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Abstract

Conventional longitudinal data analysis methods assume that outcomes are independent of the 

data-collection schedule. However, the independence assumption may be violated, for example, 

when a specific treatment necessitates a different follow-up schedule than the control arm or 

when adverse events trigger additional physician visits in between prescheduled follow-ups. 

Dependence between outcomes and observation times may introduce bias when estimating 

the marginal association of covariates on outcomes using a standard longitudinal regression 

model. We formulate a framework of outcome-observation dependence mechanisms to describe 

conditional independence given observed observation-time process covariates or shared latent 

variables. We compare four recently developed semi-parametric methods that accommodate one 

of these mechanisms. To allow greater flexibility, we extend these methods to accommodate 

a combination of mechanisms. In simulation studies, we show how incorrectly specifying the 

outcome-observation dependence may yield biased estimates of covariate-outcome associations 

and how our proposed extensions can accommodate a greater number of dependence mechanisms. 

We illustrate the implications of different modeling strategies in an application to bladder 

cancer data. In longitudinal studies with potentially outcome-dependent observation times, we 

recommend that analysts carefully explore the conditional independence mechanism between the 

outcome and observation-time processes to ensure valid inference regarding covariate-outcome 

associations.
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1. Introduction

Longitudinal studies commonly assume that the data-collection schedule is independent 

of a subject’s outcomes and measured or unmeasured characteristics. However, this 

independence assumption may be violated if observed covariate or outcome values influence 

the occurrence or timing of subsequent visits. For example, in a study following patients 

with diabetes, routine visits are scheduled every 6 months. However, spikes in blood 

sugar levels, exacerbation of other symptoms, or underlying patient characteristics may 

trigger additional closely spaced physician visits until the blood sugar level has stabilized. 

The intensity of events such as physician visits is dependent on previous outcomes and 

measured or unmeasured covariates. Less healthy patients may be over-represented in the 

analysis because of more frequent data collection. In the presence of the resultant selection 

bias, conventional methods such as generalized estimating equations (GEE) [1] may yield 

biased estimates of covariate-outcome associations [2,3]. Proper estimation must account 

for such selection bias. We focus on a marginal mean regression model to evaluate the 

association between observed covariates and a continuous outcome of interest. We denote 

the longitudinal outcomes as the outcome process and the occurrence of visits over time as 

the observation-time process.

Several authors have proposed parametric models to account for the potential dependence 

between the outcome and observation-time processes. Lipsitz et al. [4] developed a 

likelihood-based procedure for continuous outcomes, Fitzmaurice et al. [5] proposed a 

pseudo-likelihood estimation procedure for binary outcomes, and Lin et al. [6] and Bůžková 

and Lumley [7] utilized inverse intensity-weighted estimators with observation-level inverse 

weights. Others focused on estimation procedures based on joint likelihood approaches: Ryu 

et al. [8] developed a Bayesian fully parametric regression model; Liu et al. [9] considered 

a joint mixed-effects model in which the outcomes, observation times, and censoring times 

were correlated through latent variables. The study of outcome-dependent observation times 

shares features of research regarding incomplete [10,11] and recurrent marked point process 

data [12] but differs in that subjects do not share a common set of visit times, and outcomes 

(e.g., blood sugar level) exist even if an event (e.g., a physician visit) does not occur.

We introduce a framework of three outcome-observation dependence mechanisms. The first 

mechanism applies when the outcome and the observation-time processes are conditionally 

independent given outcome-model covariates. The second mechanism applies when the 

processes are conditionally independent given observation-time model covariates, which 

may include outcome-model covariates and previous outcomes. The third applies when 

the processes are conditionally independent given shared, unobserved, latent variables. We 

consider four semi-parametric marginal regression methods that do not require estimation 

of the mean effect of time on the outcomes: the Lin method [13] accommodates the first 

mechanism, the Bůžková method [14] accommodates the second mechanism, and the Liang 

[15] and Sun [16] methods accommodate the third mechanism. We extend both the Liang 

and the Sun methods to accommodate a combination of the three mechanisms, thereby 

increasing the flexibility of the models.

Tan et al. Page 2

Stat Med. Author manuscript; available in PMC 2024 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this article, we compare currently available and newly extended methods that 

accommodate outcome-dependent observation times. Our goal is to provide much-needed 

clarification of the strengths and limitations of each estimation method under alternative 

outcome-observation dependence mechanisms. In Section 2, we elaborate on our framework 

of outcome-observation dependence mechanisms. We review existing methods under each of 

these mechanisms (Section 2.2) and detail our extensions to both the Liang and Sun methods 

to accommodate conditional independence through observation-time model covariates, 

and our extension to the Liang method to accommodate time-dependent covariates in 

the observation-time model (Section 2.3). We present simulation studies to evaluate the 

performance of the reviewed methods under alternative outcome-observation dependence 

mechanisms in Section 3 and illustrate their application to a bladder cancer study in Section 

4. Section 5 provides guidance on the selection of estimation methods.

2. Estimation methods

Let Y i t  denote a continuous outcome of interest at time t and Xi t  denote a p × 1
vector of possibly time-dependent covariates for subject i = 1, …, n. We only consider 

external covariates, such that any time-dependent covariate process at time t is conditionally 

independent of all previous outcomes given the history of the covariate process [17]. The 

outcome Y i ⋅  is measured at mi observation times 0 ⩽ T i1 < T i2 < ⋯ < T imi ⩽ τ, for which mi

denotes the number of follow-up measurements on the ith individual, and τ denotes the 

maximum study duration. Using counting process notation, let Ni t = ∑s ⩽ t dNi(s) denote the 

number of observations on the ith subject by t ⩽ Ci. The censoring time Ci ⩽ τ is the time 

of last visit or an administrative end-of-study time. The indicator variable dNi(t) is 1 if a 

follow-up visit occurred at t and 0 otherwise. We assume non-informative censoring, such 

that E Y i(t) ∣ Xi(t), Ci ⩾ t = E Y i(t) ∣ Xi(t). That is, the covariate-outcome associations are the 

same in subjects who are censored at Ci as those who are still in the study.

2.1. Models and assumptions

2.1.1. Semi-parametric outcome model.—We assume that primary scientific interest 

lies in a semi-parametric regression model for the longitudinal continuous outcomes [13]:

Y i t = μ t + β′Xi t + ϵi t ,

(1)

for which μ(t) is an arbitrary function of time, β is a p × 1 vector of regression parameters 

of interest, and ϵi(t) is a zero-mean process independent of Xi(t). Model (1) specifies a 

parametric structure for the effect of Xi(t) and a non-parametric structure for μ(t) [3,18,19]. 

