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Abstract 

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which 
is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females partici-
pated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), 
and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic 
nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females 
compared to males. MSNA burst frequency was decreased during the PLR in both males (− 6.2 ± 0.4 bursts/min 
at 40º) and females (− 6.5 ± 0.4 bursts/min at 40º), but no significant difference was detected between the two groups 
(P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow 
during the loading of cardiopulmonary baroreceptors in young individuals.
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Background
The cardiopulmonary baroreflex plays a crucial role in 
maintaining hemodynamic homeostasis, in large part 
through precise regulation of sympathetic vasomo-
tor outflow [6, 31, 44]. The majority of research on the 

cardiopulmonary baroreflex has focused on neural 
adjustments during orthostatic stress. Indeed, sympa-
thetic vasomotor outflow directed to the skeletal muscle 
vasculature (muscle sympathetic nerve activity: MSNA) 
increases during low levels of lower body negative pres-
sure (LBNP) [42, 48] or mild experimental hemorrhage 
[40], which induces decreases in central blood vol-
ume (CBV) and central venous pressure (CVP), thereby 
unloading the cardiopulmonary baroreceptors [31]. In 
contrast, though less extensively studied, increases in 
CBV and CVP, which load the cardiopulmonary baro-
receptors, evoke sympathoinhibition. Instances of such 
responses include decreased MSNA and increased fore-
arm blood flow observed during passive elevation of 
the legs [16, 30, 41], low levels of head-down tilt [44], 
or mild lower body positive pressure [13, 25]. Loading 
of the cardiopulmonary baroreceptors also contributes 
significantly to sympathoinhibition during low-intensity 
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dynamic exercise [8, 26] by enhancing venous return and, 
consequently increasing CBV and CVP via muscle pump.

Physical and physiological differences exist between 
males and females, including different circulating lev-
els of the sex hormones like testosterone and estrogen. 
These sex-specific differences could potentially impact 
baroreflex function [11, 19]. Regarding cardiopulmo-
nary baroreceptor unloading, Yang et  al. [51] compared 
changes in MSNA during LBNP between young males 
and females, and found that increases in MSNA during 
low levels of LBNP were similar between sexes [51]. This 
result indicates minimal sex differences in the sympatho-
excitatory response during cardiopulmonary barorecep-
tor unloading. To the best of our knowledge, whether sex 
differences in the sympathoinhibitory effect of cardiopul-
monary baroreceptor loading exist has not been evalu-
ated in humans. Investigating the sex differences in the 
inhibition of sympathetic vasomotor outflow through the 
cardiopulmonary baroreflex may generate foundational 
data on sex-specific influence on sympathetic vasomo-
tor and arterial blood pressure (ABP) regulations during 
low-intensity dynamic exercise.

We tested the hypothesis that the magnitude of the 
sympathoinhibitory response to cardiopulmonary baro-
receptor loading would not differ by sex. To test this 
hypothesis, MSNA was measured during passive leg 
raises (PLR), a method known to load the cardiopulmo-
nary baroreceptors, in young males and age-matched 
females.

Methods
Participants
Fifteen young males and 14 young females were 
recruited. All participants were free of known diseases 
and were non-smokers. Females did not take medica-
tions, oral contraceptive pills, or other forms of hormo-
nal contraception. Testing for female participants was 
not standardized to a specific time point within the men-
strual cycle. We were unable to obtain or maintain suf-
ficient quality MSNA recordings in nine participants (five 
males and four females). Consequently, we report data 
from ten males (age: 22 ± 1 years) and ten females (age: 
21 ± 1 years).

