing values using a random forest classifier trained on the observed parts of the data set, repeated until convergence MissForest11
PCA G Run principal component analysis, impute missing values with the regularized reconstruction formulas and repeat until convergence pcaMethods,12 missMDA13
a

Descriptions of generalized imputation strategies and examples of specific tools that implement each strategy. The “Type” column indicates whether the method uses single-value replacement (S), local similarity (L), or global similarity (G).