A semi-parametric model is appealing if the effect of Xi(t) is of primary interest and the 

effect of time is considered a nuisance. Model (1) does not condition on the entire covariate 

process or on past outcomes. Instead, it includes covariate information available at t, such 

as baseline covariates, covariates measured at or before t, and summaries of the covariate 

history, that is, Model (1) is a partly conditional mean regression model [20].
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2.1.2. Observation-time model.—We use a standard recurrent events model to 

describe the observation-time process. Given observation-time model covariates Zi(t) and 

a non-negative latent variable ηi with mean 1 and unknown variance σ2, Ni is a non-

homogeneous Poisson process with intensity function [21]:

λi(t) = ηiexp γ′Zi(t) λ(t),

(2)

in which γ is a vector of unknown parameters, λ(t) is an unspecified baseline intensity 

function with Λ(t) = ∫0
t λ(u)du, and Xi(t) ⊆ Zi(t). Unless otherwise specified, we assume that 

ηi is independent of Zi(t). Model (2) implies that the occurrence of observations follows a 

proportional intensity model, in which ηi inflates or deflates the visit intensity. The parameter 

γ from the observation-time model is considered a nuisance. However, incorporating the 

observation-time process into the estimation of β facilitates prediction from longitudinal data 

under similar outcome-observation dependence mechanisms, which we detail in the next 

section.

2.1.3. A framework of outcome-observation dependence mechanisms.—We 

distinguish three mechanisms that describe the dependence between the outcome and 

observation-time processes:

(M1) Conditional independence given past outcome-model covariates.

(M2) Conditional independence given past observation-time model covariates.

(M3) Conditional independence given shared latent variables.

Throughout the paper, ‘conditional independence given covariates’ implies conditional 

independence given past observed covariates. Recall that Xi(t) incorporates covariate 

information available at t, which may include baseline covariates, covariates measured at 

or before t, and summaries of the covariate history.

(M1) Conditional independence given past outcome-model covariates: The first 

mechanism applies when the outcome process is conditionally independent of the 

observation-time process given observed outcome-model covariates Xi(t), or a subset of Xi(t):

E dNi(t) ∣ Xi(t), Y i(t), Ci ⩾ t = E dNi(t) ∣ Xi(t) .

The probability of observation at time t depends on Xi(t), Y i(t), and Ci only through observed 

outcome-model covariates Xi(t). (M1) is plausible when the occurrence of a visit is due to 

the features of the study design instead of subject-specific behaviors.

(M2) Conditional independence given past observation-time model covariates: The 

second mechanism applies when the probability of an observation at t depends on 

observation-time model covariates Zi(t), in which full or subset of Xi(t) is contained in Zi(t):
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E dNi(t) ∣ Zi(t), Y i(t), Ci ⩾ t = E dNi(t) ∣ Zi(t) .

The set of observation-time model covariates Zi(t) can include the outcome-model 

covariates, any additional measured covariates at or before t, and summaries of previous 

outcomes. Note that (M1) ⊂ (M2) because Xi(t) ⊆ Zi(t).

(M3) Conditional independence given shared latent variables: The third mechanism 

applies when the outcome process is conditionally independent of the observation-time 

process given observed outcome-model covariates Xi(t) and an unobserved mean 1 subject-

specific latent variable ηi:

E dNi(t) ∣ Xi(t), Y i(t), ηi, Ci ⩾ t = E dNi(t) ∣ Xi(t), ηi .

The parameter ηi expresses subject-specific unmeasured confounders and propensity for an 

observation. Note that (M1) ⊂ (M3) in situations to be described in Section 2.2.3.

Our framework for outcome-observation dependence in the analysis of longitudinal data 

provides guidance for the selection of reliable methods. (M2) and (M3) place fewer 

restrictions on the probability of having a visit than (M1) and are reasonable assumptions 

in most observational studies. However, (M2) and (M3) are more restrictive because fewer 

analysis methods are available to provide valid inference, which we detail in the following 

section.

2.2. Existing methods

In this section, we describe four existing methods to estimate covariate-outcome associations 

in the presence of outcome-observation dependence. All of the methods require estimation 

of an observation-time model. If the observation-time process is conditionally independent 

of the censoring times, the parameter γ can be consistently estimated by γ̂ from the 

procedure in Lin et al. [21]:

U(γ) = ∑
i = 1

n ∫
0

τ
Zi(t) − Z(t; γ) dNi(t),

(3)

for which ξi(t) = I Ci > t  and:

Z‾ (t; γ) = i = 1
n ξi(t)exp γ′Zi(t) Zi(t)

i = 1
n ξi(t)exp γ′Zi(t)

.

2.2.1. Method under (M1).—Lin and Ying [13] assume that the observation-time 

process is conditionally independent of the outcome process given the outcome-model 
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covariates, as in (M1). The Lin method specifies a marginal semi-parametric outcome 

model E Y i(t) ∣ Xi(t) = μ(t) + β′Xi(t) and a proportional rate observation-time model 

E dNi(t) ∣ V i(t) = exp γ′V i(t) dΛ(t), in which V i(t) is a subset of Xi(t). We define a zero-mean 

stochastic process [13]:

Mi(t; A, β, γ) =
0

t
Y i(s) − β′Xi(s) dNi(s) −

0

t
exp γ′V i(s) ξi(s)dA(s),

(4)

in which A(t) = ∫0
t μ(s)dΛ(s). Based on (4), one set of estimating equations to solve for μ(t)

and β is:

∑
i = 1

n
Mi(t; β, γ) = 0, 0 < t ⩽ τ

(5)

∑
i = 1

n ∫
0

τ
W (t)Xi(t)dMi(t; β, γ) = 0.

(6)

The common weight W (t) can improve efficiency and may be data-dependent, such as the 

proportion of subjects left in the study, that is, n−1∑i = 1
n ξi(t). The closed-form expression of 

A(t) in (5) yields A(t; β) = ∑i = 1
n ∫0

t Y i(s) − β′Xi(s) dNi(s)
∑j = 1

n ξj(s)exp γ′V i(s)
, which replaces A(t) in (6) to form the 

estimating equation:

∑
i = 1

n ∫
0

τ
W (t) Xi(t) − X(t; γ) Y i(t) − β′Xi(t) dNi(t) = 0.

(7)

The centering term is defined as:

X‾ (t; γ) = i = 1
n ξi(t)exp γ′V i(t) Xi(t)

i = 1
n ξi(t)exp γ′V i(t)

.