Experimental procedure
All experiments were performed in a temperature-con-
trolled laboratory (22–24  ˚C). On day 1, subjects were 
familiarized with the measurement apparatus and the 
PLR test. The participants were placed in a supine posi-
tion (0º) on a customized bed allowing for movement 
about the hip joint, and then the lower limbs of the par-
ticipants were lifted passively in a straight manner to 
40º. On day 2, participants performed the PLR test with 

MSNA measurement (MSNA trial). To prevent arm 
movement artifacts, the arms were fixed using a vacuum 
splint (E-13; Okada Medical Supply, Tokyo, Japan). First, 
the participants rested in a supine position (0º) for 5 min 
(baseline). Then, the lower limbs were lifted passively and 
gradually at 10º, 20º, 30º, and 40º and were returned to 0º. 
Each angle lasted for 3 min. On day 3, participants com-
pleted the same PLR test as day 2, but peripheral venous 
pressure was measured as estimated central venous pres-
sure (eCVP; eCVP trial). MSNA and eCVP trials were 
conducted with 4- to 7-day interval between them.

Experimental measurements and instrumentation
Cardiovascular variables
An electrocardiogram (ECG) was recorded using a three-
lead electrocardiograph (AB-621; Nihon Kohden, Tokyo, 
Japan). ABP was measured on a beat-to-beat basis using 
servo-controlled finger photoplethysmography (Finom-
eter; Finapres Medical Systems BV, Amsterdam, The 
Netherlands) on the middle finger of the right hand. To 
validate absolute arterial blood pressure values from the 
Finometer, an automated sphygmomanometer (HEM-
907, Omron, Kyoto, Japan) recorded ABP on the brachial 
artery of the right arm before baseline measurements.

Muscle sympathetic nerve activity
Multiunit MSNA was recorded by the standard 
microneurographic technique, similar to that in our 
previous studies [21, 24, 27, 28]. A unipolar tungsten 
microelectrode was placed into the left radial nerve at 
the posterior aspect of the middle humerus [20, 25, 27], 
guided by ultrasound imaging [5]. Neural signals were 
amplified (DAM50; World Precision Instruments, Sara-
sota, FL, USA), filtered (bandwidth 700–2,000  Hz), 
rectified, and integrated (time constant 0.1 s) (299; Inter-
cross, Tokyo, Japan) to obtain mean voltage neurograms. 
MSNA recordings were identified by their pulse synchro-
nous burst pattern and increased burst frequency to an 
end-expiratory breath hold without any responses to 
arousal or skin stroking [7, 9, 47].

Estimated central venous pressure
The central venous pressure was estimated from the 
peripheral venous pressure (eCVP), which was moni-
tored using a cannula in the right large antecubital vein 
as in previous studies [6, 15, 27, 33]. The venous cath-
eter was connected to a pressure transducer (AP-601G, 
Nihon Kohden, Tokyo, Japan) through a fluid-filled sys-
tem (PX600F; Edwards Lifesciences Co., Tokyo, Japan). 
The transducer was calibrated with a manometer before 
connection to the catheter. The right arm was positioned 
at the level equal to one-half the transverse chest diame-
ter determined at the fourth rib [45]. All eCVP responses 
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during the PLR test are reported as the changes from 
baseline values (ΔeCVP) [27, 46].

Data acquisition and analysis
ECG, ABP, MSNA, and eCVP were sampled at a fre-
quency of 1000 Hz through an analog-to-digital converter 
(PowerLab; ADInstruments, Bella Vista, NSW, Australia) 
and saved to a computer (CF-F8, Panasonic, Osaka, 
Japan) for off-line analysis. Heart rate (HR) was calcu-
lated on R–R intervals recorded from the ECG. Systolic 
and diastolic ABP (SAP and DAP) were determined from 
the ABP waveform signal, and mean ABP (MAP) was 
calculated using the following equation: MAP = (SAP-
DAP)/3 + DAP. The MSNA bursts were identified from 
the mean voltage neurogram using a customized com-
puter program-assisted inspection [21–23, 27, 28], which 
accounted for the latency from the ECG-R wave to the 
sympathetic burst [9] and incorporated a signal-to-noise 
ratio of at least 3:1. For burst amplitude, the bursts dur-
ing baseline were assigned a mean value of arbitrary units 
(a.u.) and all MSNA burst amplitudes were expressed as 
a percentage of this value. MSNA burst frequency (BF; 
in bursts/min), burst incidence (BI; in bursts/100 heart-
beats), and total activity (TA; i.e., mean burst ampli-
tude × burst frequency, in a.u./min) were calculated [20, 
25]. All baseline data were averaged over 3-min periods. 
Variables during the PLR were averaged over 1  min. 
For statistical analysis, we used the mean values of the 
last 2 min during each angle. Owing to the baseline dif-
ferences in MSNA BF, BI, and TA between males and 
females, the absolute changes from baseline (Δ) were cal-
culated and compared between the two groups.