We note that:

E
i = 1

n

0

τ

Xi(t) − X‾ (t; γ) g(t)dNi(t) ∣ Xi(t), Ci; i = 1, …, n =
i = 1

n

0

τ

Xi(t) − X‾ (t; γ) g(t)dNi(t) = 0
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for any function g( ⋅ ), so we extend the left side of (7) to obtain the class of estimating 

functions for β:

Ug(β; γ) =
i = 1

n

0

τ

W (t) Xi(t) − X‾ (t; γ) Y i(t) − β′Xi(t) − g(t; γ) dNi(t) .

One optimal choice of g( ⋅ ) that minimizes the variance of Ug(β, γ) is 

g(t; γ) = Y‾*(t; γ) − β′X‾ (t; γ), in which:

Y‾*(t; γ) = i = 1
n ξi(t)exp γ′V i(t) Y i

*(t)

i = 1
n ξi(t)exp γ′V i(t)

,

and Y i
*(t) is the measurement of Y i at the observation nearest to t. Hence, β can be 

consistently estimated from the estimating equation [13]:

U(β; γ) =
i = 1

n

0

τ

W (t) Xi t − X‾ t; γ {Y i t − Y‾* t; γ − β′ Xi t − X‾ t; γ }dNi(t) = 0,

in which γ is estimated by (3) conditioning on the covariates V i(t). The inclusion of the 

centering term for covariates accounts for the probability of being observed at t and removes 

the need for estimation of μ(t). The centering of the outcome increases the efficiency of the 

estimation procedure. Note that Y i
*(t) is the nearest-neighbor approximation of Y i(t) if the true 

measurement is not evaluable or collected at t. Li and Ryan [22] documented the potential 

issue of such mismeasured covariates. Discussion of other forms of g( ⋅ ) and Y i
*(t) can be 

found in the comments and rejoinder section of Lin and Ying [13].

2.2.2. Method under (M1) and (M2).—Bůžková and Lumley [14] relax the assumption 

of (M1) by addressing the dependence between the outcome and observation-time processes 

through observation-time model covariates. The set of covariates Zi(t) may include the 

outcome-model covariates Xi(t) and past outcomes.

The Bůžková method uses inverse intensity rate ratio (IIRR)-weighted estimators to 

estimate β in the outcome model E Y i(t) ∣ Xi(t) = μ(t) + β′Xi(t). The observation-level inverse 

weights standardize the observed data to the time-specific underlying population under 

the proportional rate model for observation times E dNi(t) ∣ Zi(t) = exp γ′Zi(t) dΛ(t). Inverse 

weighting has also been shown to reduce bias when cluster size is informative (i.e., the 

outcomes measured among clustered units are not independent of cluster size) [23, 24] 

and when missing data are missing at random (i.e., missingness depends only on observed 

covariates and outcomes) [25, 26]. One particular weight with variance-stabilizing properties 

is:

ρi(t; γ, δ) = exp γ′Zi(t)
exp δ′Xi(t) ,
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for which δ is estimated by δ̂ using (3) conditioning on Xi(t) instead of Zi(t). The proposed 

estimating equation for β is:

U(β; γ̂, δ) =
i = 1

n

0

τ
W (t)

ρi(t; γ̂, δ) Xi(t) − X‾ (t; δ) Y i(t) − Y‾*(t; δ) − β′ Xi(t) − X‾ (t; δ) dNi(t) = 0,

in which:

X‾ (t; δ) = i = 1
n ξi(t)exp δ′Xi(t) Xi(t)

i = 1
n ξi(t)exp δ′Xi(t)

,

and:

Y‾*(t; δ) = i = 1
n ξi(t)exp δ′Xi(t) Y i

*(t)

i = 1
n ξi(t)exp δ′Xi(t)

.

If Zi(t) = Xi(t), then ρi(t; γ, δ) = 1, and the Bůžková method reduces to the Lin method 

(Section 2.2.1). The IIRR-weighted estimates are asymptotically consistent and normal, but 

the validity of the proposed IIRR-weighted estimator is contingent upon correct specification 

of Zi(t) in the observation-time model [14].

2.2.3. Methods under (M1) and (M3).—The following two methods accommodate 

subject-specific observation-time processes with arbitrary visit patterns through the use of 

latent variables. The Liang method [15] specifies a semi-parametric mixed-effects outcome 

model:

E Y i(t) ∣ Xi(t), Qi(t) = μ(t) + β′Xi(t) + ηi1
′ Qi(t),

(8)

in which ηi1 is a vector of unobserved subject-specific latent variables and Qi(t) is a subset of 

Xi(t). The observation-time process is modeled as λi(t) = ηi2λ(t) exp γ′V i , and V i is a subset of 

baseline covariates in Xi(t). The Gamma-distributed latent variable ηi2 is independent of V i, 

E ηi2 = 1, and Var ηi2 = σ2 is unknown. The relationship between ηi1 and ηi2 is defined by the 

conditional expectation E ηi1 ηi2 = θ ηi2 − 1 , so θ describes the magnitude and direction of 

the association between the outcome and observation-time processes. Note that the marginal 

expectation of ηi1 is 0. The linear link between ηi1 and ηi2 can also be extended to other 

specified link functions [15]. When ηi1 = 0, the Liang method reduces to the Lin method 

(Section 2.2.1).

Conditioning on ηi2, the observation-time process is a non-homogeneous process such 

that mi has a Poisson distribution with mean ηi2exp γ′V i Λ Ci . The cumulative baseline 
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intensity function Λ(t) can be consistently estimated by the Aalen-Breslow-type estimator 

Λ̂(t) = Λ̂(t, γ̂):

Λ̂(t, γ̂) =
i = 1

n

0

t
dNi(s)

j = 1
n ξj s exp γ̂′V i

,

for which γ is estimated by (3) conditioning on the baseline covariates V i. Given Ci, mi, ηi2 , 

the observation times T i1, T i2, …, T imi  are the order statistics of a set of independently and 

identically distributed random variables with the density function:

i = 1

n
p ti1, ti2, …, timi ∣ Ci, mi, ηi2 =

i = 1

n
mi!

i = 1

n dΛ tij
Λ Ci

.

Hence, E dNi(t) ∣ Ci, mi, ηi2 = ξi(t)mi
dΛ(t)
Λ Ci

. It follows that:

E Y i(t) − β′Xi(t) dNi(t) ∣ Ci, mi = E E μ(t) + ηi1
′ Qi(t) + ϵi(t) dNi(t) ∣ Ci, mi, ηi2 ∣ Ci, mi

= μ(t)ξi(t)mi
dΛ(t)
Λ Ci

+ θ′Qi(t)E ηi2 − 1 ∣ Ci, mi E dNi(t) ∣ Ci, mi .

(9)

We define Bi(t) = Qi(t)E ηi2 − 1 ∣ Ci, mi  as a covariate based on the subject-specific 

propensity of visit, and A(t) = ∫0
tμ(s)dΛ(s). Then (9) can be expressed as:

E Y i(t) − β′Xi(t) − θ′Bi(t) dNi(t) ∣ Ci, mi = ξ(t) mi
Λ Ci

dA(t) .

We can then formulate the zero-mean process:

Mi2 t; A, β, θ, γ =
0

t
Y i s − β′Xi s − θ′Bi t dNi s −

0

t
ξi s mi

Λ Ci
dA s ,

(10)

and define the set of estimating equations based on (10) to estimate μ(t), β, and θ
simultaneously:

∑
i = 1

n
Mi2(t; β, θ, γ) = 0, 0 < t ⩽ τ

(11)

∑
i = 1

n ∫
0

τ Xi(t)
Bi(t)

dMi2(t; β, θ, γ) = 0.
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(12)

The closed-form expression for A(t) in (11) replaces A(t) in (12), so β and θ can be 

consistently estimated using the class of estimating equations [15]:

U(β, θ; Λ̂, B̂) =
i = 1

n

0

τ Xi(t) − X‾ (t)

B̂i(t) − B̂
−

(t)
Y i(t) − β′Xi(t) − θ′B̂i(t) dNi(t) = 0,

for which:

X‾ (t) = i = 1
n ξi(t)Xi(t)mi/Λ̂ Ci

i = 1
n ξi(t)mi/Λ̂ Ci

,

and:

B̂
−

(t) = i = 1
n ξi(t)B̂i(t)mi/Λ̂ Ci

i = 1
n ξi(t)mi/Λ̂ Ci

.

To estimate Bi(t), the conditional expectation of ηi2 given Ci, mi  is required. If we assume that 

ηi2 is Gamma distributed with mean 1 and variance σ2, the expectation of ηi2 can be expressed 

as:

E ηi2 ∣ Ci, mi = 1 + miσ2

1 + exp γ′V i Λ Ci σ2 .

The covariate Bi(t) can thus be estimated by:

B̂i(t) = 1 + miσ̂2

1 + exp γ̂′V i Λ̂ Ci σ̂2 − 1 Qi(t),

for which σ̂2 is a consistent estimator of σ2 defined as:

σ̂2 = max i = 1
n

mi
2 − mi − exp 2γ̂′V i Λ̂2 Ci

i = 1
n

exp 2γ̂′V i Λ̂2 Ci

, 0 .

(13)

Similar to the Liang method, the Sun method [16] accommodates (M3). In contrast to the 

Liang method, the distribution of the latent variable is completely unspecified, and the same 

latent variable ηi is shared between the outcome and observation-time models. The Sun 

method specifies the semi-parametric marginal model:
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E Y i(t) ∣ Xi(t), ηi = μ(t) + β′Xi(t) + αηi .

(14)

Similar to θ in the Liang method, α parameterizes the correlation between the outcome and 

observation-time processes. If α = 0, then the Sun method reduces to the Lin method.

Conditioning on ηi, Ni(t) is a non-homogeneous Poisson process with intensity function 

λi(t) = ηiλ(t)exp γ′Xi(t) . The distribution of ηi under the Sun method may depend on observed 

time-independent outcome-model covariates V i with E ηi ∣ V i = 1. Discussion regarding 

covariate-dependent latent variables or frailties can be found in recent literature [27–30]. 

Let π̂ t; Xi = ∫0
texp γ̂′Xi(u) dΛ̂(u), η̂i = mi − 1 /π̂ Ci; Xi , and Ω̂i = mi − 1 mi − 2 /π̂ Ci; Xi

2. The 

class of estimating equations for β and α has the form:

U1(β, α; γ) =
i = 1

n

0

τ

W (t) Xi(t) − X‾ (t; γ) Y i(t) − β′Xi(t) − αη̂i dNi(t) = 0,

and:

U2(β, α; γ) =
i = 1

n

0

τ

W (t) η̂i − η‾(t; γ) Y i(t) − β′Xi(t) − α Ω̂i − η̂iη‾(t; γ) dNi(t) = 0,

for which:

X‾ (t; γ) = i = 1
n ξi(t)exp γ′Xi(t) Xi(t)mi/π̂ Ci; Xi

i = 1
n ξi(t)exp γ′Xi(t) mi/π̂ Ci; Xi

,

and:

η‾(t; γ) = i = 1
n ξi(t)exp γ′Xi(t) η̂imi/π̂ Ci; Xi

i = 1
n ξi(t)exp γ′Xi(t) mi/π̂ Ci; Xi

.

2.3. Extensions

2.3.1. Extension to Liang method to accommodate time-dependent 
covariates.—The estimation procedure of Liang et al. [15] allows adjustment for time-

independent covariates in the observation-time model. Here, we extend the Liang method 

to accommodate time-dependent covariates. π̂ t; V i = ∫0
texp γ̂′V i(u) dΛ̂(u). The class of 

estimating equations for β and θ permitting time-dependent covariates in the observation-

time model has the form:
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U(β, θ; Λ̂, B̂) =
i = 1

n

0

τ Xi(t) − X‾ (t)

B̂i(t) − B̂
−

(t)
Y i(t) − β′Xi(t) − θ′B̂i(t) dNi(t) = 0,

for which:

X‾ (t) = i = 1
n ξi(t)exp γ′Xi(t) Xi(t)mi/π̂ Ci; Xi

i = 1
n ξi(t)exp γ′Xi(t) mi/π̂ Ci; Xi

,

B̂
−

(t) = i = 1
n ξi(t)exp γ′Xi(t) B̂i(t)mi/π̂ Ci; Xi

i = 1
n ξi(t)exp γ′Xi(t) mi/π̂ Ci; Xi

,

and B̂i(t) can be estimated as before by replacing Λ̂ Ci  with mi/π̂ Ci; V i . We provide details 

on consistency and asymptotic normality of the estimators in Appendix A.

2.3.2. Weighted-Liang and weighted-Sun methods.—We propose extensions to 

the Liang and Sun methods to offer additional flexibility when parameterizing outcome-

observation dependence under both (M2) and (M3). Recall that we denote Xi(t) as the 

outcome-model covariates and Zi(t) as the observation-time model covariates. With the 

inclusion of observation-level weights ρi(t; γ̂, δ), the set of estimating equation for the 

weighted-Liang method can be expressed as:

U(β, θ; Λ̂, B̂) =
i = 1

n

0

τ
W (t)

ρi(t; γ̂, δ)
Xi(t) − X‾ (t)

B̂i(t) − B̂
−

(t)
Y i(t) − β′Xi(t) − θ′B̂i(t) dNi(t) = 0,

for which:

X‾ (t) = i = 1
n ξi(t)exp δ′Xi(t) Xi(t)mi/π̂ Ci; Zi

i = 1
n ξi(t)exp δ′Xi(t) mi/π̂ Ci; Zi

,

and:

B̂
−

(t) = i = 1
n ξi(t)exp δ′Xi(t) B̂i(t)mi/π̂ Ci; Zi

i = 1
n ξi(t)exp δ′Xi(t) mi/π̂ Ci; Zi

.