Statistical analysis
Values are expressed as mean ± SE. For all data, the 
assumption of a normal distribution was verified using 
the Shapiro–Wilk test. Comparisons of parameters 
between males and females were performed using Stu-
dent’s unpaired t-test for variables that were normally dis-
tributed, while the Mann–Whitney U-test was used when 
the distribution was non-normal. Changes in the varia-
bles during the PLR test between males and females were 
compared by two-way ANOVA RM (Group × Angle). 
Statistical significance was set at P < 0.05. Statistical com-
parisons were performed with SPSS (v.22.0; IBM Japan, 
Tokyo, Japan) and StatView software (5.0; SAS Institute, 
Tokyo, Japan).

Results
Physical characteristics
Males were taller and heavier than females (males, 
height: 177 ± 2 cm, body mass: 69 ± 3 kg, females, height 
157 ± 2 cm, body mass: 50 ± 3 kg, both P < 0.01).

PLR test
Baseline descriptive data
A representative MSNA recording is shown in Fig. 1, and 
mean values of cardiovascular and MSNA variables, and 
eCVP during the PLR test are shown in Tables 1 and 2, 
and Fig. 2. There were no differences in any of the HR and 
ABP values at baseline between the MSNA (day 2) and 
eCVP (day 3) trials in either group. Thus, we exclusively 
refer to the HR and ABP data from the MSNA trial. SAP, 
MAP, MSNA BF, MSNA BI, and MSNA TA were lower 
in females than males (all P < 0.05). In contrast, there 
were no statistical differences in HR and DAP at baseline 
between males and females.

Cardiovascular variables
HR, SAP, DAP, and MAP did not change during the PLR 
in each group (Table  1). SAP and MAP were lower in 
females than in males throughout the PLR test (Table 1).

MSNA variables
MSNA BF, BI, amplitude, and TA decreased progressively 
from baseline during PLR in both groups, and MSNA BF, 
BI, and TA were lower in females than in males through-
out the PLR test (Figs.  1, 2A, and Table  2). There were 
no significant differences in the extent of the decrease 
in MSNA BF, BI, amplitude and TA during the PLR test 
between males and females (Fig. 2A and Table 2). Simi-
larly, no statistically significant differences in ΔMSNA BF, 
BI, and TA during the PLR test were observed between 
males and females (Table 2).

Estimated central venous pressure
The ΔeCVP increased in proportion to the angle during 
the PLR test in both groups (Fig. 2B). There was no differ-
ence in the magnitude of the increase in ΔeCVP during 
the PLR test between males and females (Fig. 2B).

Discussion
The novel findings of the present study are as fol-
lows: (1) MSNA BF, BI, and TA decreased in propor-
tion to the angle of lower limbs during the PLR test in 
males and females; (2) the magnitude of the decrease in 
MSNA exhibited no difference between sexes; (3) eCVP 
increased linearly in both groups as PLR angles pro-
gressed, with no notable difference in the magnitude of 
eCVP increase (i.e., ΔeCVP) between the two groups; 
and (4) HR and ABP remained unchanged during the 
PLR test in both male or female participants. These find-
ings indicate that sex has minimal influence on the sym-
pathoinhibitory response during the PLR test in young 
individuals. The results of this study provide novel 
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information on the effects of biological sex on sympa-
thetic vasomotor outflow regulation through the cardio-
pulmonary baroreflex.