Similarly, the set of estimating functions for the weighted-Sun method is:

U1(β, α; γ̂) =
i = 1

n

0

τ
W (t)

ρi(t; γ̂, δ) Xi(t) − X‾ (t) Y i(t) − β′Xi(t) − αη̂i dNi(t) = 0,
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and:

U2(β, α; γ̂) =
i = 1

n

0

τ
W (t)

ρi(t; γ̂, δ) η̂i − η‾(t) Y i(t) − β′Xi(t) − α Ω̂i − η̂iη‾(t) dNi(t) = 0,

for which η̂i = mi − 1
π̂ Ci; Zi

,

η‾(t) = i = 1
n ξi(t)exp δ′Xi(t) η̂imi/π̂ Ci; Zi

i = 1
n ξi(t)exp δ′Xi(t) mi/π̂ Ci; Zi

,

and:

X‾ (t) = i = 1
n ξi(t)exp δ′Xi(t) Xi(t)mi/π̂ Ci; Zi

i = 1
n ξi(t)exp δ′Xi(t) mi/π̂ Ci; Zi

.

We provide details on consistency and asymptotic normality of our extensions in Appendices 

A and B.

2.4. Summary

In this section, we formulated a semi-parametric linear regression model to evaluate the 

marginal association between covariates and a continuous outcome of interest in the 

presence of outcome-dependent observation times. We presented a framework of outcome-

observation dependence mechanisms. The Lin method is the most restrictive of the reviewed 

methods, because it is suitable only for the stronger assumption of (M1); the Bůžková 

method accommodates (M2) and reduces to (M1) when the additional covariates in the 

observation-time model are not required; the Liang and Sun methods accommodate (M3), 

with (M1) as a special case. We proposed two methods, the weighted-Liang and weighted-

Sun methods, which offer considerable flexibility in that they can accommodate all (or 

any combination) of the three outcome-observation dependence mechanisms. We note that 

standard error estimation for all methods is most easily obtained using bootstrap procedures; 

in this setting, a cluster bootstrap, in which subjects are sampled with replacement, is 

required [31,32]. The resampling of subjects assumes that the correlation structure within 

each subject is retained [33,34]. R code for the cluster-bootstrap procedure is included in the 

Appendix. In subsequent sections, we evaluate the statistical properties of these methods in 

simulation studies (Section 3). We illustrate their application and propose model verification 

in a case study (Section 4).

3. Simulation study

We evaluated the statistical properties of the reviewed methods through simulation studies 

under two outcome-observation dependence settings: (i) (M2) and (ii) (M2) and (M3). All 

simulations were conducted in R 2.13.1 (R Development Core Team, Vienna, Austria).
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3.1. Setting 1: simulations under (M2)

3.1.1. Parameters.—In this setting, we used covariates to induce correlation between 

the outcome and observation-time processes. Following the simulation procedure of 

Bůžková and Lumley [14], we generated continuous outcomes at each of 1000 iterations 

using the linear mixed-effects model:

Y i(t) = μ(t) + β1Xi1(t) + β2 Xi2 − E Xi2 ∣ Xi1 + ϵi(t),

(15)

for which μ(t) = t, ϵi(t) ∼ Normal(0,1) and β1 was the target of inference. The time-dependent 

covariate Xi1(t) = Xi1log(t) was a known function of time, in which Xi1 followed a 

Uniform[0,1] distribution. The time-independent covariate Xi2 was drawn from a mixture 

distribution, for which Xi2 ∼ Normal(2,1) if Xi1 ⩽ 0.5 and Xi2 ∼ Normal(0,4) if Xi1 > 0.5. Hence, 

Xi2 in model (15) influenced the covariate-outcome association of Xi1(t). To ensure proper 

marginalization of model (15), Xi2 was centered by its conditional mean given Xi1, resulting 

in the marginal semi-parametric outcome model:

E Y i(t) ∣ Xi(t) = μ(t) + β1Xi1(t) .

(16)

We generated the observation times T ik following a non-homogeneous Poisson process with 

intensity function λi(t) = ηiλ(t)exp γ1Xi1(t) + γ2Xi2 . Note that Xi2 induced additional correlation 

between the outcome and observation-time processes. We set λ(t) = t
2  and generated the 

latent variable ηi from a Gamma distribution with mean 1 and variance ση
2 = 0.5. The 

independent censoring time Ci was generated from Uniform [5,10]. We considered various 

combinations of outcome parameters (β1 = 1, β2 = 0, 0.3, 1 ) and intensity parameters 

γ1 = 0.5, γ2 = 0, − 0.2, 0.5 . When β2 = 0 and γ2 = 0, the outcome-observation dependence 

model satisfied (M1); when γ2 ≠ 0, the outcome-observation dependence model satisfied 

(M2).

3.1.2. Results.—Table I provides the estimated bias, empirical standard error estimates, 

and mean-squared error estimates for estimation of β1 in model (16). Recall that the Lin, 

Liang, and Sun methods estimate β1 without accounting for Xi2 in any way, whereas the 

Bůžková, weighted-Liang, and weighted-Sun methods incorporate the effect of Xi2 through 

observation-level weights. As anticipated, all six methods yielded approximately unbiased 

parameter estimates for β1 if (M1) was satisfied (γ2 = 0), that is, when the outcome process 

was conditionally independent of the observation-time process given outcome-model 

covariates. The Lin, Bůžková, weighted-Liang, and weighted-Sun estimates of β1 were 

comparable in bias and efficiency to both the Liang and Sun estimators. However, if (M1) 

was violated γ2 ≠ 0, that is, the source of additional correlation between the two processes 

was induced by an additional covariate Xi2, then only the Bůžková, weighted-Liang, and 

weighted-Sun methods performed well, with negligible biases in all settings. When β2 = 0
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and γ2 ≠ 0, all methods performed well because Xi2 was not associated with the outcome. As 

β2 increased, the biases of Lin, Liang, and Sun estimates for β1 increased. A positive value of 

γ2 with positive values of Xi2 led to more observations per subject, which increased efficiency 

in the estimation of β1 in most cases.