Sex difference in the sympathoinhibitory response 
during the PLR test
Previously, Yang et  al. [51] reported no sex-based dif-
ferences in the increase in MSNA during low levels of 
LBNP (~ 10 mmHg) in young, healthy individuals. Their 
results indicate no sex differences in sympathoexcitation 

induced by the unloading of cardiopulmonary barorecep-
tors. Based on the results of their study, we hypothesized 
there would be no sex difference in the sympathoinhibi-
tory response to cardiopulmonary baroreceptor loading. 
Consequently, during the PLR test, MSNA BF, BI, and TA 
decreased gradually in proportion to the lower limb angle 
in both males and females. However, there were no dif-
ferences in the changes in MSNA BF, BI, and TA between 
the two groups (Fig.  2A and Table  2). These findings 
lead us to conclude that sex minimally influences the 

Fig. 1  Representative recordings of MSNA at baseline (0º) and during passive leg raising (10º–40º)

Table 1  Cardiovascular variables during the PLR test

Values are mean ± SE. HR, heart rate; SAP, systolic arterial blood pressure; DAP, diastolic arterial blood pressure; MAP, mean arterial blood pressure
† P < 0.05 vs. Males

Groups PLR test (angle) Two-way RM ANOVA

Baseline, 0º 10º 20º 30º 40º

HR (beats/min) Males 61.0 ± 1.6 61.0 ± 2.1 60.7 ± 1.8 61.2 ± 1.6 61.0 ± 1.5 Group: F = 0.2, P = 0.471
Angle: F = 1.2, P = 0.314
Group × Angle: F = 0.9, P = 0.471

Females 60.2 ± 1.5 60.7 ± 1.5 59.5 ± 1.4 60.1 ± 1.5 59.0 ± 1.3

SAP (mmHg) Males 123.1 ± 2.2 122.3 ± 2.5 122.9 ± 2.4 123.0 ± 2.1 123.9 ± 2.1 Group: F = 4.9, P = 0.041
Angle: F = 1.1, P = 0.364
Group × Angle: F = 1.7, P = 0.155

Females 114.4 ± 2.3† 117.8 ± 2.2† 117.6 ± 2.2† 114.4 ± 2.6† 116.3 ± 2.3†

DAP (mmHg) Males 66.9 ± 1.7 67.7 ± 1.9 66.2 ± 2.4 67.0 ± 2.5 68.2 ± 1.8 Group: F = 2.3, P = 0.149
Angle: F = 1.4, P = 0.229
Group × Angle: F = 1.1, P = 0.379

Females 62.8 ± 1.4 63.6 ± 1.4 64.5 ± 1.3 62.4 ± 1.6 64.5 ± 1.2

MAP (mmHg) Males 85.7 ± 1.6 85.9 ± 1.7 85.1 ± 2.1 85.7 ± 2.1 86.8 ± 1.6 Group: F = 4.5, P = 0.048
Angle: F = 1.6, P = 0.176
Group × Angle: F = 1.1, P = 0.388

Females 80.0 ± 1.4† 81.7 ± 1.4† 81.7 ± 1.3† 79.8 ± 1.8† 81.8 ± 1.3†
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cardiopulmonary baroreceptor loading-mediated inhi-
bition of sympathetic vasomotor outflow in young indi-
viduals. To our knowledge, this is the first study which 
investigated the impact of sex on the sympathoinhibitory 
effect of cardiopulmonary baroreceptor loading. Our 
findings align with a prior animal study which reported 
similar decreases in renal sympathetic nerve activity in 
male and female rats through volume expansion using 
saline to activate cardiopulmonary baroreceptors [17]. 
In the present study, eCVP increased in proportion 
to lower limb angles during the PLR test in both males 
and females, and the ΔeCVP during the PLR test did not 
differ between the sexes (Fig.  2B). Thus, it is likely that 
a similar stimulus was applied to the cardiopulmonary 
baroreceptors during the PLR test in both groups [27], 
resulting in comparable levels of MSNA for each angle in 
both sexes.