In this setting, we also quantified the price of assuming (M3) when the latent variable was 

unnecessary. We calculated the estimated relative efficiency (ERE) of unbiased estimators 

with the estimated variance of the weighted-Liang and weighted-Sun methods in the 

numerator and the estimated variance of the Bůžková method in the denominator. The 

ERE indicated that the loss of efficiency was reasonable and comparable between the 

weighted-Liang and weighted-Sun methods. As β2 increased (i.e., the dependence between 

the outcome and observation-time models increased), the ERE decreased. In addition, we 

also calculated the ERE of IIRR-weighted versus unweighted methods to investigate the 

loss of efficiency due to inclusion of the additional covariate Xi2 when none was needed 

(Appendix C). The EREs between the Bůžková and Lin methods were close to 1 under 

all scenarios. The loss of efficiency was greater for the weighted-Liang and weighted-Sun 

methods but decreased as the number of observations increased (i.e., greater γ2) and when β2

increased.

3.2. Setting 2: simulation under (M2) and (M3)

3.2.1. Parameters.—In the previous setting, we focused on outcome-observation 

dependence induced through covariates. In this setting, we focus on estimation of β1 under 

various forms of latent variable structures. To simulate data under both (M2) and (M3), we 

generated outcomes at each of 1000 iterations using the linear mixed-effects model:

Y i(t) = μ(t) + β1Xi1(t) + β2 Xi2 − E Xi2 ∣ Xi1 + αηi1Qi(t) + ϵi(t),

(17)

in which μ(t), ϵi(t), Xi1(t), and Xi2 were as defined in Section 3.1.1. The observation 

times T ik were generated from a non-homogeneous Poisson process with intensity function 

λi(t) = ηi2λ(t)exp γ1Xi1(t) + γ2Xi2 , for which λ(t) = t
2 . The independent censoring time Ci

was generated from Uniform[7,10]. The coefficients were set at β1 = 1, β2 = 0.3, γ1 = 0.5, 

γ2 = − 0.2, and α = 1. Because α ≠ 0 in model (17), correlation was introduced between 

the outcome and the observation-time processes through latent variables. We generated the 

latent variable ηi2 under two scenarios:

1. ηi2 from Gamma distribution with mean 1 and variance 0.5; hereby, ηi2
(1).

2. ηi2 from a mixture distribution, following Uniform [0.5,1.5] if Xi1 ⩽ 0.5 and 

Gamma distribution with mean 1 and variance 0.7 if Xi1 > 0.5; hereby, ηi2
(2).

The latent variable ηi1 was generated under two scenarios:

1. ηi1 = ηi2; hereby, ηi1
(1).
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2. E ηi1 ∣ ηi2 = θ ηi2 − 1 , θ = 1; hereby, ηi1
(2).

We let Qi(t) = 1 or Qi(t) = Xi1. When Qi(t) = Xi1, Model (17) can be considered a random 

coefficient model. The latent variables were dependent on the outcome process either 

through Qi(t) = Xi1 or ηi2
(2). The simulation setup mirrored the setup of Sun et al. [16] if ηi1 = ηi2

and Qi(t) = 1 and mirrored the setup of Liang et al. [15] if α = 1, ηi2 was Gamma distributed 

with mean 1 and ηi1 and ηi2 were linearly linked through E ηi1 ∣ ηi2 = θ ηi2 − 1 .

3.2.2. Results.—Table II provides the estimated bias, empirical standard error estimates, 

and mean-squared error estimates for estimation of β1 in (17). The inclusion of Xi2 in 

the observation-time model satisfied (M2) and induced additional correlation between 

the outcome and observation-time processes, so the IIRR-weighted methods (Bůžková, 

weighted-Liang, and weighted-Sun) performed better than their unweighted counterparts, 

reflecting the results of Setting 1.

Under the Sun setup (i.e., ηi1
(1) : ηi1 = ηi2 and Qi(t) = 1), all IIRR-weighted methods yielded 

approximately unbiased parameter estimates for β1 under ηi2
(1). Under the Liang setup 

(i.e., ηi1
(2) :E ηi1 ∣ ηi2 = θ ηi2 − 1  and Qi(t) = 1 , all methods yielded approximately unbiased 

estimates under ηi2
(1). Under ηi2

(2), in which the distribution of the latent variable depended 

on Xi1, only the weighted-Sun method yielded approximately unbiased estimates under 

Qi(t) = 1, although the bias under the weighted-Liang method was smaller in magnitude than 

the Bůžková method. Note that the Bůžková method is not expected to perform well in 

this setting (in which unobserved latent variables affect the outcome and observation-time 

processes), because latent variable models represent a different class of models. If the 

effect of the latent variable ηi1 on the outcomes was associated with the value of Xi1 (i.e., 

Qi(t) = Xi1), then the bias of β1 was small under the weighted-Liang method but large under 

all other methods.

3.3. Summary

Our simulation results quantified the potential for bias in estimated covariate-outcome 

associations under various outcome-observation dependence mechanisms. The Bůžková, 

weighted-Liang, and weighted-Sun methods performed better when (M2) is satisfied. In 

Setting 1, we examined the robustness of the methods that included latent variables when 

they were not needed. We showed that the potential loss of efficiency was moderate 

and decreased when the dependence between the outcome and observation-time models 

increased. We also examined the relative efficiency between IIRR-weighted and unweighted 

methods to examine potential loss of efficiency due to including an unnecessary additional 

covariate in the observation-time model. The results indicated that the loss of efficiency 

was moderate and decreased with greater number of observations or increased dependence 

between the outcome and observation-time processes. The weighted-Liang and weighted-

Sun methods were the most flexible in that they could accommodate a combination of 

outcome-observation dependence mechanisms. They also provided estimates with negligible 

bias depending on the relationship between the latent variable and the outcome-model 

covariates. In practice, ensuring unbiased estimates through a more complex dependence 

model may be more important than a potential loss in efficiency.
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In our simulation study, we generated data using the same set of covariates in settings with 

and without latent variables. In settings without such latent variables, the Bůžková method 

performs well, and simulations here (Section 3.1) and by others [7,14,35] have demonstrated 

small empirical bias. In practice, observed covariates (including previous outcomes) that are 

correlated with an unobserved latent variable may be used to partially capture information 

regarding subject-specific visit intensities.

Exploratory data analysis, model diagnostics, and sensitivity analyses can be used to 

investigate the relationship between the outcome and observation-time processes and to 

ensure selection of an appropriate analysis method. We illustrate and discuss strategies for 

model selection in Sections 4 and 5.

4. Case study

4.1. Background

We compared the reviewed methods using a subset of data from a bladder cancer study 

conducted by the Veterans Administration Cooperative Urological Research Group [36]. 