Our conclusion that cardiopulmonary baroreflex con-
trol of sympathetic vasomotor outflow is not affected 
by sex in young individuals is based on similar absolute 
reductions of the MSNA BF, BI, and TA values in males 
and females (Fig. 2A and Table 2). Whether the absolute 
or percentage change is more appropriate when inves-
tigating physiological responses to a stimulus remains 
under debate [6, 44]. Given the lower baseline MSNA 
level in females compared to males (Fig. 2A), it is plausi-
ble that the percentage change in MSNA during the PLR 
test might be more pronounced in females. It has been 
suggested that the absolute change in (rather than the 
percentage) MSNA exerts the most influence on target 

Table 2  MSNA variables during the PLR test

Values are mean ± SE. MSNA BF, MSNA burst frequency; MSNA BI, MSNA burst incidence; MSNA TA, MSNA total activity
† P < 0.05 vs. Males

Groups PLR test (angle) Two-way RM ANOVA

Baseline, 0º 10º 20º 30º 40º

ΔMSNA BF (bursts/min) Males 0.0 ± 0.0 − 2.3 ± 0.6 − 3.4 ± 0.5 − 4.8 ± 0.4 − 6.2 ± 0.4 Group: F = 0.1, P = 0.833
Angle: F = 95.2, P < 0.001
Group × Angle: F = 0.7, P = 0.611

Females 0.0 ± 0.0 − 1.5 ± 0.6 − 3.4 ± 0.6 − 4.7 ± 0.5 − 6.5 ± 0.4

MSNA BI (bursts/100 heartbeats) Males 29.1 ± 1.9 25.5 ± 2.4 23.8 ± 2.2 21.2 ± 1.8 18.9 ± 1.5 Group: F = 5.0, P = 0.038
Angle: F = 92.2, P < 0.001
Group × Angle: F = 0.4, P = 0.820

Females 23.7 ± 1.4† 21.0 ± 1.7† 18.1 ± 1.4† 15.8 ± 1.2† 13.1 ± 1.2†

ΔMSNA BI (bursts/100 heartbeats) Males 0.0 ± 0.0 − 3.7 ± 0.9 − 5.4 ± 1.0 − 8.0 ± 0.7 − 10.2 ± 0.8 Group: F < 0.1, P = 0.940
Angle: F = 92.2, P < 0.001
Group × Angle: F = 0.4, P = 0.820

Females 0.0 ± 0.0 − 2.7 ± 0.9 − 5.6 ± 1.1 − 7.9 ± 0.8 − 10.6 ± 0.8

Normalized MSNA burst amplitude 
(%)

Males 0.0 ± 0.0 − 15.4 ± 6.9 − 25.9 ± 8.0 − 35.0 ± 5.5 − 41.6 ± 6.8 Group: F = 0.4, P = 0.515
Angle: F = 146.3, P < 0.001
Group × Angle: F = 0.3, P = 0.897

Females 0.0 ± 0.0 − 26.9 ± 6.6 − 29.2 ± 6.1 − 35.8 ± 6.3 − 42.0 ± 5.7

MSNA TA (a.u./min) Males 91.2 ± 11.3 66.5 ± 11.5 54.1 ± 10.7 44.6 ± 8.5 35.4 ± 7.0 Group: F = 1.4, P = 0.259
Angle: F = 73.7, P < 0.001
Group × Angle: F = 0.3, P = 0.896

Females 74.0 ± 8.1† 51.0 ± 9.1† 40.7 ± 6.8† 32.7 ± 5.5† 24.1 ± 4.3†

ΔMSNA TA (a.u./min) Males 0.0 ± 0.0 − 24.7 ± 5.3 − 37.2 ± 5.7 − 46.6 ± 5.6 − 55.8 ± 6.1 Group: F = 0.3, P = 0.580
Angle: F = 73.7, P < 0.001
Group × Angle: F = 0.3, P = 0.896

Females 0.0 ± 0.0 − 23.0 ± 4.0†  − 33.3 ± 4.8† − 41.3 ± 6.2† − 49.9 ± 6.0†

Fig. 2  Changes in MSNA BF (A) and ΔeCVP (B) during the PLR 
test.†P < 0.05 males vs. females
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organ responses, thus being the appropriate physiologi-
cally significant measure [44] rather than the percent-
age change. MSNA BF, BI, and TA metrics are related to 
the plasma noradrenaline concentration [32, 36, 37] and 
renal noradrenaline spillover [49]. Furthermore, most 
recent studies [2, 14, 29, 34, 38, 50] comparing MSNA 
responses to acute physiological stress (i.e., cold pressor 
test and handgrip exercise) among different groups have 
reported absolute MSNA changes exclusively. Therefore, 
it is plausible that the absolute, rather than the percent-
age change, is of most physiologically significance.