Eighty-five patients with superficial bladder tumors were randomly assigned to placebo 

(n = 47) or thiotepa treatment (n = 38). At each follow-up visit, new tumors were counted 

before being removed transurethrally. The maximum study duration was 53 months. There 

was notable heterogeneity in visit patterns across patients. The median (25th, 75th percentile) 

number of visits in the placebo group and treatment group was 9 (5, 12) and 9 (4, 23), 

respectively. The average time between visits for the placebo group was 3.7 months, 

compared with 2.3 months for the treatment group. These differences suggested that the 

patients in the treatment group visited the clinic more often. Hence, the observation-time 

process must account for this difference to estimate properly the effect of treatment on tumor 

recurrence.

Our analysis focused on the natural logarithm of the cumulative number of new tumors 

observed up to t plus 1 to retain a marginal response. We included a treatment indicator X1

and the natural logarithm of the initial number of tumors plus 1 X2  in the outcome model. 

We considered the following outcome models:

Lin and Bůžková methods: E Y i(t) ∣ Xi(t) = μ(t) + β1Xi1 + β2Xi2;

Liang and weighted-Liang methods: E Y i(t) ∣ Xi(t), ηi1 = μ(t) + β1Xi1 + β2Xi2 + ηi1Qi, Qi = Xi1;

Sun and weighted-Sun methods: E Y i(t) ∣ Xi(t), ηi1 = μ(t) + β1Xi1 + β2Xi2 + αηi1.

The consensus of previous analyses was that the tumor recurrence and observation-time 

processes were dependent [15,37,38]. We note that the outcome may be intrinsically 

dependent upon the measurement process, such that larger intervals between visits allows 

for more tumors to grow. The outcome is undoubtedly expected to increase with longer time 

between visits. We considered two observation-time models:

Case 1: λi(t) = ηi2exp γ1Xi1 + γ2Xi2 λ(t)
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Case 2: λi(t) = ηi2exp γ1Xi1 + γ2Xi2 + γ3log( # new tumors since baseline + 1) λ(t)

Case 1 specified the same set of covariates in both the outcome and observation-time 

models. Case 2 specified an additional covariate based on number of tumors since 

baseline because it is common for the physician to schedule a patient’s next visit based 

on the outcomes so far. Recall that ηi1 = ηi2 in the Sun and weighted-Sun methods and 

E ηi1 ∣ ηi2 = θ ηi2 − 1  in the Liang and weighted-Liang methods.

4.2. Results

Table III provides estimates for β and γ under the Lin, Liang, and Sun methods in Case 1. 

We obtained γ̂1 = 0.444 (SE, 0.093) and γ̂2 = − 0.001 (0.115), which suggested that treatment 

assignment was significantly associated with the observation-time process. We specified 

Qi = Xi1 because Xi1 had a significant effect in the observation-time model, and the results in 

Table III mirrored the conclusion from Liang et al. [15].

Next, we examined the importance of the additional covariate in Case 2. Table IV provides 

estimates for β and γ for IIRR-weighted methods under Case 2. We found that the 

cumulative number of tumors since baseline was significantly related to the observation-

time process. The Wald test of γ3 = 0 in the observation-time model provided a p-value 

< 0.001, implying that the inclusion of the additional covariate was appropriate. Hence, 

the IIRR-weighted methods were more appropriate than the unweighted methods, and we 

focused on the results in Table IV. The observation-level weights applied to the Bůžková, 

weighted-Liang, and weighted-Sun methods ranged from 0.50 to 1.26, with median (25th, 

75th percentile) = 0.93 (0.84, 1.06). With the incorporation of observation-levels weights, 

the treatment effect under the Bůžková method was attenuated compared with the Lin 

method. The treatment effect estimates under weighted-Liang and weighted-Sun methods 

were lower than those under the Liang and Sun methods. Because the initial number of 

tumors was not significantly related to the observation-time process, the corresponding 

estimates β̂2 were comparable under all methods.

To determine the necessity of latent variables in the outcome models, we focused on 

the variance of the latent variable ηi2 in the observation-time model. Under Case 2, the 

estimated variance based on (13) was 0.448, indicating that the latent variable approaches 

were appropriate. Based on the variance property of the Gamma distribution, we partitioned 

the variance of ηi2 as the contribution from the placebo group (0.059) and the thiotepa group 

(0.417). The difference in variance estimates indicated the possibility of covariate-dependent 

ηi2, in that the distribution of ηi2 was different between the treatment groups. Next, we 

used the density curve of η̂i2 to graphically check if ηi2 was covariate dependent. The 

density curves were indeed different between the treatment groups (Appendix D). Given 

the evidence of (M2) and (M3), we focused on the results under the weighted-Liang and 

weighted-Sun methods. We note that the same Zi(t) was used for the methods on Table 

IV. As in the simulation study, correct specification of covariates in Zi(t) may recover the 

effect of the latent variable under the Bůžková method. We did not have access to other 

measured covariates in this data set; if those were available, it may have been possible to 
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find candidates for Zi(t) such that the treatment estimate under the Bůžková method were 

closer to those under the weighted-Liang and weighted-Sun methods.

The choice between weighted-Liang and weighted-Sun methods relied on the distribution 

of ηi2. The weighted-Liang method assumes that ηi2 is derived from a Gamma distribution 

with a common variance for all subjects, whereas the weighted-Sun method places no 

distributional assumption on ηi2. Considering the evidence of covariate dependence based 

on the density curves, the results from the weighted-Sun method best described the data, 

although the estimates for β1 were similar between the weighted-Liang and weighted-Sun 

methods. Overall, the results indicated that treatment and the initial number of tumors had 

significant effects on tumor recurrence. We also observed a negative correlation between 

tumor recurrence and the observation-time processes (α̂ = − 0.247).

Lastly, we evaluated the fit of the outcome model based on the procedure presented 

in Liang et al. [15]. We derived residuals ϵ̂i(t) = Y i(t) − ŷi(t) using parameter estimates 

from Table IV. Denote 0 ⩽ t1 < t2 < ⋯ < tM as the M total observation times among all 

subjects. The estimate of μ(t) is a step function with jumps at unique observation times: 

μ̂ tk = dÂ tk

dΛ̂ tk
= Â tk − Â tk −

Λ̂ tk − Λ̂ tk −
, 1 ⩽ k ⩽ M. More information on Â tk  and dΛ̂ tk  can be found 

in Appendix E. Based on the residual plots of ϵ̂i(t) against the observation times (shown in 

Appendix E), there was some evidence of lack of fit for large outcome values, but it was not 

systematic with respect to time and was similar across all weighted methods.