Limitation and technical consideration
We did not control for the menstrual cycle in female par-
ticipants. Baseline MSNA changes throughout the men-
strual cycle, as reproductive hormones have been shown 
to influence autonomic control [35]. Previous studies 
have investigated the effect of menstrual cycle on the 
arterial baroreflex, but the findings are inconsistent. Min-
son et al. [35] found that sympathetic baroreflex sensitiv-
ity during pharmacological blood pressure perturbations 
was greater in the mid-luteal phase than in the early fol-
licular phase in young females. In contrast, Fu et al. [12] 
reported that spontaneous arterial baroreflex sensitivity 
was not different between the early follicular phase and 
the mid-luteal phase in young females. These inconsistent 
results may be attributed to the different methods used to 
evaluate sympathetic baroreflex sensitivity and/or vari-
able surges in estrogen and progesterone at different time 
points during the menstrual cycle [11]. In response to 
orthostatic maneuvers, sympathetic baroreflex sensitivity 
increased in all individuals and the increment was similar 
between healthy young males and females during differ-
ent menstrual phases [3, 12]. To our knowledge, there is 
no available data concerning the effect of the menstrual 
cycle on changes in MSNA in response to cardiopulmo-
nary baroreceptor loading, and further study is needed to 
clarify this issue.

We utilized PLR to simulate cardiopulmonary barore-
ceptors and compared the changes in MSNA between 
females and males. The mobilized blood volume during 
the PLR test may vary depending on anthropometric 
features [1]. Indeed, males were taller and heavier than 
females, and thus the changes in blood volume from the 
lower limbs toward the central part of the body may dif-
fer between the two groups. However, there was no dif-
ference in the magnitude of the increase in eCVP during 
PLR test between males and females (Fig. 2B). This result 
is supported by previous study [4] which measured CVP 
(right atrial catheter) during PLR in young and older 
individuals: the young group was taller and heavier than 
older group, but the increase in CVP induced by PLR was 
comparable in young and older groups. Thus, we consider 

that stimulation to the cardiopulmonary baroreceptors 
during the PLR test was similar in females and males in 
this study, resulting in comparable levels of MSNA.

Perspective and significance
The cardiopulmonary baroreflex could play an important 
modulatory role in maintaining neural and cardiovascu-
lar responses during low-intensity dynamic exercise [8, 
26, 39]. Interestingly, MSNA decreases relative to that at 
rest during low-intensity leg cycling [18, 26, 43]. During 
dynamic exercise, intermittent compression of leg veins 
(i.e., muscle pump) elicits an increase in venous return 
and CBV, leading to the loading of the cardiopulmonary 
baroreceptors and consequently inhibits MSNA [8, 10, 
26]. This sympathoinhibition during low-intensity exer-
cise would buffer the ABP response and failure of such 
inhibition leads to an exaggerated ABP response [8]. 
To the best of our knowledge, it remains unclear what 
impact sex has on MSNA during low-intensity dynamic 
exercise, which could be related to the sympathoinhibi-
tory effect of the cardiopulmonary baroreflex. In the 
present study, we did not find any sex differences in the 
sympathoinhibitory response induced by loading of the 
cardiopulmonary baroreceptors at rest. Therefore, it is 
plausible that the inhibition of MSNA during low-inten-
sity dynamic exercise in young females also does not dif-
fer from that observed in age-matched males. Further 
studies are needed to validate this assumption.

Conclusion
In the present study, we observed no differences in 
decreases in MSNA during the PLR test between young 
females and age-matched males. These results suggest 
that in young individuals, sex has minimal influence on 
the inhibition of sympathetic vasomotor outflow caused 
by the loading of the cardiopulmonary baroreceptors.
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