5. Discussion

In this paper, we evaluated the statistical properties of currently available and newly 

extended semi-parametric methods for the analysis of longitudinal data with outcome-

dependent observation times. Table V summarizes the strengths and limitations of each 

method under various outcome-observation dependence mechanisms. The performance of 

each method hinges on the assumed mechanism of dependence between the outcome and 

observation-time processes. For conditional independence given covariates in the outcome 

model only (M1), all reviewed methods are appropriate. For conditional independence 

given observation-time model covariates only (M2), the Bůžková method is preferred. For 

conditional independence given unobserved latent variables only (M3), all methods perform 

well when the latent variables are independent of outcome-model covariates. However, if the 

distribution of the latent variables is covariate dependent, then the Sun method is preferred; 

if the effect of the latent variable in the outcome model is modified by any outcome-model 

covariates, then the Liang method is preferred. Under both (M2) and (M3), our extensions, 

the weighted-Liang and weighted-Sun methods, are the most flexible and remove the bias 

otherwise associated with the original Liang and Sun methods under (M2). In addition, 

our extension of the method by Liang et al. [15] allows time-dependent covariates in the 

observation-time process, which would otherwise not be possible.

In practice, empirical model checking can be useful to decide which method is most 

appropriate. First, to decide between (M1) and (M2), one can focus on the observation-time 

model and perform a Wald test of the additional q − p covariates [21]. If the Wald test yields 
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a significant result, the data suggest (M2). Next, one can determine the necessity of latent 

variables in the outcome model using the variance of the latent variable ηi2. If the estimated 

variance of the latent variables is small (i.e., close to 0), latent variables may not be required. 

One method to estimate Var ηi2  is to assume a parametric distribution for the latent variables, 

such as using Equation (13) if we can assume ηi2 is Gamma distributed. The distribution 

of the latent variable in the observation-time model is unspecified in the Lin, Bůžková, 

and Sun methods but is assumed to be Gamma distributed in the Liang method. There is a 

lack of formal techniques to check the Gamma distribution assumption of the unobserved 

latent variable. A series of sensitivity analyses is recommended. Liang et al. [15] showed 

that the Liang method provided reasonable estimates for covariate-outcome association even 

if the distribution of the latent variable ηi2 was misspecified, especially when the variance 

of the distribution was small. Robustness of the Liang and weighted-Liang methods to 

misspecification of the distribution of ηi2 can be improved by replacing the estimate of ηi2 by 

η̂i2 = mi/∫0
Ciexp γ̂′Xi(t) dΛ(t), removing any distributional assumption. The choice between the 

Liang and Sun methods rests upon whether the distribution of the latent variable is covariate 

dependent. An informal check is to partition the estimated variance of ηi2 by the covariate 

values to determine if the partitioned variances are similar across levels of Xi(t). We can 

also graphically display the density curves of η̂i2 to check for covariate-dependent latent 

variables. Lastly, we can evaluate the overall fit of the models based on residuals. Formal 

model selection is an area of future research.

Several features of the methods discussed here deserve comment. First, the semi-parametric 

outcome model does not require the estimation of μ(t). However, the potential gain from the 

flexibility of the form of μ(t) is countered by the potential loss in efficiency of estimation 

of the parameters of interest. Second, we assume that censoring times are independent of 

the outcome and observation-time model processes, that is, non-informative censoring. This 

assumption may be relaxed to allow censoring to depend on the outcome and observation-

time processes by estimating γ and Λ using the method proposed by Huang et al. [39]. In 

addition, the parameters in the outcome model are time-independent, which may not be 

appropriate in some cases. We refer readers to the procedure in Sun et al. [16] to derive 

time-dependent regression coefficients. Third, our goal is to generate inference regarding 

the marginal association between a set of covariates and the outcome of interest, rather 

than to conduct formal causal inference. If we allow intervention on Xi(t), modification 

of the exposure may influence not only the outcome of interest but also the occurrence 

of a visit. Hence, the quantification of the causal effect of the exposure on the outcome 

of interest requires techniques that establish the temporal association between exposure 

and outcome. A g-computation algorithm [40] or inverse-probability-of-treatment-weighted 

estimators [41] may provide insight into estimation of causal effects. Lastly, the observation-

time process can be modeled on two time scales: total time scale (i.e., time-to-events model) 

in which each recurrent event is measured from a time of origin, and gap time scale (i.e., 

time-between-events model) in which the measure of interest is time between successive 

events [42]. The methods in this paper adopt the total time scale, but it may be appropriate to 

consider the alternative parameterization. The time-between-events approach is well studied 

within the recurrent events field [43], but the use of the gap time scale in the regression 
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modeling of longitudinal data with outcome-dependent observation times warrants future 

research.

It is of interest to note that in the framework of incomplete data, GEE is able to 

accommodate missing completely at random data and the special case of covariate-

dependent missingness [44,45]. Similarly, in the current focus on outcome-dependent 

observation times, GEE does provide reliable estimates of β under (M1), assuming a 

correctly specified function of time in the outcome model. With the inclusion of observation-

level inverse intensity weights, a weighted-GEE model may also provide reasonable 

estimates of β under (M2) with the ease of currently available software packages [7]. 

However, the advantage of the methods in Section 2 is the flexibility provided by the 

non-parametric specification of the effect of time.

The methods we described are currently limited to linear models for continuous outcomes. 

Recent research has focused on the development of log-linear models for count outcomes 

[35, 46]. Future research will likely extend to semi-parametric models for binary outcomes. 

In addition, broader application of existing methods is likely hampered by the lack of 

available general-purpose statistical software. R code to generate Table IV along with some 

model-checking procedures is provided in Appendix F.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table III.

Parameter estimates and estimated standard errors (SE) under Case 1.

Method β̂1(SE) β̂2(SE) θ̂(SE) * α̂(SE) *

Lin −0.701 (0.172) 0.657 (0.165)

Liang −0.588 (0.175) 0.682 (0.147) −0.235 (0.243)

Sun −0.751 (0.188) 0.680 (0.159) −0.043 (0.398)

γ̂1 = 0.444 (0.093), γ̂2 = − 0.001 (0.115).

*
The parameters θ and α represent the association between the outcome and observation-time processes for the Liang and Sun methods, 

respectively.
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Table IV.

Parameter estimates and their estimated standard errors (SE) under Case 2.

Method β̂1(SE) β̂2(SE) θ̂(SE) * α̂(SE) *

Bůžková −0.565 (0.170) 0.572 (0.165)

Weighted-Liang −0.395 (0.166) 0.584 (0.147) −0.266 (0.229)

Weighted-Sun −0.423 (0.182) 0.580 (0.156) −0.247 (0.247)

γ̂1 = 0.536 (0.090), γ̂2 = − 0.105 (0.128), γ̂3 = 0.227 (0.076)

Stabilized weights: median (25th, 75th percentile) = 0.93 (0.84, 1.06).

*
The parameters θ and α represent the association between the outcome and observation-time processes for the weighted-Liang and weighted-Sun 

methods, respectively.
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